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Abstract: The development of the transportation industry has led to an increasing number of over-
loaded vehicles, which reduces the service life of asphalt pavements. Currently, the traditional vehicle
weighing method not only involves heavy equipment but also has a low weighing efficiency. To deal
with the defects in the existing vehicle weighing system, this paper developed a road-embedded
piezoresistive sensor based on self-sensing nanocomposites. The sensor developed in this paper
adopts an integrated casting and encapsulation technology, in which an epoxy resin/MWCNT
nanocomposite is used for the functional phase, and an epoxy resin/anhydride curing system is used
for the high-temperature resistant encapsulation phase. The compressive stress-resistance response
characteristics of the sensor were investigated by calibration experiments with an indoor universal
testing machine. In addition, the sensors were embedded in the compacted asphalt concrete to
validate the applicability to the harsh environment and back-calculate the dynamic vehicle loads on
the rutting slab. The results show that the response relationship between the sensor resistance signal
and the load is in accordance with the GaussAmp formula. The developed sensor not only survives
effectively in asphalt concrete but also enables dynamic weighing of the vehicle loads. Consequently,
this study provides a new pathway to develop high-performance weigh-in-motion pavement sensors.
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1. Introduction

The transportation industry is the backbone of the country’s economic development,
among which road transportation is considered to be the lifeline of the economic develop-
ment of a region and country [1,2]. Additionally, with the continuous development of the
road industry, the phenomenon of overloading heavy vehicles has increased [3-5]. This has
led to a significant reduction in the service life of roads, increased the workload and cost
of highway management and maintenance, and also indirectly increased the risk of traffic
accidents [6-10]. In this background, road axle load weighing has become a very important
part of road infrastructure development [11,12].

At the present stage, the acquisition of highway axle load information is mainly re-
alized by the weighing table and curved plate weighing system at the toll station [13].
However, this parking weighing method not only reduces the efficiency of highway net-
work traffic but also aggravates the problem of congestion at highway toll stations [14].
Therefore, how to accurately obtain the dynamic axle load information of vehicles on
highways will be an imminent problem in the construction of smart highway systems. For
this reason, some researchers in recent years have carried out optimal design and research
on embedded sensing elements based on new sensing materials, such as fiber optic gratings,
piezoelectric ceramics, and memory alloys [15-17].

Embedded road monitoring and detection devices are sensing devices that are em-
bedded inside the pavement structure in order to obtain data such as pavement structure
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information and traffic information [18,19]. They can be divided into stress/strain sen-
sors [20], pressure gauges [21-23], magnetic induction sensors [24], load cells [25], and
vibration sensors [26,27] according to the monitoring object. D Cebon [28] developed a
theory for the design of a multi-cell dynamic weighing system with the objective of min-
imizing errors caused by dynamic axle loads of heavy vehicles traveling at high speeds
and validated the system with a wheel load measurement pad with a total length of
38 m. Finally, it was concluded that the error in the dynamic wheel load of the vehicle
volume was less than 4% RMS. Alavi S et al. [29] tested Weigh-in-Motion (WIM) sensors
via equivalent uniaxial loading on asphalt concrete (AC) and Portland cement concrete
(PCC) pavements, and the results showed that the performance of WIM sensors depends
on the ability of the data acquisition system to accurately process the raw sensor output.
Song G et al. [30] proposed a piezoelectric ceramic smart aggregate that can be used to
monitor the health of civil structures, as well as early concrete strength monitoring, impact
detection, and structural health monitoring. The monitoring signals were processed by
wavelet analysis, and this smart aggregate can be applied for comprehensive monitoring of
concrete structures from the initial stage to the whole life cycle. Hou et al. [31] developed
an asphalt pavement vehicle axle load monitoring sensor using smart sensing aggregates
and demonstrated its linear sensitivity to applied loads, but this sensor had low viability
in harsh pavement monitoring environments and was difficult to apply to practical pave-
ment axle load monitoring. Wang and Zhao H [32,33] analyzed the interference signals
in the weighing signal of a dynamic weighing system with a quartz crystal load cell as
the weighing unit and concluded that there were a large number of interference signals
in its weighing signal, including high-frequency noise and low-frequency noise, and used
the wavelet transform algorithm to pre-process the weighing data by filtering, and then
further processed by the algorithm, and the results showed that the wavelet transform
algorithm made the load cell achieve a good weighing effect. Yang H [34,35] designed a
stacked array Piezoelectric Energy Harvester (PEH) with a protection package that could
improve the performance and lifetime of PEH. A demonstration project was also conducted
to test the field performance. It was found that the obtained piezoelectric energy could
successfully illuminate LED signs under real vehicle loads. The electrical response of the
stacked piezoelectric units was also tested under different temperatures and loads, and it
was found that the ambient temperature had a significant effect on the piezoelectric power
generation, and the electrical power generated by the piezoelectric units increased with the
increase in load. Xiong H et al. [36] developed a Piezoelectric Weigh-in-motion (P-WIM)
based on piezoelectric material, which consisted of several piezoelectric material discs
capable of generating characteristic voltage output from passing vehicles, and by analyzing
the voltage generated by the P-WIM, the axle load of the vehicle could be determined.
Zhao [37] proposed a multi-cell dynamic weighing system based on an array of force sen-
sors combined with vibration sensors based on piezoelectric ceramics to achieve dynamic
weighing of pavement axle loads, but other related studies have shown that piezoelectric
ceramics are less resistant to high temperatures and may show phenomena such as data
instability in summer [38]. The working principle of the fiber optic load sensing system
is the change in reflected light intensity within the fiber when the vehicle passes through
the fiber optic sensor, the compressive stress value is calculated based on the magnitude
of the intensity change, and then the measured dynamic compressive stress is used to
predict the true axle weight of the vehicle. However, the monitoring accuracy of this type
of sensor and piezoelectric sensor is susceptible to the harsh service environment inside the
pavement [39,40].

