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Abstract: Fetal movement (FM) is an important indicator of fetal health. However, the current
methods of FM detection are unsuitable for ambulatory or long-term observation. This paper proposes
a non-contact method for monitoring FM. We recorded abdominal videos from pregnant women
and then detected the maternal abdominal region within each frame. FM signals were acquired by
optical flow color-coding, ensemble empirical mode decomposition, energy ratio, and correlation
analysis. FM spikes, indicating the occurrence of FMs, were recognized using the differential threshold
method. FM parameters including number, interval, duration, and percentage were calculated, and
good agreement was found with the manual labeling performed by the professionals, achieving
true detection rate, positive predictive value, sensitivity, accuracy, and F1_score of 95.75%, 95.26%,
95.75%, 91.40%, and 95.50%, respectively. The changes in FM parameters with gestational week
were consistent with pregnancy progress. In general, this study provides a novel contactless FM
monitoring technology for use at home.
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1. Introduction

Fetal movement (FM) has long been used as an important indicator of fetal health
and neurobehavioral development [1]. The assessment of FM is an accepted method
of identifying adverse pregnancy outcomes, including intrauterine growth restriction [2],
oligohydramnios [3], and stillbirth. Some examples of FM include general body movements,
kicks, stretches, rotation, twitch movements, limb movements, etc. [4]. There is normally
a variation in FM, with a wide range in the number of movements per hour [5]. Studies
have shown that medical interventions during the period of FM decrease may result in the
delivery of a healthy, living baby [6,7]. In addition to reduced FM, excessive FM can be a
risk factor contributing to stillbirth [8]. Therefore, early detection of risk factors and timely
intervention can reduce the incidence of stillbirth by establishing prenatal FM detection.

Self-counting FM at home in a state which is calm and stable for pregnant women
is economical and convenient for monitoring FM during pregnancy. FM is normally first
perceived by the mother between 18 and 20 weeks of gestation. However, the sensitivity of
pregnant women to FM varies widely [9], and the long-term monitoring of FM through
subjective judgments is challenging. Only 37–88% of FMs are reported to be felt with the
mother lying still and actively paying attention. In other cases, the actual frequency of FM
and the mother’s ability to perceive these movements are influenced by many factors, such
as the mother’s activity, stress, position, and attention level [10].

Ultrasound technology can visually assess the health of a fetus and is the most widely
clinical method of identifying FM [11]. However, this technique requires an experienced
clinician to operate, and the prolonged use of ultrasound may cause potential harm to
the fetus [12–14]. Advances in fetal magnetic resonance imaging (MRI) through cine-MRI
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scans allow for the direct monitoring of the movements of the entire fetus [15]. However,
this technique is expensive and has limited accessibility, and is mostly used in clinical
settings. Moreover, this technique is not suitable for use in the continuous and prolonged
monitoring of FM due to its large scale and operational complexity and due to the health
risks of accumulative exposure [14].

In the current field of FM signal measurement based on wearable sensors, various
transducers are placed on the abdominal wall to detect FM, including piezoelectric films for
pressure [16], strain gauges for force [17], capacitive [18] or inductive [19] moving elements
for deflection, and optical fibre for strain [4], etc. These measurements have the advantage
of capturing automated and longitudinal data in the out-of-hospital setting. However,
multiple transducers and multichannel signal processing must be used to eliminate signal
noise from non-FM sources. The compliance matching between the transducer and the
abdominal wall is vital to obtain reliable signals. The tightness of the strap holding these
transducers in place possibly impairs the FM measurement. Additionally, electrocardio-
graphic (ECG)-based FM tracking has also been proposed, including temporal and spatial
ECG shape identification and fetal vectorcardiogram (VCG) loop alignment [20]. However,
the multi-channel measurements and complex signal processing techniques required for
maternal ECG removal and fetal VCG loop calibration make FM detection challenging.

