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Abstract: The estimation of human mobility patterns is essential for many components of developed
societies, including the planning and management of urbanization, pollution, and disease spread.
One important type of mobility estimator is the next-place predictors, which use previous mobility
observations to anticipate an individual’s subsequent location. So far, such predictors have not yet
made use of the latest advancements in artificial intelligence methods, such as General Purpose
Transformers (GPT) and Graph Convolutional Networks (GCNs), which have already achieved
outstanding results in image analysis and natural language processing. This study explores the use
of GPT- and GCN-based models for next-place prediction. We developed the models based on more
general time series forecasting architectures and evaluated them using two sparse datasets (based
on check-ins) and one dense dataset (based on continuous GPS data). The experiments showed that
GPT-based models slightly outperformed the GCN-based models with a difference in accuracy of 1.0
to 3.2 percentage points (p.p.). Furthermore, Flashback-LSTM—a state-of-the-art model specifically
designed for next-place prediction on sparse datasets—slightly outperformed the GPT-based and
GCN-based models on the sparse datasets (1.0 to 3.5 p.p. difference in accuracy). However, all
three approaches performed similarly on the dense dataset. Given that future use cases will likely
involve dense datasets provided by GPS-enabled, always-connected devices (e.g., smartphones), the
slight advantage of Flashback on the sparse datasets may become increasingly irrelevant. Given
that the performance of the relatively unexplored GPT- and GCN-based solutions was on par with
state-of-the-art mobility prediction models, we see a significant potential for them to soon surpass
today’s state-of-the-art approaches.

Keywords: machine learning; deep learning; graph convolutional networks; transformers;
mobility modeling

1. Introduction

The estimation of human mobility patterns is widely recognized as being vital for
the provision of future services and solutions [1]. Example application domains include
digital solutions for more effective advertising [2], enhanced security [3], improved urban
services [4], and tracking the spread of a contagious disease (e.g., COVID-19) [5]. Mobility
modeling is also essential for behavioral tracking and interventions related to mental health
and well-being [6,7], given that different symptoms (e.g., increased vs. decreased mobility
and social interactions) can be connected to mental health problems, such as depression [8].

Mobility modeling is a well-established research domain. In the past, the focus has
been on utilizing Markov models to analyze frequent mobility patterns [9–11]. Machine
learning (ML) techniques—including Decision Trees [12], Support Vector Machines [13],
and Random Forest [14]—are some of the ML algorithms that have been used in addition to
Markov-based approaches to predict future mobility patterns. The first ML methods relied
on features (e.g., time- and frequency-based descriptors) that were taken from the mobility
trajectories [15]. The more recent ML methods replaced the more traditional feature- and
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Markov-based approaches by utilizing raw trajectory data in combination with end-to-end
learning (e.g., Recurrent Neural Networks—RNNs [16,17], and Long Short-term Memory
networks—LSTMs [18]).

Unlike the existing mobility modeling methods based on RNNs and LSTMs, this
study explores how two recent Deep Learning methods—General Purpose Transformer
(GPT) and Graph Convolutional Networks (GCNs)—perform on next-place prediction
tasks. GPT-based and GCN-based models have recently achieved outstanding results in
image processing (e.g., diffusion-based models [19]) and natural language processing (e.g.,
ChatGPT [20]). Our reason for applying GPT-based models to mobility data is the similarity
between sentences and movement trajectories. GPTs were initially applied in the NLP
domain, where the words in each sentence are processed as input sequences. Similarly,
locations that constitute the movement trajectories can be processed as “input words” to a
GPT model. Additionally, the task of next-place prediction is quite similar to the task of
next-word prediction, which is often used for the pre-training of Large Language Models
(LLMs) [20]. On the other hand, the task of next-place prediction can be viewed as a graph
problem where each node represents the places visited at a specific moment. By using
a GCN-based approach to model this data, we try to model hidden interdependencies
between the nodes. However, it is unclear how GPT- and GCN-based models will perform
in the context of next-place prediction. Some specific challenges explored in this study are
the model behavior on a small vs. a big dataset and the behavior on a sparse vs. a dense
dataset. Our study contributions thus include the following:

• Developing GPT- and GCN-based architectures for next-place prediction.
• Adapting the popular Flashback-LSTM model for next-place prediction to our experi-

mental setup to serve as a state-of-the-art baseline.
• Pre-processing three real-life datasets for mobility modeling (both sparse and dense)

and performing a comparative analysis between GPT, GCN, and Flashback-LSTM
by taking into account the behavior of the models with respect to the size of the datasets
(e.g., small vs. big datasets) and the behavior of the models on a sparse vs. a dense
dataset. The code for our experiments is publicly available (https://github.com/corrir/
Transformers-and-Graph-Convolutional-Networks-for-Human-Mobility-Modeling (ac-
cessed on 16 March 2023)).