Within the harsh monitoring environment of asphalt pavements, the author’s team con-
ducted a series of related studies in the development of new sensors for pavements [41—43].
Smart-material-based tensile strain sensing elements have been developed, and the high
accuracy and viability of the sensing elements have been verified. Moreover, the study
of the cracking and deformation of materials at the nanoscale helps to uncover the micro-
scopic deformation and working mechanism of nanomaterial sensors and improve the



Sensors 2023, 23, 4758

30f12

performance of sensors [44]. Based on the above research background and the current
status of research [45,46], the authors found that the types of road vehicle axle load sensors
available at this stage are diverse and the materials used vary, but almost all suffer from
unstable service performance or even failure in harsh environments. The pre-embedded
technology and high-temperature rut test are used to simulate the harsh environment;
this paper intends to design and prepare an embedded piezoresistive sensor based on
smart materials to solve the current problems of low viability and poor stability of asphalt
pavement vehicle axle load monitoring elements and to investigate the stress-resistance
response characteristics of smart materials under compressive stress, which provides a new
idea for weigh-in-motion of asphalt pavement vehicles.

2. Development of Piezoresistive Sensors Based on Self-Sensing Nanocomposites
2.1. Preparation of Self-Sensing Nanocomposites

The smart materials chosen in this paper are an epoxy resin/multi-walled carbon
nanotube (MWCNT) composite. The multi-walled carbon nanotubes were provided by
Nanjing Jicang Nanotechnology Co., Ltd. (Nanjing, Jiangsu Province, China). and were
prepared by high-temperature cracking of acetylene catalyzed by a nickel-based catalyst.
The multi-walled carbon nanotubes have a purity of 95 wt%, an average diameter of
10-20 nm, a length of 30-100 um, a specific surface area greater than 165 m?/g, and
excellent electrical conductivity of more than 1250 s/cm. The epoxy resin is bisphenol
A epoxy resin with an epoxy value of 0.48-0.54 eq/100 g and viscosity of 12,000 mPa-s,
supplied by Nantong Star Synthetic Materials Co., Ltd. (Nantong, Jiangsu Province, China).
The epoxy resin curing agent is an amine curing agent, and dimethylformamide (DMF) is
selected as the dispersant.

For the formed smart materials to form an effective conductive network, the multi-
walled carbon nanotubes should be uniformly dispersed in the epoxy polymer matrix,
and the aforementioned studies have shown that the degree of dispersion plays a key role
in the stress-resistance response [41-43]. Therefore, in order to avoid the phenomenon
of non-uniform dispersion due to large van der Waals forces caused by the large specific
surface area and small nanoparticle size, in this study, multi-walled carbon nanotubes were
first ground in an agate mortar for 30 min and then mixed thoroughly with the dispersant
DMEF with mechanical stirring for 20 min, then sonicated for 1 h with an ultrasonic disperser
(UHA450 Oulior). After that, epoxy resin was added to the mixed DMF/carbon nanotube
suspension, and sonication was continued for 1 h. Solvent evaporation was carried out at
80 °C in a vacuum-drying oven for 1 h. Finally, the curing agent was added and stirred for
10 min to produce the composite smart material.

