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Abstract: This paper investigates the problem of buffer-aided relay selection to achieve reliable and
secure communications in a two-hop amplify-and-forward (AF) network with an eavesdropper.
Due to the fading of wireless signals and the broadcast nature of wireless channels, transmitted
signals over the network may be undecodable at the receiver end or have been eavesdropped by
eavesdroppers. Most available buffer-aided relay selection schemes consider either reliability or
security issues in wireless communications; rarely is work conducted on both reliability and security
issues. This paper proposes a buffer-aided relay selection scheme based on deep Q-learning (DQL)
that considers both reliability and security. By conducting Monte Carlo simulations, we then verify
the reliability and security performances of the proposed scheme in terms of the connection outage
probability (COP) and secrecy outage probability (SOP), respectively. The simulation results show
that two-hop wireless relay network can achieve reliable and secure communications by using our
proposed scheme. We also performed comparison experiments between our proposed scheme and
two benchmark schemes. The comparison results indicate that our proposed scheme outperforms the
max-ratio scheme in terms of the SOP.

Keywords: physical-layer security; buffer-aided relay selection; Markov decision process; deep
Q-learning; secrecy outage probability; connection outage probability

1. Introduction

With the development of 5G and beyond, wireless networks are widely used in
various fields, such as wireless sensor networks (WSNs) [1], cognitive radio networks
(CRNs) [2], and the Internet of Things (IoTs) [3]. With the wide use of wireless networks,
a large amount of confidential information is transmitted over each network every day.
However, signals may be undecodable at the receiver end due to the fading of wireless
signals, and may be intercepted by an eavesdropper due to the broadcast nature of wireless
channels, leading to critical reliability and especially security issues in wireless networks.
Any unauthorized attacker within the transmission range of a transmitter can receive
the transmitted information, which can easily cause information leakage [4]. Therefore,
the problem of reliable and secure communications in wireless networks urgently needs to
be solved.

The traditional method to achieve secure communications in wireless networks is
based on a cryptographic mechanism. The principle of cryptography is to encrypt confi-
dential information with a secret key at the legitimate sender’s end and then decrypt it
with a secret key at the legitimate receiver’s end [5]. As the secret key is deployed only on
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the legitimate transmitter and receiver, eavesdroppers cannot decrypt the encrypted infor-
mation because of the lack of the secret key [6]. The disadvantage of cryptography is that
its implementation requires the deployment of devices with a high level of computational
performance due to the high level of computational complexity associated with encrypting
and decrypting. It is impossible to require all devices connected to wireless networks
to have high computational ability. In recent years, a new method called physical-layer
security (PLS), which has low computational complexity, has been proposed and is used
to aid cryptography in achieving secure communications in wireless networks with low
computing capability. The principle of PLS is based on information theory, and uses the
randomness of noise and wireless channels to achieve secure communications [7]. Com-
pared with the cryptography method, PLS has a lower network resource overhead and
computational complexity [8]. Therefore, PLS has become a promising technique that can
help in enhancing security performance in wireless networks.

Common PLS techniques include beamforming [9], artificial noise [10], and relay
selection [11]. The principle of beamforming is to achieve the directional transmission of
signals by adjusting the transmission direction of the antennas to achieve PLS [12]. Artificial
noise interferes with eavesdropping by sending noise [13]. Relay selection achieves PLS by
selecting the appropriate relay nodes to which to transmit confidential information [14].
Compared with beamforming and artificial noise, the implementation complexity of re-
lay selection is lower. Depending on whether the relay nodes are equipped with buffers
or not, the relay selection technique is divided into conventional and buffer-aided relay
selection [15]. In conventional relay selection, once relay nodes without buffers receive
the signals, they have to immediately forward them to the next hop [16]. In contrast,
buffer-aided relay selection can temporarily store the received signals in buffers instead
of transmitting them immediately [17]. So, buffer-aided relay selection can achieve better
security performance than that of the conventional relay selection without buffers, espe-
cially when the channel quality is poor [18]. Due to its low implementation complexity and
good security performance, we used the buffer-aided relay selection technique to achieve
reliable and secure communications in this paper.

Traditional buffer-aided relay selection selects the best relay by adopting a central
node that collects the network information (e.g., the channel state information (CSI) of the
legitimate link and the CSI of the eavesdropping links) and then selects the relays online on
the basis of this information. However, it is difficult to achieve CSI of eavesdropping links,
as the eavesdroppers always transmit no information, and too much energy, storage, and
time are needed to conduct the relay selection, as there are several transmission patterns
(i.e., source–relay, relay–destination, and source–destination transmissions) and many
possible relay buffer states during the transmission. This is challenged when the central
node is resource-limited. Unlike traditional methods, traditional Q-learning (TQL) and
DQL define the Q-function, which can simplify the modeling of information transmission
in buffer-aided relay selection by evaluating the gain of choosing a particular link to which
to transmit signals in the current state in an integrated manner, especially DQL. By using
neural networks to fit the Q-function, DQL can create the Q-function without storing it in
a Q table, reducing both spatial and temporal complexity for buffer-aided relay selection.
Therefore, we used the DQL method to propose a new buffer-aided relay scheme to achieve
reliable and secure communications in two-hop wireless relay networks.