The rest of this paper is structured as follows. Section 2 summarizes the relevant
related work on human mobility models. Section 3 describes the three datasets used in
the study, including the pre-processing steps for each dataset. Section 4 details the three
methods used in our experiment (a GPT-based model, a GCN-based model, and Flashback-
LSTM). The experimental setup and results are presented in Section 5. We discuss our
findings and conclude the study in Section 6.

2. Related Work

When reviewing the state-of-the-art deep learning models for mobility tasks, Luca et al. [21]
proposed a two-level taxonomy (see Figure 1). At the first level, mobility tasks are divided into
generative tasks and predictive tasks. At the second level, the generative tasks are split into flow
generation and trajectory generation, while the predictive tasks are split into crowd-flow prediction
and next-location prediction. Next-location prediction focuses on estimating an individual’s future
movements given the historical movement of that individual. We present a more detailed
analysis of this task in the following subsection. On the other hand, crowd flow prediction
estimates aggregated traffic flows [22] and the demand for shared transportation tools (e.g., city
parking [23] and bike-sharing [24]).

Next-Place Prediction

Human mobility models aim to predict future places visited by individuals or groups.
Next-place predictors focus on individual predictions and use previous observations to
anticipate an individual’s future location. Next-place prediction can be helpful for various
purposes, such as monitoring public health [25], well-being [26], as well as improving
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travel recommendations, geomarketing, and social network link predictions [27]. These
predictions can also be used by authorities to enhance public transportation, urban planners
to plan for the future growth of a city, and transportation companies to provide better
traffic management services.

Figure 1. Mobility-task taxonomy. Based on the work by Luca et al. [21].

Next-place prediction is a complex task, because it requires the understanding of an
individual’s unique routine and the consideration of various factors influencing human
mobility. Luca et al. [21] defined it as follows:

“Next-location predictors forecast an individual’s future whereabouts, based
on their historical observations... Formally, let u be a user, Tu their trajectory,
and pt ∈ Tu u’s current location, next-location prediction aims at predicting u’s
next destination pt+1. This problem is treated in two ways: (i) as a multiclass
classification task, in which we have as many classes as locations and we aim
at predicting the next visited location pt+1; or (ii) as a regression task, predict-
ing pt+1 = (xt+1, yt+1), where xt+1 and yt+1 are the next location’s geographic
coordinates. A variant of next-location prediction aims at forecasting the next
Point Of Interest (POI) pt+1 an individual u will visit given their trajectory Tu.
Regardless of the specific definition, next-location predictors output a ranking of
the probability of each location to be u’s next destination.”

The initial methods for next-place prediction were based on probability or patterns.
These methods could handle datasets of moderate size [28] but required significant ef-
fort in feature engineering and could not capture long-term temporal and geographical
correlations. One example of a probability-based method combined multiple features of
trajectories, such as the spatiotemporal, semantic characteristics of the modeled places
and the distance traveled [29]. Other methods use stochastic models to cluster geographi-
cal coordinates into relevant areas [9], or create a Mobility Markov Chain in which each
Markov state represents a modeled place, and the transitions between the Markov states
correspond to movements between POIs [30]. Another example, the Wherenext system [12],
uses patterns to characterize mobility as a sequence of frequently visited places, considering
the duration of the journey.

More recent approaches utilize deep learning techniques to overcome traditional meth-
ods’ limitations by capturing temporal, geographical, and social–geographic patterns in
large datasets. These approaches use mechanisms such as RNNs, LSTM, gated recurrent
units (GRUs), fully connected layers (FCs), attention mechanisms, and Convolutional
Neural Networks (CNNs). For example, DeepMove [16], RNN+SAtl [17], and Flash-
back [18], are deep learning architectures that learn time and location embeddings and
apply RNNs, including LSTMs, to predict the future places that will be visited by a user,
i.e., next-place prediction.

Unlike the existing mobility modeling methods based on RNNs and LSTMs, this study
explores GPTs and GCNs for next-place prediction. A recent review study by Luca et al. [21]
analyzed the existing deep learning approaches for human mobility modeling. Their
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analysis showed that, out of the 240 studies, only three were related to GPT- and GCN-
based modeling. From those three studies, the MVGCN (Multiview Graph Convolutional
Network) [31] and SI-GCN (Spatial Interaction GCN) [32] are two GCN-based networks
used for flow generation. Given that flow generation is a task for estimating the flows
between a group of geographic places based on those locations’ data (such as population,
POIs, land use, and distance to other sites), it is a separate task from next-place prediction.
Finally, only one study presented a transformer-like architecture, the DWSTTN (Deep
Wide Spatio Temporal Transformer Network) [33]. The DWSTTN uses historical pick-
up and drop-off data from taxi companies in Porto and Manhattan to predict a taxi’s
next destination. The scarcity of GPT- and GCN-based modeling in the related work is
not surprising, given that these approaches are relatively new. Thus, to the best of our
knowledge, we present the first study to compare GPT-based and GCN-based models for
next-place prediction.