Currently, many methods have been proposed for non-contact measurement. The
camera system can monitor vital signs through the use of RGB cameras, IR cameras,
and depth cameras. With algorithms for the post-processing of acquired video data, the
heart and breathing rates are obtained unobtrusively and comfortably in both adults and
neonates [21–23]. Motion information from optical flow has been applied to the diagnosis
of neonatal seizures [24]. The method considers the pixel areas with velocities over a
predetermined threshold to determine whether or not the detected movement matches
the profile of a neonatal seizure. Koolen et al. [25] detected the respiration rate from the
neonatal video included in polysomnography. Eulerian video amplification was used to
amplify respiration motion, and optical flow algorithms were used to estimate respiration
motion and obtain respiration signals. The respiration rate was successfully determined
for sleeping-stage patients. Yue Sun et al. investigated an automated pipeline to estimate
respiration signals of preterm infants in the neonatal intensive care units (NICUs) from
video using the optical flow methods [26]. The conventional optical flow estimation method
was compared with the deep learning-based flow estimation method to estimate the pixel
motion vectors between adjacent frames. The experimental results contributed to furthering
research into and the clinical applications of respiration monitoring methods via video.

This paper aims to propose an unobtrusive and non-contact method for the detection
of FM using abdominal videos recorded by a camera. In our method, we used the optical
flow algorithm, as well as image and signal processing techniques, for FM recognition and
FM parameter calculation. Then, a few videos from pregnant women were collected to
verify the feasibility of our study.

2. Materials and Methods

The overall flow chart of the proposed method is shown in Figure 1, including stages
of abdominal video recording, FM signal acquisition, FM parameter calculation, and the
evaluation of the performance of the proposed method. In brief, the abdominal videos were
recorded, and maternal abdominal regions were detected in each frame. Then, the optical
flow vector of the abdomen was obtained and color-coded with hue (H) and saturation (S).
Ensemble empirical mode decomposition (EEMD), energy ratio, and correlation analysis
were applied to the H and S signals to determine the FM signal. Next, FM spikes were
recognized using the differential threshold method, and FM parameters were calculated.
Finally, the performance of the proposed method was evaluated regarding the manually
labeled results.
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detection on one frame of an image. 

Figure 1. Flow chart of the proposed method.

2.1. Abdominal Video Recording

A total of 5 pregnant women participated in this study during 28 to 36 gestational
weeks (GWs). When they felt distinct FM, they stayed in bed, quietly exposing their
abdomens to the camera, and recorded abdominal videos for approximately 40 min. To
achieve high-quality images and a complete FM capture, we used the digital image ac-
quisition system (Spedal MF934H, Shenzhen New color Creative Electronics Ltd., Shen-
zhen, China) with a resolution of 1280 × 720 and a frame rate of 25 frames/s. A total of
18 abdominal videos were obtained. Of the videos recorded, two poor-quality abdomi-
nal videos were excluded, and the other 16 abdominal videos were analyzed to validate
our proposed method. The subjects were asked to sign a consent agreement after being
informed of the study’s aim, potential benefits, and risks. The study was approved by
the Ethics Committee of Science and Technology of Beijing University of Technology and
was conducted according to the specifications of the Declaration of Helsinki of the World
Medical Association.

2.2. Fetal Movement Signal Acquisition

To automatically measure FM from the recording abdominal videos, we first acquired
the FM signal using the following five steps.

2.2.1. Maternal Abdominal Region Detection

The maternal abdomen had to be positioned in each frame for the detection of FM.
Firstly, the frames with maternal movements were deleted manually. Then, skin regions
were extracted using the ellipse skin model [27] to exclude non-skin regions as far as
possible, and the disconnected skin regions were eliminated by the open operation. Sub-
sequently, the eight connected domains were calculated, and the abdominal candidate
regions were selected. If the aspect ratio of the candidate region was larger than 1, the
region was regarded as the abdominal region. Figure 2 shows the process of abdominal
region detection on one frame of an image.
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Figure 2. The process of abdominal region detection on one frame. (a) The original image,
(b) the detected skin region, (c) the image after the open operation, and (d) the positioning of
the abdominal region.