2. Related Work

For two-hop buffer-aided relay networks without eavesdroppers, the authors in [19]
consider the reliability of wireless communications and proposed a novel buffer-aided
relay selection scheme called the max-link scheme. In the max-link scheme, the signals
at each hop are transmitted by the link with the maximum signal-to-noise ratio (SNR) to
achieve reliable communications. The authors in [19] also established a theoretical analysis
framework on the basis of a Markov chain (MC) for analyzing the outage performance of
their proposed buffer-aided relay selection scheme. The authors in [20] combine social net-
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works with two-hop wireless relay networks and investigate how to design a buffer-aided
relay selection scheme to achieve reliable communications when there are untrusted relays
in the network. Due to the introduction of buffers, the queuing delay of data packets at
buffer-aided relay increases. To achieve reliable communication and reduce delay, the au-
thors in [21] proposed a delay-sensitive buffer-aided relay selection based on channel-based
greedy scheduling in vehicular networks. Because of the low implementation complexity of
buffer-aided relay selection, the authors in [22] use buffer-aided relay selection to improve
the reliability of bidirectional wireless sensor network communications. These buffer-aided
relay selection schemes described above are all based on MP. The authors in [23] model
buffer-aided relay selection as a Markov decision process (MDP) rather than the MP and
exploit TQL to design a buffer-aided relay scheme. TQL evaluates all links by Q-function
and selects the link with the maximum Q-function each time to transmit the signals and
thus achieves reliable communications. Due to the excellent reliability performance of
the proposed scheme based on TQL, the authors in [24,25] extend this work to vehicular
networks, D2D communications and achieve reliable communications in vehicular net-
works and D2D communications. Although these TQL-based schemes can achieve reliable
communications, too much storage space is needed to store the Q-table and a high time cost
to look up the Q-function in the Q-table as all Q-functions have to be stored in the Q-table.

As research continued, researchers began to investigate how to achieve secure com-
munications using buffer-aided relay selection when considering possible eavesdroppers
in the network [26–32]. Based on the work in [19], the authors in [26] consider the case
where a passive eavesdropper is present and proposed a new buffer-aided relay selection
scheme to achieve secure communications by selecting the link with the maximum instan-
taneous secrecy capacity at each hop to transmit the signals. In real scenarios, not only
illegal eavesdroppers eavesdrop signals, but also untrusted relay nodes can intercept the
transmitted signals as well. These untrusted relay nodes are both cooperators and potential
eavesdroppers of information transmission. In response to the presence of untrusted relay
nodes, the authors in [27] propose a secure buffer-aided relay selection scheme that uses
the AF mode to avoid the decoding of confidential information by untrusted relay nodes.
The authors in [28] extend this work to a more general scenario where both potential
eavesdropping nodes and passive eavesdroppers are present. The authors in [29] extend
secure communications to bidirectional wireless relay network and design a buffer-aided
relay selection scheme based on an achievable rate. In addition, to resist the eavesdrop-
pers, buffer-aided relay selection is often combined with full duplex (FD) [30], cooperative
jamming (CJ) [31] and energy harvesting (EH) [32] to achieve secure communications.
Although these schemes can realize secure communications, they also increase the imple-
mentation complexity, which conflicts with the original intent of adopting buffer-aided
relay selection.

All of the above related works only consider the reliability or the security performances
of wireless communications, without considering both the security and reliability issues.
In fact, it is very challenging to simultaneously achieve reliable and secure communications
by using buffer-aided relay selection. It requires simultaneously taking into account
the legitimate channel quality, eavesdropping channel quality, buffer queues, secrecy
rate, etc. Therefore, buffer-aided relay selection based on traditional methods is difficult
to achieve reliable and secure communications while maintaining low implementation
complexity. With the development of deep learning (DL), DL has been applied to wireless
relay networks [33–35]. A large number of researchers have started to use deep learning
to study buffer-aided relay selection [36–43]. The authors in [36] model the buffer-aided
relay selection as a multi-classification problem and uses a deep neural network (DNN)
to predict the suitable link to transmit the signals. Inspired by [23], the authors in [37]
utilize DQL to solve the buffer-aided relay selection problem, where a modified version of
TQL is used. Different from TQL, DQL uses DNN to fit the Q-function instead of storing
Q-function in the Q-table. Therefore, DQL has lower time complexity and space complexity
compared to TQL [38]. The comparison experiments in [39] demonstrated that DQL has
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better learning results and lower complexity than those of TQL, and the implemented
scheme via DQL is more suitable for practical scenarios, as the implemented scheme via
DQL could work without prior information. On this basis, the authors in [40,41] realized
reliable communications for IoTs [40] and CRNs [41] by using the DQL-based buffer-aided
relay selection schemes. The authors in [40,41] extend their work further and use the
proposed DQL-based buffer-aided relay selection scheme to realize reliable and secure
communications in CRNs [42,43].

DQL makes it possible to achieve reliable and secure communications using buffer-
aided relay selection. However, the works in [42,43] use DQL to address the issue of
power allocation (PA) to achieve reliable and secure communications and they did not
consider possible eavesdroppers in the network. Therefore, this paper explores how to
achieve reliable and secure communications using only a DQL-based buffer-aided relay
selection scheme in the more common two-hop wireless relay networks rather than CRNs.
To highlight the contributions of this paper, we give a comparison of our work with related
works in Table 1. The work of this paper is summarized as follows:

Table 1. The main features of our work and related works.

