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Abstract: Smart metering systems (SMSs) have been widely used by industrial users and residential
customers for purposes such as real-time tracking, outage notification, quality monitoring, load
forecasting, etc. However, the consumption data it generates can violate customers’ privacy through
absence detection or behavior recognition. Homomorphic encryption (HE) has emerged as one of the
most promising methods to protect data privacy based on its security guarantees and computability
over encrypted data. However, SMSs have various application scenarios in practice. Consequently,
we used the concept of trust boundaries to help design HE solutions for privacy protection under these
different scenarios of SMSs. This paper proposes a privacy-preserving framework as a systematic
privacy protection solution for SMSs by implementing HE with trust boundaries for various SMS
scenarios. To show the feasibility of the proposed HE framework, we evaluated its performance
on two computation metrics, summation and variance, which are often used for billing, usage
predictions, and other related tasks. The security parameter set was chosen to provide a security level
of 128 bits. In terms of performance, the aforementioned metrics could be computed in 58,235 ms
for summation and 127,423 ms for variance, given a sample size of 100 households. These results
indicate that the proposed HE framework can protect customer privacy under varying trust boundary
scenarios in SMS. The computational overhead is acceptable from a cost–benefit perspective while
ensuring data privacy.

Keywords: smart metering system; homomorphic encryption; trust boundary

1. Introduction

Smart metering systems (SMSs) are pivotal in modernizing the energy and resource
sector, driving efficiency (e.g., energy distribution [1]), reliability (e.g., industrial applica-
tions [2]), and sustainability (e.g., water management [3]). Their novelty and contribution
lie in providing accurate, real-time or near-real-time data on energy and resource con-
sumption, enabling utilities to provide more reliable services, optimize system operations,
identify inefficiencies, and support the integration of renewable energy sources (e.g., smart
grid systems) [4,5]. Simultaneously, they contribute to empowering consumers to make
informed decisions regarding energy use, leading to demand-side management and cost
savings. By supporting infrastructure modernization, SMSs can reduce overall energy
consumption, decrease carbon emissions, and advance the transition to a low-carbon and
sustainable economy [6,7].

SMSs provide various features such as tracking real-time or near-real-time usage
data [8], detection of abnormal usage [9], more accurate billing information [10], and the
ability to share the collected fine-grained data with third-party analysts for more compre-
hensive analysis (e.g., dynamic price prediction [11]). For instance, smart water metering
(SWM) systems can generate fine-grained temporal water usage data, which can be used to
recognize user behaviors such as tapping, taking a shower [12], and gardening [13].
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However, this raises serious privacy concerns, as malicious actors, including service
providers, third-party analysts, or neighbors, can eavesdrop and analyze these data without
user consent. Their motivations vary from identifying a specific customer to monitoring the
billing information or analyzing user behaviors. Therefore, it is crucial to carefully evaluate
the security implications of sharing customer data with related entities or outsourcing to
third-party analysts in different scenarios. Some smart metering systems, such as SWM,
may have sparsity in their fine-grained data sets, with a granularity of 10 s or even longer
(i.e., the gap between water usages is usually large), which makes it easier to identify
the user by recognizing their behavior and mapping to real-world activities. In addition,
installing and implementing a smart metering system requires security considerations and
standards [14]. Poor installation practices or unauthorized personnel installing the smart
meters may leave them vulnerable to tampering or unauthorized access. Therefore, this
study mainly concentrated on making a given SMS more privacy- and security-compliant
but did not consider the side effects of the SMS (e.g., the broader implications of SMSs such
as energy consumption or reduction, energy sources, sustainability, etc.).