3. Datasets

Mobility datasets can be collected using various methods, including GPS tracking,
mobile phone data, or surveys. The data can be collected at different levels of granularity,
ranging from the detailed tracking of individual movements to more aggregated data on
the movements of groups or populations. In this study, we worked with three datasets:
Foursquare, Gowalla, and Breadcrumbs. All three datasets provide the following information:

• User ID: This feature is a unique identifier for each individual or entity represented in
the dataset.

• POI ID: This feature is a unique identifier for each Point of Interest (POI) represented
in the dataset.

• Latitude: This feature represents a value to identify the position of the POI. More
particularly, it represents the North–South position (vertical).

• Longitude: This feature represents a value to identify the position of the POI. More
particularly, it represents the East–West position (horizontal).

• Timestamp: This feature answers the question of when a specific user is in a certain POI.

3.1. Foursquare Dataset

Foursquare was a company that provided location-based services and data through its
mobile and web applications. The Foursquare dataset [34,35] includes data on the locations
of millions of businesses, venues, and points of interest around the world, as well as
data on the movements and activities of users who have checked in at these locations
using the Foursquare services. This dataset contains Foursquare check-in information
gathered over an extended period (about 18 months, from April 2012 to September 2013). It
includes check-ins totaling 33,278,683 from 266,909 people in 3,680,126 locations in 415 cities
across 77 countries. These 415 cities have at least 10,000 check-ins apiece, making them
the 415 most frequented towns across the globe. Figure 2 depicts the distribution of user
locations available in the dataset.

3.2. Gowalla Dataset

Similar to the Foursquare dataset, the Gowalla dataset was extracted from another
location-based service (Gowalla). From February 2009 to October 2010, 6,442,890 check-ins
from Gowalla users were gathered using the service’s API [36]. Compared to the Foursquare
dataset, Gowalla has a smaller number of check-ins.

3.3. Breadcrumbs Dataset

The Breadcrumbs dataset was collected in a 12-week study by Moro et al. [37] from
81 users in Lausanne, Switzerland using several mobile phone sensors (GPS, WiFi, Blue-
tooth). Compared with the other two datasets (Foursquare and Gowalla), Breadcrumbs
is based on continuous mobile sensing (e.g., 1 Hz GPS data), which is different than the
sparse, check-in-based data available in Foursquare and Gowalla.
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Figure 2. Distribution of user locations available in the Foursquare dataset. Red represents higher
density and blue represents lower density.

In our earlier study on mobility modeling, we used the hierarchical spatiotemporal
DBSCAN, a clustering algorithm, to determine POIs in the Breadcrumbs dataset, i.e., the
shared locations where users spend the majority of their time [38]. The algorithm employed
the following parameters: a maximum cluster radius of 250 m and a waiting time of
5 min (stop-points with a shorter waiting time were ignored). After POI extraction, we
subsampled the dataset at a $15-min rate (i.e., we would get check-in information for each
user every 15 min) to make it more comparable to the check-in-based datasets. This led to
15,898 check-ins from 81 users in 40 different places.

3.4. Pre-Processing

We performed several pre-processing steps for each of the three datasets, Foursquare,
Gowalla, and Breadcrumb, in order to bring them to a similar data format.

• Cleaning and standardization:
We noticed that not all timestamps followed the same format. Since there can be a
variety of Timestamp (Date), we decided to transform all Timestamp fields into the
following format:

yyyy−MM− ddTHH : mm : ssZ

2013− 03− 12T20 : 34 : 32Z

Another step done for data cleaning was the elimination of lower-quality data. Fol-
lowing the related work [18], we decided to remove all the users with less than
100 check-ins and POIs that were visited less than 50 times from Foursquare and
Gowalla. The last step regarding data transformation was standardizing all the userIDs,
i.e., we mapped all string-based userIDs into unique integers.

• Additional information: To give the models more information for each check-in and
improve the predictions’ accuracy, we added a feature to identify the day of the week
on which a specific check-in was registered.

4. Machine Learning Methods
4.1. Flashback-LSTM

Flashback-LSTM was introduced by Yang et al. [18] to model sparse user mobility data
by exploiting flashbacks on hidden states in RNNs. Sparse user mobility is an important
challenge for check-in-based datasets, given that vanilla RNNs have been created to learn



Sensors 2023, 23, 4803 6 of 17

from continuous and equidistant sequences (e.g., sentences), and hence cannot handle
sparse data easily. To address the challenge, Flashback uses the spatiotemporal context by
searching for previous hidden states with strong predictive potential similar to the current
environment, i.e., the instance to be predicted, given a user’s mobility trace represented as
a sequence of POIs:

{· · · , Pi−3, Pi−2, Pi−1, Pi, Pi+1, · · · }

The temporal and spatial difference between two check-ins, Pi and Pj, is denoted as ∆Ti,j
and ∆Di,j. To predict the subsequent position pi+1 Flashback LSTM leverages the spa-
tiotemporal context by computing the weighted average of the historical hidden states
with the weight W(∆Ti,j, ∆Di,j) as an aggregated hidden state to seek prior hidden states
rather than relying on the present hidden state hi to predict the subsequent position pi+1.
Flashback-LSTM also learns user-specific embedding vectors to represent their preferences.
This vector is then concatenated with the combined hidden state and put into a fully
connected layer for location prediction.