References and Our Work
Feature

System Model Eavesdropper Method Reliability Security

[19]
Two-hop
DF relay
network

8 MC 3 8

[23]
Two-hop
AF relay
network

8 TQL 3 8

[26]
Two-hop
AF relay
network

8 MC 8 3

[40]
Delay-constrained

DF relay
IOT

8 DQL 3 8

[43]
RF relay

CRN
3

(untrusted users) DQL+PA 3 3

Our Work
Two-hop
AF relay
network

3 DQL 3 3

3 indicates that the factor is considered in the paper, and 8 indicates that the factor is not considered
in the paper.

• To propose a DQL-based buffer-aided relay selection scheme, we first analyze the
communication model of a two-hop AF buffer-aided relay network with the presence
of a passive eavesdropper and then model the information transmission process as
an MDP.

• We then propose a DQL-based buffer-aided relay selection scheme to optimize the
above MDP. In the proposed scheme, we consider both the legal channel states and
eavesdropping channel states, buffer states, target rate and target secrecy rate and use
DNNs to fit the Q-function and select the link with the maximum Q-function value
each time.

• Finally, we verify the reliability and security performances of the proposed scheme
by using Monte Carlo simulations. The reliability and security performances are
measured by the COP and the SOP, respectively. Simulation results demonstrate
that the proposed scheme can achieve reliable and secure communications. We also
compare the COP and SOP of the proposed scheme with the max-link and max-
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ratio schemes, respectively. The comparison results show that the proposed scheme
outperforms max-ratio schemes in terms of security performance.

The remainder of this paper is organized as follows: Section 3 introduces the system
model; Section 4 introduces the framework of information transmission based on MDP;
Section 5 describes the proposed buffer-aided relay selection scheme; Section 6 shows the
simulation results of proposed scheme; Section 7 concludes the contributions of this paper.

3. System Model

As depicted in Figure 1, this paper considers a two-hop AF buffer-aided relay network,
which is composed of a source node S, a cluster of AF buffer-aided relay nodes Rk (k ∈
{1, 2, · · · , K}), a destination node D and a passive eavesdropper node E. The source node
S cannot communicate with the destination node D directly due to path loss and the long
distance, so the signals from S must be forwarded by the buffer-aided relay node Rk. The
number of AF buffer-aided relay nodes is K. Every relay node is in half-duplex (HD) mode
and is equipped with a buffer queue Qk of length L, so these relay nodes can store the
received signals instead of forwarding them immediately to D. This paper assumes that the
eavesdropping node E only eavesdrops the signals from Rk to D, and does not eavesdrop
the signals from S to Rk.

Figure 1. Illustration of the system model.

Without the decoding process at relays, AF relays can thus decrease the probability of
being intercepted by potential eavesdroppers for transmitted signals [44]. Thus, we assume
that all relays are AF relays in this paper to enhance the security of signals transmitted in
the network.

We assume that all channels are independent and non-identically distributed quasi-
static Rayleigh fading channels, including eavesdropping channels. In this paper, we use
hm,n and gm,n to denote the channel coefficient and the channel gain between node m and
node n, respectively, where gm,n = |hm,n|2. Since all channels are Rayleigh channels [45],
the channel gain follows the exponential distribution, which means that E[|hm,n|2] =
E[gm,n] = Ωm,n, where E[.] is the expectation operator and Ωm,n is the average channel
gain. This paper assumes that the real-time CSI is completely known and sets the source
node S as the central node, which receives the real-time CSI of all channels and buffers
state information of all buffer-aided relay nodes then selects an appropriate link to transmit
the signals according to relay selection schemes. Supposing at a time slot t, the central
node selects an S to Rk link to transmit signals, the received signals yRk (t) at Rk can be
expressed as

yRk (t) =
√

PshS,Rk (t)xs(t) + nRk (t), (1)
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where Ps is the transmission power of the source node S, xs(t) is the signal sent by S at time
t, and nRk (t) is the additive white Gaussian noise (AWGN) noise with variance power σ2

at Rk. According to (1), the instantaneous SNR of S to Rk link at time t is given by

ψS,Rk (t) =
Ps|hS,Rk (t)|

2

σ2 , k ∈ {1, 2, · · · , K}, (2)

and the channel capacity of S to Rk link is CS,Rk (t) =
1
2 log2(1+ψS,Rk (t)), k ∈ {1, 2, · · · , K}.

The received signal yRk (t) is stored in the corresponding buffer queue Qk waiting for the
transmission to the next hop. After waiting for t1 time slots, the received signal yRk (t)
is amplified to resist path fading and then forwarded to the destination node D by the
buffer-aided relay node Rk. Thus, at time slot t′ = t + t1, the signal xRk (t

′) sent by the
buffer-aided relay node Rk is represented as

xRk (t
′) = ARk (t

′)yRk (t), (3)

where

ARk (t
′) =

1√
Ps
∣∣hS,Rk (t)