Previous works have proposed various privacy-preserving technologies (e.g., dif-
ferential privacy, federated learning, etc.) to address the issues above. For instance,
Cardell-Oliver and Carter-Turner [15] proposed using k-anonymity and sampling with
differential privacy guarantees to protect the privacy of the data sets for SWM. Taïk and
Cherkaoui [16] used federated learning for household load forecasting in a smart grid.
However, some limitations hinder their usage in practice. For example, differential privacy
uses obfuscation techniques to guarantee security by adding noise, causing lower accuracy.
Although federated learning transmits the updated gradients rather than the data, privacy
leakage is still possible. Potential privacy-preserving techniques are discussed in Section 2.
Moreover, these techniques need to be improved to satisfy generalized computational
requirements and data features for different SMS scenarios. Therefore, there is a need for a
privacy-preserving framework that considers these requirements.

This paper proposes a framework to protect data privacy for SMSs that considers trust
boundaries (TBs) and computability using real-world data sets while providing privacy
guarantees. The proposed framework uses homomorphic encryption (HE) as a primitive
for security. HE can provide strong protection based on cryptography and data processing
on encrypted data without first decrypting it. We have different scenarios with various trust
boundaries (i.e., the entities involved may or may not trust each other) where entities can
be assigned different public keys depending on their trust boundary. Currently, available
HE implementations, such as Lattigo [17] and SEAL [18], support the CKKS scheme [19]
(an HE scheme that supports fixed-point arithmetic operations). They provide primitive
tools for building applications. Although Lattigo is written in Golang, it has a performance
comparative to that of C/C++ libraries and compatibility with most operating systems and
CPU architectures. Furthermore, it provides multiparty HE with a multiparty computation
(MPC) protocol. Hence, our proposed framework uses Lattigo as the HE library for different
SMS scenarios. In detail, we implemented simple computation metrics of summation and
variance that third-party analysts can depend on when performing analytical tasks. Finally,
we evaluated the proposed privacy-preserving framework for SMSs with real-world data
and discussed some topics closely related to our framework.

Because we used HE as the primitive security method for SMSs, there are some
challenges we need to consider. First, HE solutions need to be adaptive to different SMS
scenarios under different trust boundaries and consider the attacks from adversaries at
each point of the system. Second, the HE security parameter set has an important influence
on the system security and performance. Therefore, we need to choose a proper security
parameter set according to common HE security levels and the data size for HE, which is
the slot number of the HE ciphertext. Third, key distribution is a crucial process for HE
schemes, so we must design how to properly distribute the keys.
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We summarize the contributions of the study below:

• We devekioed a privacy-preserving framework for smart metering systems utilizing
homomorphic encryption.

• We utilized trust boundaries to analyze the roles of smart metering systems and help
design the configurations for setting up homomorphic encryption, including the key
distribution of homomorphic encryption.

• We evaluated the proposed framework with real-world data by measuring the perfor-
mance, including the time consumption of HE operations, the time consumption of
analysts’ metrics computation, and the disk consumption of HE keys.

2. Related Work

Smart metering systems (SMSs) are integral to modern resource management infras-
tructure, enabling the accurate measurement and monitoring of resource consumption
in residential and commercial settings. However, SMSs have raised many security and
privacy concerns [20], such as the fact that SMSs can be attacked through vulnerabilities
to bring down the whole system and cause damage to customers and service providers.
Particularly, SMSs can generate sensitive consumption data [8] that are used to provide
valuable services such as load forecasting [16]. Meanwhile, many regulations and laws (e.g.,
GDPR [21]) exist as standards to protect data privacy. As a result, ensuring the security of
smart metering systems has become a critical concern for SMSs.

2.1. Privacy Risk and Countermeasures of SMS

Cyber–physical systems (CPS), such as SMSs or IoT systems, combine physical and
digital entities and generate enormous volumes of data. The data generated by SMSs can
be used to infer customers’ presence [22] and for activity recognition, including short-term
activities (e.g., tapping or taking a shower [12]) or long-term activities (e.g., gardening [13]).
Priyadarshini [23] studied the optimal machine learning methods to reach a high accuracy
of 98% in activity recognition using the data from smart wearables, which form an integral
part of IoT systems.