2.2.2. Optical Flow Color-Coding

We used the change in optical flow to represent the rise and fall in the maternal
abdomen caused by FM. The optical flow field is a vector field that expresses the kine-
matic relationship between local 2D or 3D images [28]. Optical flow algorithms use the
spatiotemporal patterns of the images or signals to estimate the motion field.

The velocity vector of each pixel in the image was obtained using the optical flow
method [29]. The direction and magnitude of the velocity vector of each pixel were
represented by hue (H) and saturation (S) in an HSL color space, respectively. The visualized
optical flow is shown in Figure 3. Figure 3a represents the optical flow vector, the optical
flow vector for each pixel being a vector from the center of the square to that pixel; Figure 3b
represents the color-coding of the optical flow. The stationary points in the image are white:
the darker the color, the greater the magnitude of the optical flow. Figure 4 shows the kth

frame of the abdominal video after optical flow color-coding. The most obvious dark area
in Figure 4b indicates the FM to the upper left. In this instance, the darker the color, the
greater the amplitude of the FM. Conversely, the other areas are close to white, indicating
these areas are stationary.
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2.2.3. H and S Signals Generation and Preprocessing

H and S channels in the kth frame image were obtained from the abdominal video
images using the following formula.

R(k) =
1
N

N

∑
i=1

θi (1)

where R(k) is the H or S channel of the kth frame image, N is the number of pixels, and θi is
the ith pixel value of the H or S channel within the abdominal region.

FM frequency was within the range of 3 to 20 Hz [30] and the highest frequency of
the H and S signal time series did not exceed 20 Hz. Therefore, a 7th-order Butterworth
high-pass filter with a cutoff frequency of 3 Hz was designed to remove the low-frequency
noise of the H and S signal time series.

2.2.4. H and S Signals Decomposition

We decomposed the H and S signals into a finite number of intrinsic mode functions
(IMFs) to further remove the high-frequency interference after preprocessing. Being non-
linear and non-stationary, H and S signals can be decomposed according to their timescale
characteristics using the conventional empirical mode decomposition (EMD) algorithm.
However, a major drawback of the EMD algorithm is mode mixing, i.e., a single IMF
either consisting of signals of widely disparate sizes or a similarly sized signal residing
in a different IMF component. To overcome the scale separation problem, the present
study employed the EEMD algorithm [31], which defined the true IMF components as the
average of an ensemble of trials, each being composed of a signal and a white noise. The
white noise was added to the H and S signals, and the different timescale components were
mapped to the reference timescale associated with the white noise. Meanwhile, the white
noise would be eliminated by using multiple averaging and using the ensemble average as
the component of the signal.

In this study, the ratio of the standard deviation between the white noise and the S
signal (or H signal) was set to 0.1 [32], and the ensemble number of the EEMD algorithm
was set to 50.

Figure 5 shows an example where the S signal was decomposed into eight IMFs and
one residual. Here, IMF1 represents the highest frequency and IMF8 represents the lowest
frequency among them.

2.2.5. Determination of Fetal Movement Signal

FM signal was determined by combining the energy ratio and Spearman correlation
coefficient. The energy ratio was calculated as follows: for the IMFj (j = 1, 2, . . . , m), the en-
ergy ratio of FM component Ef(j) (3 to 20 Hz) to the total energy E(j) of IMFj (j = 1, 2, . . . , m)
was calculated. Ef(j) and E(j) were obtained using the fast Fourier transform algorithm. For
the IMFj, if Ef(j)/E(j) > δ, the IMFj was supposed to be associated with FM. The δ of 0.6 was
set, which was a trade-off between information loss and interference introduction.
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The Spearman correlation coefficient η was calculated to describe both linear corre-
lation and non-linear correlation between these two time series. The calculation formula
used is as follows:

η =
∑n

i=1 (xi −
−
x)(yi −

−
y)√

∑n
i=1(xi −

−
x)2

√
∑n

i=1(yi −
−
y)2

(2)

where n is the sample size of the data, xi is the rank of ith point of IMFj (j = 1, 2, . . . , m), yi

is the ith point of H signal (or S signal).
−
x and

−
y are the mean of IMFj (j = 1, 2, . . . , m) and

the H signal (or S signal), respectively.
The Spearman correlation coefficient between IMFj (j = 1, . . . , m) and the H signal (or

S signal) was calculated separately. Finally, the IMFj (j = 1, 2, . . . , m) with the maximum of
(Ef(j)/E(j) + η) was selected as the FM signal.