∣∣2 + σ2
(4)

is the amplification factor of the buffer-aided relay node Rk at time t′, it is determined by
the quality of the channel between source node S and the buffer-aided relay node Rk at
time t. Due to the broadcast nature of wireless channel, eavesdropping nodes within the
transmission range can also receive the transmitted signals. In this paper, we assume that
the eavesdropping node only eavesdrops the signals sent by the buffer-aided relay nodes
Rk to the destination node D. So the signals received by S and E can be expressed as

yD(t′) =
√

PRk hRk ,D(t′)xRk (t
′) + nD(t′),

yE(t′) =
√

PRk hRk ,E(t′)xRk (t
′) + nE(t′),

(5)

respectively, where PRk is the transmission power of Rk, nD(t′) and nE(t′) are AWGN noises
at D and E, respectively. According to (5), the instantaneous end-to-end SNR from S to D
and from S to E can be derived as

ψS,D(t′) =
PsPRk |hS,Rk (t)|

2|hRk ,D(t′)|2

(Ps|hS,Rk (t)|2 + PRk |hRk ,D(t′)|2 + σ2)σ2 ,

ψS,E(t′) =
PsPRk |hS,Rk (t)|

2|hRk ,E(t′)|2

(Ps|hS,Rk (t)|2 + PRk |hRk ,E(t′)|2 + σ2)σ2 ,

(6)

respectively. Thus, the end-to-end channel capacity from S to D and S to E can be given by

CS,D(t′) =
1
2

log2(1 + ψS,D(t′)),

CS,E(t′) =
1
2

log2(1 + ψS,E(t′)),
(7)

respectively. The end-to-end secrecy rate from S to D is given by

C(s)
S,D(t

′) = [θ − CS,E(t′)]+, (8)

where [z]+ = max(o, z), and θ is the target rate of the two-hop AF buffer-aided relay network.



Sensors 2023, 23, 4822 7 of 20

4. The Framework of Information Transmission Based on MDP

To design a buffer-aided relay selection scheme that enables reliable and secure com-
munications in two-hop wireless relay networks, we need to first analyze the information
transmission process in two-hop wireless relay networks. Due to the Markovian property
of the process of receiving and forwarding information in the buffers, the information trans-
mission process in two-hop wireless relay networks can be modeled as an MDP to analyze.
As shown in Figure 2, a complete MDP consists of a five-tuple (state st, action at, policy
π(at|st), reward r(st, at)), return Ut, environment and an agent. This section describes in
detail how to model the process of information transmission in two-hop wireless relay
networks as an MDP.

Figure 2. An MDP, which consists of state st, action at, policy π(at|st), reward r(st, at), return Ut,
environment and an agent.

4.1. Agent and Environment

In the MDP, the agent can perceive the state of the environment, take actions according
to the state and adjust the decisions based on the feedback of the environment. In the
two-hop AF buffer-aided relay network, the central node is regarded as the agent in the
MDP and the whole two-hop AF buffer-aided relay network is modeled as the environment
in the MDP. The state of the environment will be changed by action of the agent, which can
be perceived by the agent. In addition, the environment will give the agent feedback after
each decision made by the agent.

4.2. State

For the two-hop AF buffer-aided relay network, this paper defines the state space s(t)
at time slot t as s(t) = {l(t), b(t)}, where l(t) and b(t) are the link states of all links and the
buffer states of all buffer queues at time slot t, respectively. The link states l(t) at time t are
defined as

l(t) = {l0,1(t), l0,2(t), · · · , l0,K(t), l1,1(t), · · · , l1,K(t)}, (9)

where j = 0, l0,k(t) is the link state of S to the corresponding Rk link; j = 1, l1,k(t) is the link
state of the corresponding Rk to D link. As we assume that the eavesdropping node E only
intercept signals from the Rk to D link, only the reliability issue of the transmission link
needs to be considered in the first hop. The value of l0,k(t) is taken as follows.

• l0,k(t) = 0 denotes CS,Rk (t) ≤ θ and the corresponding link is unreliable. When
l0,k(t) = 0, the corresponding link can not transmit the signals at the target rate θ.

• l0,k(t) = 2 denotes CS,Rk (t) ≥ θ and the corresponding link is reliable. When
l0,k(t) = 2, the corresponding link can transmit the signals at the target rate θ.

For an Rk to D link, the reliability and security of the link are both considered due to
eavesdropping by E. The value of l1,k(t) is taken as follows.

• l1,k(t) = 0 denotes CS,D(t) < θ and the corresponding link is unreliable. When
l1,k(t) = 0, the corresponding link can not transmit the signals at the target rate θ.

• l1,k(t) = 1 denotes CS,D(t) ≥ θ, C(s)
S,D(t) < ζ and the corresponding link is reliable but

not secure, where ζ is the target secrecy rate. When l1,k(t) = 1, the corresponding link
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can transmit the signals with the target rate θ but cannot transmit the signals at the
target secrecy rate ζ.

• l1,K(t) = 2 denotes CS,D(t) ≥ θ, C(s)
S,D(t) ≥ ζ and corresponding link is reliable and

secure. When l1,k(t) = 2, the corresponding link can transmit the signals at the target
secrecy rate ζ.

Regarding one buffer-aided relay node Rk, there are two links, i.e., an S to Rk link and
an Rk to D link, so the buffer state b(t) at time t are defined as

b(t) = {b0,1(t), · · · , b0,K(t), b1,1(t), · · · , b1,K(t)}, (10)

where bj,k(t) ∈ {0, 1, · · · , L}, j ∈ {0, 1}, k ∈ {1, 2, · · · , K}, because the length of buffer
queue is L. If the selected link is an S to Rk link and b0,k(t) = L, the corresponding
buffer-aided relay node Rk is unavailable at this time because its buffer queue Qk is full,
it can not receive the signals from S. If selected link is an Rk to D link and b1,k(t) = 0,
the corresponding buffer-aided relay node Rk is also unavailable at this time because its
buffer queue Qk is empty, it can not forward the signals to D.