2.2. Molding and Encapsulation Structure Design

Epoxy resin, the polymer matrix of the composite material in this sensor, has a very
high bonding strength, which makes it difficult to de-mold if a metal mold is used. However,
epoxy resin does not have such a high bond strength for Teflon-type materials, so it is easy
to de-mold. In addition, epoxy-resin-based smart materials are viscous-fluid before curing,
and smart devices with certain structural characteristics can be prepared by integrated
casting in the mold. After indoor tests to fully verify the molding effect and ease of de-
molding of the smart material, the preferred smart material molding inner mold was
determined to be a Teflon tube (14 mm high, 20 mm diameter) with the bottom end sealed
by a Teflon cylindrical plug. The conductors are inserted inside the mold through the top
and bottom through-holes and buried inside the material with smart material curing. In
addition, in order to prevent the Teflon tube from shifting after the material is poured and
while waiting for the epoxy resin to cure, resulting in changes in sensor size and form,
the Teflon tube is supported on the outside by two semicircular arc fixing brackets and is
fixed in the middle using rivets. The overall design of the mold is shown in Figure 1. The
smart materials and the mold are placed in the oven after the casting is completed, and
the sample is de-molded after curing at 80 °C for 2 h to produce the smart materials” inner
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core of the axle load sensor. By enlarging the inner diameter of the mold and following
the same casting method, an epoxy resin/anhydride system was poured around the smart
materials’ inner core as a polymer encapsulation structure, thus significantly improving
the high-temperature resistance and reducing the humidity sensitivity of the sensor.

Polytetrafluoroethylene
molds

\ External fixing

device

Polytetrafluoroethylene
column base

Figure 1. Schematic diagram of integration mold for sensing material.

To ensure the viability of the cylindrical smart sensor, a protective cap for the metal
encapsulation of the sensor is designed. The cap is bonded to the sensor through the
top surface only, and the inner diameter is larger than the outer diameter of the sensor.
This structure can effectively protect the piezoresistive sensor, does not limit the lateral
deformation of the sensor, and will not affect the monitoring accuracy. At the same time,
considering the influence of the lower support of the axle load sensor on the monitoring
stability, a square enlarged base with a side length of 7 cm is designed. The sensor with the
added protective cap cover and base is shown in Figure 2.

Figure 2. Piezoresistive sensor based on composite smart materials.
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The epoxy/MWCNT smart material sensor works by predicting the actual vehicle
weight by reading the change in resistance of the sensor. When the sensor receives a
vehicle load, the MWCNT inside the sensor rearranges to form a new electrical path, and
the internal resistance of the sensor changes. Data acquisition and accuracy are achieved
by connecting the sensor wiring to an external data collector channel and inputting the
calibration coefficients for each sensor into the corresponding channel. The durability and
viability of the sensors can be ensured by wired data transmission.

3. Dynamic Response Test for Compressive Stresses

In order to investigate the stress—electrical response law of piezoresistive sensors of
composite smart materials, the stress—electrical response of the sensor is calibrated by using
a universal testing machine. The peak load is set to 15 kN, the preload force is set to 10 N
when loading, and the loading starts from 0 kN according to a certain loading rate, which
can cover the vehicle overload of 400% according to the standard load of 0.7 MPa to verify
the change law of sensor resistance response under different loading forces. Additionally,
changing the magnitude of the loading rate can be used to explore the effect of different
loading rates on the stress—electrical response law of the sensor (the loading rates are
20 N/s, 80 N/s, 140 N/s, 200 N /s, 260 N/s)