In our experiments, Flashback-LSTM served as a state-of-the-art baseline model.
For the training procedure, we used the Cross-Entropy Loss Function in order to adjust
the model weights. As an optimization algorithm, we used Adam, and the learning rate
used throughout the experiments was dynamically adjusted, starting from a value of 0.01.
Every 20 epochs, a gamma value of 0.2 was applied to achieve better convergence to the
prediction. The whole training phase was done for 100 epochs.

4.2. Multivariate Time Series Graph Neural Network (MTGCN)

Multivariate time series forecasting can be viewed as a graph problem, where in our
specific task of next-place prediction, the variables in the time series are represented as
nodes. In other words, each node represented the POIs visited at a specific moment. The as-
sumption is that the nodes are connected through hidden interdependencies. By using
graph neural networks to model this data, it is possible to preserve the temporal trajectory
of the time series while also leveraging the interdependencies between the variables.

Our GCN model was based on the Multivariate Time Series Graph Neural Network
(MTGNN) proposed by Wu et al. [39]. GNNs are particularly adept at handling depen-
dencies between entities. However, GNNs need a clear graph structure for information
propagation to perform effectively. This means they cannot be used directly on multivariate
time series data, where the dependencies between variables are not known in advance.
The suggested method automatically extracts the unidirected relationships between vari-
ables through a graph learning module. External knowledge, such as variable qualities,
may be included in the graph learning module. A mix-hop propagation layer and a di-
lated inception layer are suggested as two new layers to capture spatial and temporal
relationships in the time series data. These layers are collectively taught inside an end-
to-end architecture, together with the graph learning, graph convolution, and temporal
convolution modules.

When using the MTGNN (Figure 3) for next-location prediction, the sequence of
visited POIs is initially projected onto a latent space using a 1× 1 standard convolution.
To capture geographical and temporal relationships, graph convolution modules and tem-
poral convolution modules are interleaved with one another. The hidden graph adjacency
matrix, which is used by the graph convolution modules, is learned by the graph learning
layer through the use of similarity methods between a portion of the different check-ins
for each user in each minibatch. Finally, to obtain the predicted next location, the output
module projects hidden characteristics to the specified dimension.
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Figure 3. Architecture overview. Multivariate Time Series Graph Neural Network for next-
POI prediction.

More precisely, the problem can be formulated as follows:
Let zt ∈ Rn denote the value of a multivariate variable of dimension N at time step

t, where zt[i] ∈ R denotes the value of the ith variable at time step t. Given a sequence of
historical P time steps of observations on a multivariate variable, we have

X = {zt1 , zt2 , · · · , ztP}

The goal is to predict the value:
Y = ztP+1

The input signals (e.g., historical check-ins) can be combined with other information, such
as the day of the week and the time of day. We view variables in multivariate time series
as nodes in graphs from a graph-based approach. The graph adjacency matrix, which is
generated by the Graph Learning Layer in MTGNN, defines the connections between the
nodes. The adjacency matrix may be defined as follows:

A ∈ RN×N

with:
Aij = c > 0 if (vi, vj) are connected by an edge

Aij = 0 if (vi, vj) are not connected by an edge

A Graph Learning Layer, a Graph Convolution Module, Temporal Convolution Mod-
ule, and an Output Module are the particular parts that comprise the MTGNN. The Graph
Learning Layer computes a graph adjacency matrix, which is subsequently utilized as input
for the Graph Convolution Module to find hidden relationships between the nodes. These
modules are interleaved with the Temporal Convolution Module, which captures temporal
relationships. To have a better and clear understanding of how the MTGNN works, we can
go through the different layers and modules:

• Graph Learning Layer: Different from many Graph Neural Networks that can only
operate with a known graph structure (which is not the case with time series forecast-
ing because the structure is unknown before the training procedure), the MTGNN uses
this layer to extract a sparse graph adjacency matrix depending on the data. Previous
research has measured the similarity between pairs of nodes using distance metrics,
such as the dot product and Euclidean distance, in order to construct a network from
data. However, the cost of this method increases quadratically with the size of the net-
work and can be computation and memory heavy, with a time and space complexity
of O(N2). This restriction may be overcome using a sampling strategy, whereby only
the connections between a portion of the nodes in each minibatch are learned.
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• Graph Convolution Module: This module aims to describe spatial relationships in a
network by incorporating knowledge from a node’s neighbors. It comprises two mix-
hop propagation layers that handle the entrance and outflow of data independently
through each node. The outputs of these two levels are combined to provide the
net inflow information. The Graph Convolution Module aims to connect a node’s
information with its neighbors. In our case, since the nodes represent the POIs visited
at that specific moment in time, and the neighbors of each node describe the next
location visited starting from the previous node, this fuse operation should improve
the understanding of the model on how the locations are distributed and the general
trajectory of the users.