According to the above analysis, we can conclude that the size of link state space l(t)
and buffer state space b(t) are 6K and (L + 1)2K, respectively. As s(t) = {l(t), b(t)}, the size
of state space s(t) is (6(L + 1)2)K.

4.3. Action and Policy

In two-hop AF buffer-aided relay networks, the selection of a link for transmitting the
signals is modeled as action in the MDP. The set of links that the agent can choose at time t
is modeled by the action space a(t).

At state st, if the agent selects an S to Rk link to transmit the signals, we denote at = l(0,k).
If the agent selects an Rk to D link to transmit the signals, we denote at = l(1,k). It is worth
noting that when the states of all S to Rk links are 0 and the states of all Rk to D links are
not equal to 2, the agent will select no link to transmit the signals (i.e., a connection outage
event occurs directly) and this case is denoted as at = ∅. Based on the analysis above, we
also can deduce that the size of the action space a(t) is 2K + 1.

To guarantee the reliable and secure communications between legitimate users, if the
link selected to transmit the signals is unreliable, then a connection outage event occurs. If
the selected link is not secure, then a secrecy outage event occurs. Therefore, after the agent
acts the action at, the environment may enter a new state st+1, or remain in the current
state st due to the connection outage or secrecy outage. In addition, if the selected link
is reliable and secure but the corresponding buffer is unavailable, a connection outage
event also happens. Transmission is considered successful only if the selected link is
reliable and secure (for an S to Rk link, the selected link is only required to be reliable) and
the corresponding buffer is available. Table 2 shows the results of performing actions in
different link states and buffer states.

In the MDP, the policy function π(at|st) is the probability that the agent acts action at
at state st and is denoted by

π(at|st) = P(at|st). (11)

From (11), we can observe that π(at|st) will affect the choice of an action and also the
reward for the action.
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Table 2. The results of performing actions in different link states and buffer states 1.

Action Link State Buffer State Result

l0,k 0 full connection outage
l0,k 0 not full connection outage
l0,k 2 not full successful transmission
l0,k 2 full connection outage
l1,k 2 empty connection outage
l1,k 2 not empty successful transmission
l1,k 1 empty secrecy outage
l1,k 1 not empty secrecy outage
l1,k 0 empty connection outage
l1,k 0 not empty connection outage
∅ ∀k ∈ {1, 2, · · · , K}, l0,k = 0, l1,k 6= 2 any connection outage

1 Since TQL and DQL discussed in this paper are based on value iterations rather than policy iterations, the policy
is not described in detail in this paper.

4.4. Reward and Return

The reward is the feedback given to the agent by the environment after the agent acts
an action at in a state st, and is noted as r(st, at). The reward can be divided into three
categories: positive reward, negative reward and neutral reward.

• Positive reward: the selected link satisfies the transmission requirements, in which the
target transmission rate θ and target secrecy transmission rate ζ are both considered,
and the corresponding buffer-aided relay node is available.

• Negative reward: the selected link can not satisfy the transmission requirements or
the corresponding buffer-aided relay node is unavailable.

• Neutral reward: no link is selected.

In the MDP, the accumulated reward from the beginning time t to the end time t + n
is called as the return, denoted by Ut. The expression of return Ut is given by

Ut = r(st, at) + γ ∗ r(st+1, at+1) + · · ·+ γn ∗ r(st+n, at+n) = r(st, at) + γ ∗Ut+1, (12)

where γ is the discount factor in the MDP. Moreover, the conditional expectation of the return
Ut of acting action at in state st is defined as the action-value function Qπ(st, at) and

Qπ(st, at) = E|Ut|st, at|, st ∈ s(t), at ∈ a(t), (13)

which is used to evaluate the value of state st and action at. However, the action-value
function is also influenced by the policy function π, and to eliminate the influence of the
policy function π, we use the optimal action-value function Q∗(st, at) (also known as the
Q-function) to evaluate the value of state st and action at. The optimal action-value function
is obtained by

Q∗(st, at) = max
π

Qπ(st, at), st ∈ s(t), at ∈ a(t). (14)

In the MDP, the goal of the agent is to make the return Ut on each episode as high as
possible, so the agent should select the link corresponding to the action with the maximum
Q-function to transmit the signals each time.

With the above methods, we can model the process of information transmission in two-
hop wireless relay networks as an MDP. Subsequently, we can use Q-learning algorithms
to optimize the MDP for reliable and secure communications.

5. The Proposed Buffer-Aided Relay Selection Scheme

After modeling the process of information transmission as an MDP, we use Q-learning
algorithms to optimize the transmission process and propose a new buffer-aided relay
selection scheme based on it. Most of the existing schemes use TQL based on Q-table to
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optimize the transmission process and only consider reliability or security. Our proposed
scheme utilizes DQL based on DNN to optimize the transmission process and considers
both reliability and security. This section describes the principle of Q-learning algorithms
and the steps of the proposed scheme based on DQL, respectively.