Because behavioral patterns can be analyzed through activity recognition, privacy
concerns are increasingly growing due to customers’ privacy exposure [24]. A simple
solution is to use the energy stored in the households that can later reshape the usage
profile. Li et al. proposed a Bayesian detection-operational privacy leakage metric [25] for
evaluating privacy risk and studied an optimal privacy-preserving energy control strategy.
Li et al. presented a way [26] of pruning vulnerable data and randomly selecting database
proportions for publishing.

2.2. General Privacy-Preserving Techniques

Some general privacy-preserving techniques have been investigated to address the
privacy issues of SMSs. One example is k-anonymity. Alsaid et al. applied the Mon-
drian algorithm to ensure k-anonymity by excluding personally identifiable information
within a smart grid system [27], which achieves anonymization in nlog(n) time complexity.
Stegelmann and Kesdogan proposed using pseudonyms implementing k-anonymization
to avoid the service provider identifying a specific customer in a smart grid [28]. How-
ever, k-anonymity does not include randomization, and adversaries can still successfully
make inferences if they already know some background knowledge. Therefore, SMSs are
vulnerable to adversaries if they can monitor the customers for a long time.

Trusted execution environment (TEE), an isolated CPU space for secure computation,
is a second choice. Karopoulos et al. chose TEE as trusted computing technology to protect
cryptographic keys, sensitive data, and critical operations in the application of smart grids
such as remote attestation [29]. Valadares et al. studied a trusted architecture solution based
on TEE and other security mechanisms to protect data in IoT applications [30]. Although
there is the advantage of low communication and computation costs, TEE has a cost for
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hardware and is highly reliant on hardware implementation. Moreover, TEE is suitable for
the data federation rather than the data collection process.

MPC is a technique that utilizes an MPC protocol to make participants collaborate
on computations over their inputs while keeping them private through protocols. An
MPC protocol refers to the rules and procedures that enable each party to compute the
function securely and privately. It defines how the parties interact with each other, how
they share information, and how they combine their inputs to produce the desired result.
MPC comes with the huge cost of communication overhead. Kirschbaum et al. presented
a privacy-aware communication protocol [31] for smart grid systems based on secure
multiparty computation, which allows the aggregation of consumption data of a group of
smart meters without disclosing individual information. Although this solution can reduce
the communication effort through a special initialization phase, this phase increases the
system’s complexity, for example, increasing the overhead of pre-computation. Danezis et al.
proposed an MPC scheme based on secret sharing [32] through which they examined
the usage of complex functions on smart meters. However, the scheme requires more
computing rounds and negatively affects the bandwidth and latency.

Differential privacy (DP) is also a widely used privacy-preserving method. How-
ever, by adding proper noise, there is always a balance between data utility and privacy
protection. Assuming the water provider is honest and trustworthy, Cardell-Oliver and
Carter-Turner proposed a solution by sampling differential privacy in SWM systems that
use (ε,δ)-differential privacy for a sample of Nβ households [15], which significantly im-
proved the differential privacy guarantees because smaller samples increase the adversary’s
uncertainty about which households are in the sample. Gai et al. proposed a data aggrega-
tion scheme with local differential privacy (LDP) in smart grids [33] by discretizing and
aggregating these data to meet the privacy guarantees of LDP and finally estimating the
total or average power consumption after combining randomized responses.

HE is a promising technique that supports computations over encrypted data. Fully
homomorphic encryption (FHE) [34] is regarded as the complete form of HE, as FHE sup-
ports an unlimited number of arbitrary computations for potentially complex applications.
Tonyali et al. assessed the feasibility of FHE for smart grids by adapting one existing FHE
scheme for advanced metering infrastructure (AMI). The data size and delay overheads
were acceptable [35]. As FHE supports arbitrary function evaluation and an unlimited
number of operations, it depends on bootstrapping to reduce the noise level of ciphertexts
when the level of the computation circuit is deep. Considering privacy protection based on
cryptography for the whole process, honest data collectors or third-party analysts are no
longer needed; thus, HE is regarded as the most promising method.