• Temporal Convolution Module: To extract high-level temporal information, this
module uses a collection of common dilated 1D convolution filters. There are two
dilated inception layers in this module. A filtering tangent hyperbolic activation
function follows the first dilated inception layer. The second dilated inception layer
is followed by a sigmoid activation function, which serves as a gate to regulate how
much data the filter may propagate to the subsequent module.

• Output Module: Composed by two convolution layers, transforming the channel
dimension of the inputs to the desired output dimension, which for next location
prediction, corresponds to setting the desired output dimension to one.

We used the same training procedure that was used for training the Flashback-LSTM
models, i.e., the modes were trained for 100 epochs using the Cross-Entropy Loss Function.
The Adam optimizer was used with a dynamic learning rate (modified every 20 epochs).

4.3. Temporal Fusion Transformer (TFT)

Our GPT model was based on the Temporal Fusion Transformer (TFT) architecture
proposed by Lim et al. [40]—initially developed for multihorizon time series forecasting.
The architecture includes a sequence-to-sequence layer to process known and observed
inputs locally, static covariate encoders to encode context vectors for use elsewhere in the
network, sample-dependent variable selection to reduce the impact of irrelevant inputs,
and a temporal self-attention decoder to learn any long-term dependencies present in
the dataset.

A high-level overview of the TFT architecture for next-POI prediction is presented in
Figure 4. There are three types of inputs for the model, Static Metadata, Past Inputs (which
correspond to previous POIs), and Known Future Inputs (that can be extracted from the
dataset in order to help with the predictions). The Known Future Inputs can be the day of
the week and the time of the day.

Other components included in the TFT architecture are the following:

• Gating Mechanism: Used to skip over any parts of the architecture that are not being
used by the model, offering adjustable depth and network complexity to support
a variety of datasets and scenarios. The gating mechanism is implemented using a
Gated Residual Network.

• Variable Selection Networks: TFT is a model that can manage several variables, but it
is frequently uncertain what each variable specifically contributes to the result and
how relevant it is. TFT uses Variable Selection Networks to select pertinent variables
for static and time-dependent covariates individually for each occurrence. In addition
to assisting with the identification of factors that are most important for the prediction
task, this enables TFT to exclude irrelevant inputs that could have a negative effect
on performance. This component is based on the Gated Residual Network and an
external context vector obtained from a Static Covariate Encoder.

• Static Covariate Encoder: The TFT uses context vectors to encode static metadata.
The vectors are produced by encoders based on Graph Recurrent Networks. These
context vectors are a crucial component of the temporal fusion decoder’s processing
of static variables.
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• Multihead Attention: The TFT uses a self-attention mechanism, which is adapted
from multihead attention in transformer-based architectures to learn long-term associ-
ations across various time steps. This component learns attention weights to estimate
the significance of the different inputs.

• Temporal Fusion Decoder: This component learns the temporal connections con-
tained in the dataset through a succession of layers.

– Locality Enhancement with the Sequence-to-Sequence Layer: This layer aims to esti-
mate informative segments (e.g., check-ins) in the time series data. Depending on
the data, informative data points can be abnormalities, change points, or repeti-
tive patterns.

– Static Enrichment Layer: Because static covariates often substantially impact tem-
poral dynamics, this layer incorporates static metadata and enhances tempo-
ral features.

– Temporal Self-Attention Layer: After static enrichment, self-attention is applied,
followed by a multihead attention mechanism at each time step. Decoder masking
is then added to the multi-head attention layer to guarantee that each temporal
dimension focuses on features that are in the past (and not in the future). The self-
attention layer enables TFT to recognize long-range relationships that would be
difficult for RNN-based systems to learn while maintaining causal information
flow via masking.

– Position-Wise Feed-Forward Layer: Applies a nonlinearity to the temporal self-
attention layer’s outputs. Additionally, it contains a gated residual connection
that provides a direct connection to the sequence-to-sequence layer by skipping
over the full transformer block.

• Output layer: In order to generate the next-location predictions, we used a modified
version of quantile forecasts. The outputs were generated using linear transformation
of the output from the temporal fusion decoder.

Figure 4. Architecture overview. Temporal Fusion Transformer for next-POI prediction.
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We used the same training procedure that was used for training the other model
types, i.e., the modes were trained for 100 epochs using the Cross-Entropy Loss Function.
The Adam optimizer was used with a dynamic learning rate (modified every 20 epochs).