The principle of Q-learning algorithms including TQL and DQL is shown in Figure 3.
The goal of the MDP is to make the return Ut of each episode as high as possible, so the
agent should perform the action with the largest Q-function value each time. In TQL,
the values of Q-function are stored in Q-table and updated by the Q-learning algorithms
updates Q-function by

Q∗(st, at) = r(st, at) + γ ∗ max
a∈a(t+1)

Q∗(st+1, a). (15)

In the MDP, the size of state space s(t) and action space a(t) is (6(L+ 1)2)K and 2K + 1,
respectively. If we use the TQL based on Q-table to optimize the transmission process, it
needs to occupy a lot of space to store a Q-table of (6(L + 1)2)K by 2K + 1 as in Table 3
and consume a lot of time to update Q-function and search the action with the maximum
Q-function. In order to reduce the space occupation and lookup time, this paper uses DQL
based on DNN rather than TQL based on Q-table to optimize the transmission process.
DQL uses neural network to fit the Q-function without storing the Q-function in the Q-table,
so DQL can save storage space.

Figure 3. Framework of the Q-learning.

Table 3. The structure of the Q-table. The rows represent state space s(t) and the columns represent
action space a(t).

Q-Table

s1 s2 s3 · · · s(6(L+1)2)K

a1 Q∗(s1, a1) Q∗(s2, a1) Q∗(s3, a1) · · · Q∗(s(6(L+1)2)K , a1)

a2 Q∗(s1, a2) Q∗(s2, a2) Q∗(s3, a2) · · · Q∗(s(6(L+1)2)K , a2)

a3 Q∗(s1, a3) Q∗(s2, a3) Q∗(s3, a3) · · · Q∗(s(6(L+1)2)K , a3)

...
...

...
...

...
...

a2K+1 Q∗(s1, a2K+1) Q∗(s2, a2K+1) Q∗(s3, a2K+1) · · · Q∗(s(6(L+1)2)K , a2K+1)

The proposed scheme based on DQL is divided into three phases, which are experience
collection, training the network model and deploying it online. The steps of the proposed
scheme are as follows.

5.1. Experience Collection

This phase focuses on collecting the experience needed to train the network model.
Firstly, a DNN, which is called a prediction network, is initialized and used to fit the
Q-function. The structure of the prediction network is shown in Figure 4.
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Figure 4. The structure of the prediction network. The input is state st, the output is Q-function for
each action in action space a(t), Q∗(st, a), a ∈ a(t).

The input of the prediction network is state st, and the output is Q-function Q∗(st, a),
where a ∈ a(t), which corresponds to a state action at time t. In this phase, the ε-greedy
policy is used to select actions to balance the exploration–exploitation dilemma. The agent
chooses the action with the Q-function with 1− ε probability, and randomly chooses an
action with ε probability, as shown in (16)

at =

arg max
a∈a(t)

Q∗(st, a), prob.(1− ε)

random an action, prob.ε
, (16)

where 0 < ε ≤ 1. In this phase, the agent needs to explore the action space as much as
possible, so ε is set as 1. In the training network model phase, the agent needs to train
the network model by exploiting the collected experience, so as the number of training
episodes increases, ε decreases to εmin = 0.1, and the attenuation factor ϕ = 0.998.

After the agent selects an action and enacts the selected action at, the state st moves
to st+1, and the environment returns the reward r(st, at), a sample {st, at, r(st, at), st+1}
is generated. The prediction network does not learn the sample immediately, but stores
the sample in a buffer called as the replay buffer, which is depicted in Figure 5 and is
used to store the generated experiences. The above steps of generating and collecting
experience are repeated until the replay buffer is full and the prediction network starts to
learn the experience.

Figure 5. The structure of the replay buffer.
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5.2. Training the Network Model

This phase uses the experience collected in the previous phase to train and update
the network model. When the replay buffer is full, the agent starts to randomly select a
batch of samples for training the network model. The trick is called experience replay,
which can effectively reduce the correlation between samples and improve the convergence
speed of the prediction network. To avoid bootstrapping of the prediction network, this
paper introduces another neural network called the target network, which has the same
structure as the prediction network. The input and the output of the prediction network are
st and Q∗(st, a), a ∈ a(t), respectively. Similarly, the input and output of the target network
are st+1 and Q∗(st+1, a), a ∈ a(t + 1), respectively. As the action at acts at state st and the
reward r(st, at) are available according to the sample {st, at, r(st, at), st+1}, we can obtain
Q∗(st, at) and r(st, at) + max

a∈a(t+1)
Q∗(st+1, a). Next, we calculate the error between Q∗(st, at)

and r(st, at) + max
a∈a(t+1)

Q∗(st+1, a) by using the loss function. This paper uses the mean

square error (MSE) as the loss function of the prediction network and the target network.
According to (16), the expression of the MSE loss function is obtained as

v =
N

∑
1
(r(st, at) + γ ∗ max

a∈a(t+1)
Q∗(st+1, a)−Q∗(st, at))

2, (17)

where N is the batch size. Then, we update the weights of the prediction network by
using the MSE loss function and copy the weights of the prediction network to the target
network periodically. Finally, we repeat the above steps of learning and updating for many
episodes until the prediction network and target network converge. The framework of the
experience collection phase and the training network model phase of the proposed scheme
is shown in Figure 6.