As shown in Figure 3, the sensor resistance signal is recorded throughout the loading
process by KEITHLEY DAQ6510 digital multimeter. According to the loading of the MTS
tester, when the loading force reaches 100 N, the sensor starts to show resistance changes;
when the loading force reaches 15 kN, the sensor resistance changes gradually tend to slow
down, indicating that the upper and lower limits of the load monitored by the sensor are
15 kN and 100 N, respectively. Figure 4 shows the stress—resistance response at different
loading rates. It can be seen in the figure that the data of the axle load sensor based on the
composite smart material have a large dispersion and exhibit randomness at lower loading
rates. However, as the loading rate increases, the dispersion of the data gradually decreases
and tends to a stable negative correlation. When the loading rate is small, the data are more
dispersed, and as the loading rate increases, the dispersion of the data decreases. Smaller
loading rates take more time to load to a given load than larger loading rates, and there is a
certain creep effect on the material inside the sensor that affects the subsequent loading and,
therefore, a greater dispersion of data. As the loading rate increases, the creeping effect of
the above materials mentioned decreases, and the dispersion of the data decreases. When
the loading rate is greater than 140 N/s, the data fit is greater. Obviously, the loading rate
of the vehicle axle load acting on the road is greater than this rate. Therefore, the sensor
can maintain stable sensing characteristics when used to monitor the road axle load. By
performing a nonlinear fit to the images for loading rates of 140 N/s and above, the results
show that the fitted response curve conforms to the GaussAmp formula [47-49], and the

fitted curve expression is
(x=x¢)?

Y =1Yo + Ae 202 (1)

digital

ml.lltimeter

Figure 3. Calibration test via universal testing machine.
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Figure 4. Fitting diagram of compressive stress-resistance response at different loading rates.
(a) 20N/s, (b) 80 N/s, (c) 140 N/s, (d) 200 N/s, and (e) 260 N/s.

The average value of R? for the three fitting results is 0.99331, indicating that the
stress—resistance response relationship of the developed axle load sensor conforms to the
GaussAmp formula. It can be shown that the sensor developed in this paper can reflect
the sensing of stress by its resistance change. Thus, in practical applications, the axle load
of a vehicle on the road can be monitored indirectly by monitoring the resistance of the
piezoresistive sensor according to the GaussAmp formula.

4. Validation of the Developed Sensor for Vehicle Load Identification
4.1. Embedment and Dynamic Weighing in Asphalt Concrete Slab

In order to simulate the working environment of the axle load sensor inside the
asphalt concrete, the sensor is embedded in the rutting slab prepared from AC-13 mix for
a compressive stress sensing test. Since the axle load sensor is a columnar structure with
a small diameter, it is difficult to ensure that it is stable and does not shift if it is directly
buried in the rutting slab, so a base will be designed to assist the axle load sensor in fixing
its position. The difference between the modulus of elasticity of the base and the modulus
of elasticity of the asphalt mixture may lead to stress concentration in the asphalt mixture.
Therefore, instead of using a metal base similar to the piezoelectric quartz sensor, an epoxy
resin base with a similar modulus of elasticity to that of the asphalt mixture is used, as
shown in Figure 5.

Figure 5. Epoxy base for positioning.
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AC-13 mixture mixes are shown in Table 1:

Table 1. AC-13 mix ratio design.

Raw Materials Specification Matching Ratio (%) Quality (g)

Asphalt Qilu AH-70 425 559
13-16 mm 6.00 746.4

10-13 mm 14.00 1741.8

Aggregates 5-10 mm 34.00 4230
3-5mm 17.00 2115

0-3 mm 26.00 3234.6

Mineral powder 0.075 mm 3.00 373.2

The burial depth of the axle load sensor in asphalt concrete is a key factor affecting the
monitoring accuracy. Studies have shown that axle load sensors embedded in the surface
layer of the pavement have the best monitoring effect [34,35], but burial in the surface layer
of the pavement with a serious disease is not conducive to the long-term service of the
sensors [50-53]. Therefore, in this paper, the sensor base is embedded at the bottom of the
rutting slab, and the top of the sensor is 2 cm from the surface layer of asphalt concrete after
burial. The embedded sensor is shown in Figure 6 after the asphalt concrete is compacted
and shaped. The embedded sensors have a corresponding piezoelectric response after being
subjected to a high-temperature environment and heavy wheel compaction. It is verified
that the developed sensor can withstand the harsh environment during asphalt pavement
construction. In addition, compared to the excavation-embedded axle load sensors, the direct
burial of the smart sensor during construction reduces the perturbation of the sensor to the
dynamic response of the pavement. It also reduces the damage to the pavement structure and
offers the possibility of significantly simplifying the axle load sensor burial process.

Figure 6. The embedment of piezoresistive sensors and formation of rutting slab.