2.3. Calculation of Fetal Movement Parameters Using Fetal Movement Signal
2.3.1. Recognition of Fetal Movement Spike

FM usually causes the FM signal to change dramatically. Therefore, this study com-
bined the first-order and second-order difference in FM signal to determine FM spike,
representing the occurrence of FM. The flow chart for FM spike recognition is shown in
Figure 6.
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Figure 6. Flow chart of FM spike recognition.

For the FM signal x(n), its first-order difference y1(n) and second-order difference
y2(n) were calculated as (3) and (4), respectively.

y1(n) = x(n + 1)− x(n) (3)

y2(n) = x(n + 2)− 2x(n + 1) + x(n) (4)

The local minima of the second-order difference were averaged as the first threshold
Th1. If x(n) ≤ Th1, then it was a non-FM spike; otherwise, it would be further recognized
by the second threshold Th2.

The second threshold Th2 was determined with (5) and (6).

y3(n) = y1maxy1(n) + y2maxy2(n) (5)

Th2 = a ∗ y3max (6)

where y1max, y2max, and y3max are the maxima of y1(n), y2(n), and y3(n), respectively. a is a
coefficient between 0.01 and 0.05.

If x(n) > Th1 and x(n) > Th2, it was determined as an FM spike.

2.3.2. Calculation of Fetal Movement Parameters

FM parameters including number, interval, duration, and percentage were calculated
to describe the FM characteristics. For the FM number, we highlighted that if the interval
between two adjacent FM spikes was less than 6 s [33], they were regarded as one FM. The
FM number per hour was deduced in this way. The FM interval was defined as the elapsed
time between two adjacent FMs. The FM duration referred to the time interval between
two adjacent spikes less than 6 s [34–36]. The FM percentage was the total FM duration as
a percentage of the recording time.
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As shown in Figure 7, the red rectangle represents an FM manually labeled by two
professionals on the abdominal video as a gold standard, with its length indicating the FM
duration. All the green spikes within the red rectangle were regarded as one FM because
the interval between any two adjacent spikes was less than 6 s.
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2.4. Evaluation of the Performance of the Proposed Method

FM that had been manually labeled by the professionals on the abdominal video was
used as the gold standard. The performance of the proposed method is expressed in terms
of true detection rate (TDR), positive predictive value (PPV), sensitivity (SEN), accuracy
(ACC), and F1_score as follows:

TDR =
TP

TME
× 100 (7)

PPV =
TP

(TP + FP)
× 100 (8)

SEN =
TP

(TP + FN)
× 100 (9)

ACC =
TP

(TP + FP + TN)
× 100 (10)

F1_score =
2 × PPV × SEN
(PPV + SEN)

× 100 (11)

where TME is the number of FM manually labeled by the professionals, TP (true positive) is
the number of FM that was correctly recognized, FP (false positive) and FN (false negative)
are the number of FM that were falsely recognized with the proposed method separately.

In addition, Bland–Altman analysis was utilized to assess the agreement of FM param-
eters between the proposed method and the FMs manually labeled by the professionals.

3. Results
3.1. Comparison of the Detection Result

Table 1 shows the FM parameters, including FM number, interval, duration, and
percentage detected by the proposed method with the H signal and S signal in comparison
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to the results obtained via manually labeling by professionals. As can be seen from Table 1,
the FM parameters measured with the S signal are closer to the manually labeled results.

Table 1. FM parameters measured by different methods (median (25%, 75%)).