Figure 6. The framework of DQL with target network and experience replay.

5.3. Deployment Online

After the prediction network and the target network converge, we deploy the network
model online. It is worth noting that both the experience collecting and training the network
model phases are offline. In this phase, the prediction network directly estimates the
Q∗(st, a) corresponding to each action a, a ∈ a(t) based on the current state st, and selects
the action with the maximum Q∗(st, a), a ∈ a(t) without training and updating the weights.

Finally, all the steps of the proposed buffer-aided relay selection scheme based on
DQL are shown in Algorithm 1, where Ne is the number of training episodes and Nc is the
capacity of the replay buffer.



Sensors 2023, 23, 4822 13 of 20

Algorithm 1 The proposed buffer-aided relay scheme based on DQL

1: Initialize the environment for the two-hop AF buffer-aided relay network
2: Repeat:
3: for i = 1, 2, · · · , Ne do
4: for j = 1, 2, · · · , Nc do
5: (First phase: experience collection)
6: At current state st, select action at according to ε-greedy policy.
7: Act the selected action at, and return reward r(st, at) and next state st+1.
8: Generate a sample st, at, r(st, at), st+1, and store it in replay buffer.
9: end for

10: (Second phase: training the network model)
11: Randomly select a batch of samples from replay buffer.
12: According to st and at, get Q∗(st, at) from the prediction network.
13: According to r(st, at) and st+1, get r(st, at) + max

a∈a(t+1)
Q∗(st+1, a) from the target

network.
14: Calculate the loss between Q∗(st, at) and r(st, at) + max

a∈a(t+1)
Q∗(st+1, a) by the MSE

loss function.
15: Update the weights of prediction network.
16: if i%100=0 then
17: Copy the weights of the prediction network to the target network.
18: end if
19: end for
20: (Third phase: deployment online)
21: Deploy the prediction network online.

6. Simulation Results and Discussion

This section verifies the reliability and security performances of the proposed scheme
by using Monte Carlo simulations, and uses the COP and SOP to measure the reliability
and security performances of the proposed scheme. In the two-hop AF buffer-aided relay
network, the number of buffer-aided relay nodes is K = 3, the length of the buffer queue
is L = 3, the average channel gain is set as ΩS,Rk = ΩRk ,D = 30 dB, and ΩRk ,E = 5 dB.
Since the power of AWGN is normalized to unity, the ratio of transmitting power to noise
is set as Ps/σ2 = RRk /σ2 = 30 dB. Furthermore, the target rate θ is set as 7 bps/Hz and
the target secrecy rate ζ is set as 0.1 bps/Hz. In the proposed buffer-aided relay selection
scheme based on DQL, the discount factor γ and learning rate υ of the DQL are set as
0.9 and 0.1, respectively. The capacity Nc of replay buffer which stores samples and the
batch size is set as 2000. In the phase of training the network model, the training episodes
Ne is set as 20,000, the batch size in each episode is set as 128 and the target network
updates its parameters every 100 episodes. After the training of the network model is
completed, the reliability and security performances of the proposed scheme are verified by
1 million Monte Carlo simulations. The lower the COP and SOP, the higher the reliability
and security performances. The expressions of COP and SOP are obtained by

COP =
n
′
c

1,000,000
,

SOP =
n
′
s

1,000,000
,

(18)

where n
′
c and n

′
s are the number of connection outage events and secrecy outage events

that occurred in 1 million Monte Carlo simulations, respectively.
First, we verify the reliability and security performances of the proposed scheme.

The simulation results are shown in Figure 7, where Figure 7a illustrates how the COP
varies with the SNR P/σ2 and Figure 7b shows how the SOP varies with the target secrecy
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rate ζ. From Figure 7a, we can observe that the COP decreases as the SNR increases. This is
because an increase of SNR means a better transmission link and thus a lower COP. We can
further see from Figure 7b that when the target secrecy rate ζ is set as 0.1 bps/Hz, the SOP
can reach 10−4, and the SOP increases as the target secrecy rate ζ increases. This is because
as ζ increases, fewer legitimate channels can meet the requirements to secure transmissions,
which will lead to more secrecy outage events. In conclusion, the simulation results in
Figure 7 confirm that our proposed scheme can achieve reliable and secure communications
in two-hop wireless relay networks.
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(a) COP vs. SNR.
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(b) SOP vs. the target secrecy rate ζ.

Figure 7. Analysis of the COP and SOP of the proposed scheme.

Then, we investigate the effect of the number of buffer-aided relay nodes K and
the buffer length L on the reliability and security performances of the proposed scheme.
Figures 8a and 9a investigate the effect of the number of buffer-aided relay nodes K and
the buffer length L on the reliability performance of the proposed scheme, respectively.
In Figures 8b and 9b, we, respectively, investigate the effect of the number of buffer-aided
relay nodes k and the buffer length L on the security performance of the proposed scheme.
We can observe from Figures 8a and 9a that the COP decreases gradually as the number of
buffer-aided relay nodes K and the buffer length L increase. In Figures 8b and 9b, SOP also
decreases as the number of buffer-aided relay nodes K and the buffer length L increase,
respectively. The lower the COP and SOP, the higher the reliability and security. Resulting
in Figures 8 and 9 indicate that the increase in the number of buffer-aided relay nodes K and



Sensors 2023, 23, 4822 15 of 20

the buffer length L can improve the reliability and security performances of the proposed
scheme. This is because the increase in the number of buffer-aided relay nodes K implies
an increasing number of legitimate channels, and an increase in the buffer length L implies
a lower probability of buffer-aided relay unavailability (the probability that a buffer is full).
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 L=3, =7 bps/Hz, SNR=30 dB, =0.1 bps/Hz.