5. Experiments
5.1. Experimental Setup
5.1.1. Hardware

All experiments were performed on the Ubuntu 22.04.1 server equipped with two
GPU units, the NVIDIA GeForce RTX 3080 with 10 GB of memory, and the NVIDIA RTX
A5000 with 24 GB of memory.

5.1.2. Dataset Splits

It is important to note that since we were working with spatiotemporal data, we could
not randomly shuffle the datasets. Otherwise, the models would be trained with events
that are happening in the future. Consequently, we first sorted each dataset based on the
timestamps, and then we created the following three splits:

• Training set: Used to train the predictive models and corresponds to the first 70% of
the sorted datasets.

• Test set: Used to perform final model evaluation. This subset corresponds to the final
10% of the sorted datasets.

• Validation set: Used to validate the predictive models during training. This subset
corresponds to 20% of the overall data. In temporal terms, 20% of the data were
selected from the period between the training set and the testing set, i.e., from 70%
to 90%.

In addition to the typical training/testing/validation splits, we also performed experi-
ments with several subsets extracted from the original datasets. Both datasets (especially
the Foursquare dataset) cover diverse populations (e.g., from Figure 2 it can be seen
that Foursquare users come from all around the world). To investigate the behavior of
the models for the different population-based subgroups, we first split the datasets into
population-based datasets (e.g., based on users’ country, city, gender, and number of Twitter
followers) and then split the resulting subdatasets into training/testing/validation datasets
using the initial procedure (70%–10%–20% splits).

Section 5.2 presents the results for the overall datasets. Section 5.3 presents the results
for the Foursquare subdataset, and Section 5.4 presents the results for the Gowalla subdatasets.

5.1.3. Model Evaluation

For all models, the number of training epochs was set to 100 epochs. The final models
were evaluated using the top-k Accuracy score (ACC@k). The ACC@k represents the ratio
of the number of times the correct location was among the top-k output locations (ordered
from most likely to least likely) divided by the total number of predictions. For example,
for the ACC@3 metric, the target (correct location) is checked against a vector of the top 3
most likely output locations. The prediction is accurate (or a true positive) if the target is
one of the top 3 vector elements. In the end, the total number of predictions is divided by
the number of true positives.

5.2. Results—Full Datasets

Table 1 presents the results for next-place prediction for the three models and for each
of the three datasets. The table shows that regardless of the type of model, the accuracy
scores highly depend on the dataset. On the Breadcrumbs dataset, all models achieved
an accuracy of higher than 0.94 (e.g., ACC@1). However, for the Foursquare and Gowalla
datasets, the ACC@1 was lower than 0.27. These results are in line with related work [18,41].
Data sparsity is the main reason for the difference in accuracy scores between the sparse
datasets (Foursquare and Gowalla) and the dense dataset (Breadcrumbs). This is because
the Breadcrumbs dataset has a 15-min sampling frequency, i.e., the models provide a
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prediction for every 15-min slot, and there is a high probability that the users are at the
same place. On the other hand, Foursquare and Gowalla are check-in-based datasets,
and the users are rarely at the sample place twice in a row.

Table 1. Top-k Accuracy scores (k = 1, 5, and 10) for the three models for each of the three datasets
(Foursquare, Gowalla, and Breadcrumbs).

Flashback-LSTM MTGCN TFT

ACC@1 ACC@5 ACC@10 ACC@1 ACC@5 ACC@10 ACC@1 ACC@5 ACC@10

Foursquare 0.2678 0.5536 0.6326 0.2356 0.4928 0.6251 0.2577 0.5389 0.6212
Gowalla 0.1281 0.2935 0.3637 0.0932 0.2628 0.3421 0.1076 0.271 0.3572
Breadcrumbs 0.9477 0.9839 0.9931 0.9442 0.9786 0.992 0.947 0.9821 0.9928

Regarding the accuracy score for each model, the Flashback-LSTM model—a state-
of-the-art model from the related work specifically designed for next-place prediction
on sparse datasets [18]—slightly outperformed the MTGCN and the TFT models. More
specifically, on the Foursquare dataset, Flashback-LSTM achieved 0.2678 ACC@1, MTGCN
achieved 0.2356 ACC@1, and TFT achieved 0.2577 ACC@1. Thus, the difference was less
than 0.0322 (or 3.22 percentage points—p.p.). On the Gowalla dataset, the difference was
less than 3.49 p.p. On the Breadcrumbs dataset, all models performed similarly, achieving
an ACC@1 score of 0.94.

To provide more insight into the training process of the models, we present the learning
curves for the three models on the Foursquare dataset: Figure 5 shows the Flashback-LSTM
model; Figure 6 shows the MTGCN model; and Figure 7 shows the TFT model. From the
figures, it can be seen that (i) all models have similar learning patterns, i.e., the loss values
(categorical cross-entropy) decreased significantly in the first twenty learning epochs. Af-
ter that, the loss values decreased steadily at a lower rate; (ii) there were no abrupt variations
in the learning curves, which signifies a stable learning process and consequently stable
models; and (iii) the training loss values were close to the validation loss values throughout
the overall training process, which signifies that all models avoided overtraining.