3. System Model

A smart metering system (SMS) is advanced infrastructure utilizing modern communi-
cation and computing technologies to monitor, record, and manage resource consumption.
In SMSs, multiple clients can be connected with multiple service providers responsible
for data collection, analysis, load monitoring, and demand response. In addition, service
providers may outsource the same tasks to multiple third-party data analysts.

There can be varying models of SMS, but the simplest form of SMS is that there is
only one service provider serving multiple clients. However, it may outsource its analytical
tasks to multiple analysts, as depicted in Figure 1. For example, there is usually one water
provider in an urban neighborhood containing dozens or hundreds of households where a
smart water metering (SWM) system is used.

We make assumptions for the system model that only one service provider collects
household consumption data and outsources the computations to third-party analysts.
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Figure 1. System model of SMS.

3.1. Entities

There are mainly three types of entities involved in SMSs: (1) clients; (2) service
providers; (3) third-party analysts. The clients are the ones that generate data. For example,
smart water metering clients can generate water consumption data. Service providers
collect data from clients and perform analytical metrics on the clients’ data but may out-
source analyses to external analysts by sending clients’ data and collecting the outputs
from the analysts to provide service for clients. Third-party analysts can compute different
types of analytical results. For example, they can predict the dynamic prices for power
utility services [11], calculate aggregations [36] for billing services, perform demand man-
agement [37], etc. Therefore, service providers may outsource such work to third-party
analysts with the computational capabilities to perform these analyses.

3.2. Data Flow

There are two principal data flow pathways in a typical SMS configuration. The first
pathway involves the data flow between clients and service providers. Generally, the
process starts with the clients generating data, which the service providers collect to
perform computations. The results of these computations are then used for billing the
customers for the resources they consume and providing analytical metrics when requested.
The data can be a series of raw data [12] on resource consumption during a specific period
with an interval. The computations can be performed in-house or outsourced to third-
party analysts.

The second data flow pathway involves a service provider and third-party analysts.
Whenever the service provider cannot perform necessary computations due to a lack of
expertise or resources, they can send the data to one or more third-party analysts to perform
computations and generate the required results. Once the analysis is complete, the results
are returned to the service provider.

3.3. Trust Boundary (TB)

Trust boundary (TB) [38] is a term used in computer science and security that describes
a logical or physical boundary that divides domains with distinct levels of trust. It signifies
the point at which an entity believes in another entity. TB can be a network perimeter,
firewall, or other security measure distinguishing trusted and untrusted domains.

The TB illustrates the appropriate protection methods in the described SMS data flow
scenarios. Essentially, it is a virtual scope in which entities are assumed to be honest,
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meaning they are not malicious and curious about the data. Thus, they would not violate
data privacy or integrity by eavesdropping or tampering. Furthermore, no adversary can
hack into these entities to corrupt data. As a result, the TB can clarify the design of the
key management of distinct scenarios for SMSs with HE, including key generation and
key distribution.

3.4. Computation Metrics

Because third-party analysts are assumed to have more computation capabilities than
data owners, heavy computation tasks are outsourced to third-party analysts, and they
can statistically analyze the data. For instance, they can calculate simple metrics, such as
aggregation [36,39] (i.e., summation or average) to calculate the billing of the consumption.
However, they can calculate more advanced metrics such as utilizing variance [40,41]
for machine learning tasks to perform load prediction [42] and help resource providers
perform demand management [37] to provide better service for customers. As how data
are processed and transferred remains the same among entities, we applied summation
and variance metrics as the computation metrics for simplicity. Other complex metrics,
such as the ones mentioned above, can still be used in a practical environment.

We denote the set of households used in this paper as H = {h1, h2, . . . }, where hi
means the ith household in this set. We denote the consumption records of the ith household
generated by its smart meter as R(hi) = {r1(hi), r2(hi), . . . }, where rt(hi) is the tth record
value of the ith household hi. For example, for household 1, denoted as h1, if we collect
data with a granularity of 10 s (i.e., 8640 records/day), then the last one of a day’s recording
would be r8640(h1).