(a) The COP vs. K.
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(b) The SOP vs. K.

Figure 8. The impact of the number of buffer-aided relay nodes K on the COP and SOP of the
proposed scheme.

Finally, we made a comparison between our proposed scheme and two benchmark
schemes (i.e., the max-link scheme and the max-ratio scheme) regarding the COP and SOP,
respectively. By setting K = 3, L = 3, θ = 7 bps/Hz, and ζ = 0.1 bps/Hz, we show in
Figure 10a how the COP changes by varying the SNR from 25 dB to 50 dB. The results
in Figure 10a show that the COP of our scheme is always lower than that of the max-link
scheme. By setting K = 3, L = 3, θ = 7 bps/Hz, and SNR = 30 dB, we then illustrate in
Figure 10b how the SOP varies by varying the target secrecy rate ζ from 0.1 to 0.9. The results
in Figure 10b show that the SOP of our scheme is always lower than that of the max-ratio
scheme, indicating that the security performance of the two-hop buffer-aided wireless network
can be improved by adopting the DQL. In addition, we investigate the differences between the
proposed scheme implemented by DQL and TQL. The comparison results are also shown in
Figure 10a and Figure 10b, respectively. The comparison results clearly show that, under the
same conditions, the COP and SOP of the proposed scheme implemented by DQL are both
lower than those of the proposed scheme implemented by TQL.
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(b) The SOP vs. L.

Figure 9. The impact of the buffer length L on the COP and SOP of the proposed scheme.
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(a) Comparison results of the COP.

Figure 10. Cont.
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Figure 10. Comparison results between the proposed scheme and other schemes.

7. Conclusions

This paper utilizes DQL to solve the problem of buffer-aided relay selection to achieve
reliable and secure communications in a two-hop AF buffer-aided relay network with a
passive eavesdropper. To propose the buffer-aided relay selection scheme, we first model
the information transmission process in the network by applying an MDP. With the help
of the MDP model, we then propose a novel buffer-aided relay selection scheme based on
DQL to optimize the MDP. We finally verify the reliability and security performances of the
proposed scheme by conducting Monte Carlo simulations and analyze how the network
parameters affect the reliability and security performances of the concerned network in
terms of the COP and the SOP. We also made a comparison between our proposed scheme
and two benchmark buffer-aided relay selection schemes (i.e., the max-link scheme and
the max-ratio scheme) regarding the COP and SOP, respectively. The results show that our
proposed scheme can outperform the max-ratio scheme in terms of the SOP by 2.76 times.

Author Contributions: Conceptualization, C.Z. and X.L.; methodology, C.Z. and X.L.; software, C.Z.
and Z.C.; writing—original draft preparation, C.Z.; writing—review and editing, X.L., Z.W., G.Q. and
Z.Y.; supervision, Z.W.; funding acquisition, Z.W. and Z.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(62001273, 62002210), the Open Project Program of the Shaanxi Key Laboratory for Network Comput-
ing and Security Technology (NCST2021YB-02), the Fundamental Research Funds for the Central
Universities (GK202103087) and the Scientific Research Plan of Shaanxi Provincial Department of
Education (19JK0176).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study is included within
the article.

Conflicts of Interest: The authors declare no conflicts of interest.



Sensors 2023, 23, 4822 18 of 20

Abbreviations
The following abbreviations are used in this manuscript:

AF Amplify-and-forward
DQL Deep Q-learning
COP Connection outage probability
SOP Secrecy outage probability
WSNs Wireless sensor networks
CRNs Cognitive radio networks
IoTs Internet of Things
PLS Physical-layer security
CSI Channel-state information
TQL Traditional Q-learning
MC Markov chain
MDP Markov decision process
FD Full-duplex
CJ Cooperative jamming
EH Energy harvesting
DL Deep learning
DNN Deep neural network
PA Power allocation
DF Decode-and-forward
RF Randomize-and-forward
HD Half-duplex
AWGN Additive white Gaussian noise
SNR Signal-to-noise ratio
MSE Mean square error

Symbols
The following symbols are used in this manuscript:

hm,n Channel coefficient between m and n
gm,n Channel gain between m and n
Ωm, n Average channel gain between m and n
E[.] Expectation operator
yRk (t) The received signal of Rk at time t
xS(t) The signal sent by S at time t
nRk (t) AWGN noise of Rk at time t
ψS,Rk (t) SNR of S to Rk link at t
CS,RK (t) Channel capacity of S to Rk link
ARk (t

′) Amplification factor of Rk at t
′

C(s)
S,D(t

′) The end-to-end secrecy rate
θ The target rate
ζ The target secrecy rate
st The state at time t
at The action at time t
s(t) State space
a(t) Action space
γ Discount factor
Qπ(st, at) Action-value function
Q∗(st, at) The optimal action-value function
ε Exploration probability
v MSE loss function
Ne Training episodes
Nc Capacity of replay buffer
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