According to the previously described sensor response characteristics, the asphalt
concrete compressive stress sensing test was loaded at a loading rate of 140 N/s. The
experimental results are shown in Figure 7. The response characteristics of the sensor
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buried in the asphalt concrete still conform to the GuessAmp fitting equation described
previously. The calibration fitting results before and after the sensor was buried in the
rutting slab are as follows.

5
Sensor at the concrete bottom(140N/s)
—— GaussAmp Fitting Curve
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Figure 7. Compressive stress response of sensors in asphalt concrete.
Sensor response fitting curve before burial:

(x+524)2

y=—0.2340.29 2x847 , @)
Sensor response fitting curve after embedding:

(x+5.26)2

y=—-019+022 285 , 3)

Comparing the sensor response fitting curves before and after burial, it can be seen
that the response data of the axle load sensor after burial in the rutting slab are about
0.77 times that before burial according to the burial depth and loading rate selected in the
test. Therefore, for practical engineering applications of axle load sensors, the results of the
indoor calibration of the sensor can be multiplied by the corresponding correction factor to
back-calculate the actual axle load of the vehicle

4.2. Applications for Weigh-in-Motion

The rutting apparatus was used to simulate the traveling load and to investigate the
load-electric response law of the developed sensor under the traveling wheel load. The
test parameters were set according to the relevant specifications for asphalt mixture rutting
tests in China (JTG E20-2011-T 0719-2011). As shown in Figure 8, the temperature of the
asphalt concrete specimen with the embedded sensor was stabilized at 60 £ 0.5 °C during
the test, and the test wheel travel track was located directly above the sensor in the rutting
slab. Three parallel experiments were conducted, and the average of the three groups was
taken for performance analysis.

The sensor has a significant resistance drop when subjected to wheel load, and the
drop amplitude is stable at the same level. In this paper, the experimental results between
100 and 110 s during the experiment were selected, and the axle load conversion was

carried out according to the response fitting curve (3) of the sensor after embedding, as
shown in Figure 9.
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Figure 8. Rutting experiment for axle load sensor.
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Figure 9. Compressive stress-resistance response during rut experiment.

According to the indoor calibration results, it can be back-calculated that the wheel
load acting on the top of the rutting slab is 0.68-0.74 MPa, which is near the actual load
(0.75 MPa) action level. It can be shown that the composite smart material piezoresis-
tive sensor developed in this paper can monitor the vehicle load in real-time within the
pavement, and the monitoring of the axle load magnitude is also accurate. At the same
time, the time course curve of the axle load can also be used to obtain the dynamic vehicle
speed information by analyzing the relative positions of the peaks/valleys. It provides a
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possibility to develop high-performance weigh-in-motion pavement sensors for accurate,
long-term, and stable acquisition of traffic flow information.

5. Conclusions and Discussion

In this paper, a new embedded piezoresistive sensor based on self-sensing materials is
developed to address the problems of existing axle load weighing. It is calibrated by indoor
experiments, and the implementation of this new sensor for dynamic load monitoring is
investigated with the following conclusions.

(1) The resistance of the novel piezoresistive sensors is negatively correlated with the
magnitude of the external load applied to it, and the relationship satisfies the Gaus-
sAmp formula. Moreover, the mean value of the goodness of fit of the GaussAmp
formula at the pavement vehicle load loading frequencies (140 N/s, 200 N/s, 260 N/s)
reaches 0.99331, indicating that there is a good correlation between the pressure and
the rate of change of the resistance at these frequencies, and the pressure applied can
be back-calculated from the rate of change of the resistance of the sensor.

(2) Comparing the sensor response fitting curves, it can be seen that the response data
of the axle load sensor after burial in the rutting slab are about 0.77 times that before
burial according to the burial depth and loading rate selected in the test (the top of the
sensor is 2 cm from the surface layer of asphalt concrete after burial, and the loading
rate is 140 N/s).

(3) The rutting experiment verifies that the sensor has a high sensitivity to the dynamic
load, and the vehicle load and speed information can be obtained by analyzing the
peak/trough magnitude and frequency of the output electrical signal.

Finally, the developed novel piezoresistive sensor based on nanocomposites is competent
in vehicle weight and speed detection. It opens up a new territory to develop high-performance
weigh-in-motion pavement sensors for long-term, accurate, and low-cost monitoring.
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