FM Parameters
Proposed Method

Manual Labeling
H Signal S Signal

Number (times/h) 45.15 (23.08, 57.53) 62.51 (28.70, 69.10) 60.65 (28.18, 69.07)
Interval (s) 40.89 (37.75, 85.58) 50.55 (47.15, 99.33) 49.99 (48.92, 101.48)

Duration (s) 2.26 (1.89, 2.81) 1.62 (1.37, 1.83) 1.74 (1.49, 2.03)
Percentage (%) 3.19 (1.11, 4.17) 2.54 (1.04, 3.16) 2.78 (1.03, 3.26)

We evaluated the detection results with the H signal and S signal, respectively. As
shown in Table 2, the S signal has a better performance than the H signal.

Table 2. Evaluation of the proposed method.

Proposed Method TDR (%) PPV (%) SEN (%) ACC (%) F1_Score (%)

H signal 77.22 75.00 77.22 61.41 76.09
S signal 95.75 95.26 95.75 91.40 95.50

3.2. Bland–Altman Analysis of Fetal Movement Parameters

Bland–Altman analysis was utilized to assess the agreement of FM parameters between
the proposed method and the manually labeled by the professionals. Figure 8 shows the
mean, difference, and 95% limits of FM parameters.
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Figure 8 indicates that the mean of the difference is small, that the differences are
mostly within a 95% confidence interval and that therefore there is good agreement with
the manually labeled FM parameters.

3.3. Comparison of FM Parameters between Gestational Weeks

Figure 9 shows the FM parameters obtained from different GWs in one pregnant
woman. It was noticed that FM number, duration, and percentage decreased, while FM
interval increased, with gestational week.
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4. Discussion

FM is considered to be one of the fundamental manifestations of early neural activity
because it is spontaneously generated by the central nervous system. FM helps the clinician
understand the functional development of the fetus. Active fetal monitoring methods, such
as ultrasound techniques, are expensive and there are objections to their long-term use.
Maternal perception is unreliable. Passive fetal monitoring methods, such as accelerometry
and electrodes placed on pregnant women, are still not accurate. This study presented
a novel method to measure FM continuously using a camera to record abdominal video
without touching the pregnant women and thus without inducing any inconvenience
to them.

Table 3 summarizes the performance of the abdominal video-based FM detection in
this study in terms of TDR, PPV, SEN, ACC, and F1_score in comparison with the previously
published papers. Most of the related studies evaluated their results with ultrasound or
maternal perception. However, abdominal video recording and the operation of ultrasound
equipment could not be performed simultaneously in our study. Maternal perception is
known to be inaccurate and unable to provide FM parameters. Therefore, two professionals
carefully watched the abdominal videos and labeled the FM’s start and end frames, which
were then used as the gold standard in our evaluation. Although a direct comparison was
not feasible due to the difference between the database and clinical scenario, our proposed
method generated promising results.
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Table 3. Comparison results of FM recognition.

Research Team Measurement Algorithm Gold Standard
Number of
Subjects/

Recording GWs
TDR (%) PPV (%) SEN (%) ACC (%) F1_Score (%)

Proposed method Camera Optical flow Manual labeling 5/28 to 36 96 95 96 91 96

Layeghy [34] Accelerometry
system

Time–frequency distribution
and principal

component analysis

Ultrasound and
maternal

perception
NA/NA NA 95 92 92 93

Khlif [35] Accelerometers
for motion

Root-mean-square and
time–frequency matched filters Ultrasound 4/32, 32, 32, 35 80 77 NA NA NA

Liang [13] Accelerometers
K-SVD dictionary learning and

orthogonal matching
pursuit algorithm

Maternal
perception 4/NA 90 90 NA NA NA

Lai [37] Acoustic sensors
for vibration

Comb notch filtering and
principal component analysis

coordinate transform

Physician-
identified 44/24 to 34 68 NA NA NA NA

Rooijakkers [12] Abdominal ECG
recordings

Band-pass filtering and the
R-peak detection algorithm Ultrasound 20/22 to 40 NA NA 64 68 NA

Schmidt [38] Magneto-
cardiographic Moving correlation coefficient Maternal

perception 30/NA NA NA 81 NA NA

Lu [39] Fetal actography
and tocography

Empirical mode
decomposition, kohonen

neural network and linear
baseline estimation method

Physician-
identified 52/NA NA 71 82 NA NA

NA: not available.
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Besides FM number, our proposed method also provided FM interval, duration, and
percentage. These parameters provide obstetricians with more information about FM and
help them to identify risks during pregnancy. To the best of our knowledge, no other study
has present these FM parameters.