5.3. Results—Foursquare Subdatasets

We performed additional experiments on the Foursquare dataset to evaluate the
models more thoroughly. The Foursquare dataset contains user profile data in addition to
check-in data. Using the user profile information, we created seven subdatasets based on
the users’ country, city, gender, and number of Twitter followers. Information about the
size of the subdatasets is presented in Table 2:

1. _US: Data from US-based users.
2. _NYC: Data from New York City users.
3. _TKY: Data from Tokyo users.
4. _NYC_gender: Data from male users from New York City. We chose males because the

number of male users was higher than the number of female users.
5. _TKY_gender: Data from male users from Tokyo. We chose males because the number

of male users was higher than the number of female users.
6. _NYC_gender: Data from the top 1000 New York City users ranked by the number of

Twitter followers.
7. _TKY_gender: Data from the top 1000 Tokyo users ranked by the number of

Twitter followers.
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Figure 5. Flashback-LSTM model loss curves. Foursquare dataset.

Figure 6. MTGCN model loss curves. Foursquare dataset.

Figure 7. TFT model loss curves. Foursquare dataset.

Table 2. Size of the Foursquare dataset and the corresponding subdatasets based on the city, gender,
and number of Twitter followers.

Info 4sq _US _NYC _TKY _NYC_gender _TKY_gender _NYC_twitt _TKY_twitt

Checkins 8,180,051 678,663 281,374 802,344 196,223 45,510 49,803 217,381
Users 65,340 11,116 4214 4059 2876 480 1000 1000
POIs 61,794 7183 2956 4180 2104 392 545 1362

These subdatasets enabled us to evaluate the behavior of the models with a varying
number of users (from 480 up to 65,340), a varying number of POIs (from 392 up to 61,794),
and a varying number of training instances/check-ins (from 45,510 up to 8,180,051).

The results of the experiments are presented in Table 3. From the table, it can be seen
that the results follow a similar trend as the results from the previous subsections, i.e., the
full dataset experiments (Table 1): (i) Regardless of the type of model, the accuracy scores
depend strongly on the dataset; (ii) the Flashback-LSTM model slightly outperformed
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the MTGCN and the TFT models. More specifically, if we look at ACC@1 scores, the dif-
ference between Flashback-LSTM and TFT was 0 to 2.5 p.p, and the difference between
Flashback-LSTM and MTGCN was between 1 and 3.5 p.p.; and (iii) the TFT model slightly
outperformed the MTGCN in all experiments.

Table 3. Top-k Accuracy scores (k = 1, 5, and 10) for the three models on seven Foursquare subdatasets
based on the city, gender, and number of Twitter followers.

Flashback LSTM MTGCN TFT

ACC@1 ACC@5 ACC@10 ACC@1 ACC@5 ACC@10 ACC@1 ACC@5 ACC@10

4sq 0.2678 0.5536 0.6326 0.2356 0.4928 0.6251 0.2577 0.5389 0.6212
4sq_US 0.3946 0.8016 0.8723 0.3531 0.7884 0.861 0.3756 0.7692 0.8711
4sq_NYC 0.4031 0.8112 0.8802 0.3588 0.7979 0.8752 0.3841 0.8013 0.8749
4sq_NYC_gender 0.4065 0.8304 0.9062 0.361 0.8072 0.8824 0.3858 0.8136 0.8909
4sq_NYC_tweet 0.4495 0.855 0.9385 0.4139 0.8221 0.9264 0.4243 0.8348 0.9215
4sq_TKY 0.2245 0.5301 0.6284 0.2062 0.5059 0.5928 0.2228 0.5284 0.6193
4sq_TKY_gender 0.3483 0.7378 0.8521 0.3229 0.7091 0.8133 0.3401 0.7226 0.8432
4sq_TKY_tweet 0.2589 0.6032 0.7089 0.2483 0.5812 0.6817 0.2498 0.5941 0.6916

5.4. Results—Gowalla Subdatasets

With the Gowalla dataset, we were not able to create diverse subdatasets (as we did
with the Foursquare subdatasets), because Gowalla does not contain user profile data,
except for the number of friends for each user. Thus, we created a Gowalla subdataset
by taking the top 1000 users ranked by their number of friends. The resulting subdataset
(Gowalla_firends) is presented in Table 4.

The results of the experiments are presented in Table 5. On the Gowalla_firends sub-
dataset, Flashback-LSTM achieved the highest ACC@1 score of 0.4, whereas both the
MTGCN and the TFT model achieved an ACC@1 score of 0.36.

Table 4. Size of the Gowalla dataset and the corresponding subdataset based on the number of friends
each user has.

Info Gowalla Gowalla_friends

Checkins 6,442,890 196,591
Users 196,591 1000
POIs 35,639 504

Table 5. Top-k Accuracy scores (k = 1, 5, and 10) for the three models on the Gowalla subdataset.