In particular, we followed one pregnant woman from 28 to 36 GWs and found that
her FM number, duration, and percentage decreased, while her FM interval increased with
gestational week. These results in line with the related studies [40,41]. These changes
might be due to the increasing conservation of energy in preparation for childbirth, as
well as the reduction in uterine space [42]. Ten suggested that the overall decline in the
incidence of FM during pregnancy appeared to be a fetal developmental phenomenon [43].
Ryo proposed that the period of no FM means fetal stillness, and that the increase in the
period without FM might be a sign that the development of the central nervous system was
gaining control over the peripheral nervous system and reducing body movements [44].
Nijhuis et al. [45] reported that the fetal behavioral state was not fully established until
36 weeks. Before 36 weeks, rapid changes in FM may be associated with the development
of the fetal behavioral state.

This study proposed a non-contact FM measurement based on abdominal video, which
is simple and suitable for home health care, and thus the FM parameters acquired could be
transferred to the clinicians over the Internet. Regarding the privacy of the subjects, the
proposed method did not pose any privacy issues compared to other video-based methods
that used frontal images (including the face of the subject). This was because the camera
only captured the subject’s abdomen and did not show the identifiable parts of the subject.
As far as we know, no such method has been introduced for FM detection in other studies.
Previously, various sensors required contact with the skin of pregnant women, which
increased the risk of skin irritation. Sensor fixing straps influenced the subjects’ normal
breath and even normal FM since the bands were tightly tied to the abdomen, resulting
in the unnatural activity of the abdomen [46]. While one or more sensors were attached
to the skin of pregnant women’s abdomen using medical-grade adhesive patches [47,48],
prolonged contact also had the ability to cause discomfort. However, the proposed method
has the potential to have a better performance in practical applications and be more
comfortable. Therefore, this is a viable option for the long-term monitoring of FM, designed
to detect early reductions in FM while reducing the efforts of expectant mothers who would
otherwise have to actively count the number of FM daily. The proposed monitoring method
was convenient and had good adaptability.

Furthermore, the ordinary camera could be used to acquire abdominal videos, facili-
tating the popularization of this technology. The optical flow vector of FM was coded in an
HSL space, reducing the effect of ambient light and improving the quality of abdominal
video images. We found the S signal was more accurate than the H signal in FM detection,
which was possibly because the S signal was able to reflect the intensity of maternal ab-
dominal movements. This capacity became greater, especially when FM was present, and
so it has a better capacity to characterize the FM.

In this study, pregnant women were required to lie motionlessly during the abdominal
video recording. However, maternal activity is inevitable during long-term monitoring.
Therefore, many efforts have to focus on the automatic detection and removal of maternal
interference in future studies. In addition to FM parameters, researchers could discriminate
further between various FM activities such as kicking, stretching, and overall gross body
movement using machine learning algorithms. Additionally, more volunteers in the second
trimester, close to delivery, and with different outcomes will be recruited in future studies
to obtain convincing results. The non-contact and contact method could be applied to
pregnant women at the same time to compare their efficiency.

5. Conclusions

In this work, we first proposed a novel method for monitoring FM with abdominal
videos recorded by a camera without touching the pregnant women and thus without
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inconvenience to them. The proposed method achieved a great performance, in which the
FM parameters measured were in good agreement with the results manually labeled by the
professionals. The changes in FM parameters with gestational week were consistent with
pregnancy progress. The outline for the successful abdominal video-aided FM detection
was presented, thereby paving the way for its application in a home-friendly environment
in which the obtained FM parameters can be transmitted to clinicians via the Internet in
the future. We conducted a feasibility study rather than an extensive clinical trial, and our
efforts will be further validated in clinical practice.
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