Flashback LSTM MTGCN TFT

ACC@1 ACC@5 ACC@10 ACC@1 ACC@5 ACC@10 ACC@1 ACC@5 ACC@10

Gowalla 0.1281 0.2935 0.3637 0.0932 0.2628 0.3421 0.1076 0.271 0.3572
Gowalla_friends 0.4022 0.7966 0.871 0.3597 0.6923 0.8015 0.3616 0.7052 0.8124

6. Discussion and Conclusions
6.1. Discussion of the Results

We presented a study that explored deep learning models based on GPT and GCNs
for mobility modeling. More specifically, we developed models for next-place prediction,
and we evaluated them using two sparse datasets (Foursquare and Gowalla) and one dense
dataset (Breadcrumbs). Including the eight subdatasets we created from the Foursquare
and the Gowalla datasets, we performed experiments on eleven different datasets. Some
general findings that were confirmed in all eleven experiments are the following:
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• Regardless of the type of model, the accuracy scores were highly dependent on the
dataset. Data sparsity was the main reason for the difference in accuracy scores between
the sparse datasets (Foursquare and Gowalla) and the dense dataset (Breadcrumbs).

• For the sparse datasets, Flashback-LSTM—specifically designed for next-place predic-
tion on sparse datasets—slightly outperformed the GPT-based and GCN-based models.
This indicates that some of the mechanisms that are specific to the Flashback-LSTM
could be useful to improve the quality of the other models. For instance, Flashback-
LSTM explicitly takes advantage of spatiotemporal context in the RNN layers to seek
past hidden states with good predictive potential. By performing “flashbacks” on the
RNN’s hidden states, the model may assess how relevant the current input is in light
of analogous prior scenarios.

• For the dense dataset, all the models achieved equal evaluation scores (see Table 1).
• The TFT model slightly outperformed the MTGCN in all experiments.

The learning curves of the three models revealed that all the models have similar, stable
learning processes, and all models avoided overtraining, i.e., there were no substantial
differences between training and the validation learning curves of the models.

The experimental results showed that GPT- and GCN-based architectures are a promis-
ing direction for future mobility modeling, especially given that future use cases will likely
involve dense datasets provided by ubiquitous sensing devices.

6.2. Data Privacy

The methods presented in this study are fully centralized, i.e., we assume that the
data from all users are available at one data center. However, such a centralized approach
raises serious privacy concerns, given the sensitivity of mobility data. Since location and
movement data are included in the definition of personal data, the EU General Data Pro-
tection Regulation (GDPR) has highlighted the significance of this information [42]. In the
real world, there are currently no generally applicable methods for service providers to
track users without seriously jeopardizing their right to privacy (see, for example, [1,43,44]).
Promising privacy-aware approaches that can be explored in combination with GPT and
GCN models include

• The use of federated learning (FL) instead of centralized learning for training the
predictive models. FL allows devices to learn a shared model collaboratively while
keeping all the training data on-device [45]. While offering promising privacy-aware
solutions, FL is a relatively new approach with many open challenges, including
scalability and federated model training and evaluation [41].

• The use of cohort-based modeling [38], whereby, instead of estimating the behavior
of each user separately, cohort-based models aim to estimate the behavior of a group
of similar users (cohorts). Thus, the specific users are removed from the focus of
the processing pipelines. Cohort-based models treat each user’s data as just one
data point that is anonymously aggregated within the pool of cohort data. Such an
approach provides k-anonymity by default (k is the size of the cohort) [46], enabling
privacy-aware analytics.

6.3. Limitations and Future Work

State-of-the-art models, including GPT and GCN models, rely on large datasets to learn
patterns and make predictions. These datasets can be biased or incomplete. For instance,
the model may be less accurate in predicting outcomes for some groups if the dataset used
to train the model does not include data for some specific regions or demographic categories.
Additionally, factors, such as one’s economic situation and educational background, may
also need to be considered when estimating mobility patterns, and it is unclear how models
such as GPT and GCN models would be able to include such information. Furthermore,
GPT and GCN models are complex and challenging to interpret, which makes it difficult
for policymakers and stakeholders to evaluate and validate the predictions made by the
model. Thus, Explainable AI techniques may be required to make these approaches more
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applicable (e.g., [47]). In addition to transparency and privacy, fairness is a third dimension
that needs to be considered to avoid discriminatory outcomes. Finally, to capture the
dynamic nature of human mobility, such models will need to be updated frequently to
maintain their predictive power.

In this study, we did not perform a thorough hyperparameter optimization, which
could be a promising direction for improving the evaluation scores of the GPT- and GCN-
based models. Note that the Flashback architecture was optimized to work with sparse
datasets in the original study. Given the large number of inter-related hyperparameters and
the overall complexity of the DL architectures, a hyperparameter search based on Bayesian
optimization may be an appropriate approach to solve this problem [48].
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