3.4.1. Summation

One of the most widely used applications is the billing service or consumption monitor-
ing, which requires the summation value as the basis of the computation formula. In detail,
the summation of the daily, monthly, or quarterly energy consumption collected by smart
meters can reveal customers’ behaviors and habits. Moreover, the computation of the summa-
tion function is straightforward. Hence, using HE to handle this problem is a good choice.
The summation equation to calculate the sum value of the consumption records of the ith
household per day is shown in Equation (1). Here, d1 and dn define the period in R(hi) iin
which the summation equation is applied (e.g., the measurements for the billing period).

dn

∑
t=d1

rt(hi) (1)

3.4.2. Variance

Variance is a statistical metric that reveals the data differences. It can be applied to one
household and households in a group (e.g., a neighborhood). It relies on the sum of the
actual samples and the sum of the squares. The equation to calculate the variance value of
the consumption records of the ith household in the period [d1, dn] requires the calculation
of the average consumption, which is shown in Equation (2), where R′(hi) ⊆ R(hi) denotes
the recordings between [d1, dn]. Then, the variance calculation is shown in (3).

E(R′(hi)) =
dn

∑
t=d1

rt(hi)

n
(2)

V(R′(hi)) =
dn

∑
t=d1

(
rt(hi)− E(R′(hi))

)2

n
(3)
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4. Threat Model

There are four kinds of adversaries in the data flow model of SMSs above, as shown in
Figure 2. We label them from type 0 to 3 (the icon of a person wearing a black hat, high
collar windbreaker, and sunglasses) and explain their threats.

Figure 2. Threat model of SMS.

Adversaries of type 0 cannot only steal data from the communication channels inter-
cepted for malicious usage but can also corrupt data. Moreover, this kind of adversary
can use multiple attack methods at any point in the communication channel as external
attackers, causing enormous threats to the system. For instance, the most famous is the
man-in-the-middle (MitM) attack [43], which can intercept and modify data between com-
munications of two endpoints. Other attacks [44] include session hijacking, eavesdropping,
denial of service (DoS) attacks, etc.

The other three types can also steal data or, in most cases, eavesdrop on data. However,
they do not tamper with the data like type 0 adversaries because of their business roles in
the system and that tampering could be easily detected if they corrupt the data. Hence, we
can summarize them as honest but curious threats in SMSs.

Adversaries of type 1 are at the points of third-party analysts who receive consumption
data from the service provider, perform analytical tasks, and return results to the service
provider. Because they are business organizations with reputations, we can assume that
they are at most honest and curious but not malicious. Concerning this assumption, they
are not expected to tamper with the data but can eavesdrop on or steal it. Furthermore, if
data are not protected using privacy-preserving techniques, adversaries of type 1 can use
the data for privacy-violating purposes, such as activity recognition of user behaviors (e.g.,
taking a shower [12] and gardening [13]).

Adversaries of type 2 are at the points of the service provider, who collects consump-
tion data from each household, pushes the data to analysts’ sides, retrieves analysis results,
and transmits the appropriate results to each household. The service provider can also be
regarded with a business reputation as a third-party analyst. Therefore, it is also assumed
to be at most honest but curious, meaning that they have a chance to spy on or steal data
but can not corrupt it.

Adversaries of type 3 are at the points of households that generate consumption data
and receive the analytical reports from the service provider. In contrast to the analysts and
the service provider, adversaries of type 3 are completely untrustworthy such that they
can tamper with the data, not just eavesdrop on or steal it. For example, an adversary of
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type 3 can launch data injection attacks to manipulate locational marginal prices to obtain
economic benefits [45]. Hence, being honest but curious will not apply to adversaries of
type 3 as they may try to modify the consumption data of their neighbors nearby.

5. SMS Framework with Homomorphic Encryption
5.1. HE as Security Basis

Although there is a certain amount of computational and communication cost for SMSs
when HE is adopted, it is still a promising candidate for privacy protection. The biggest
advantage of HE is that it can not only protect data based on cryptography but also offer
the capability of computations over ciphertext with arbitrary computational metrics when
fully homomorphic encryption (FHE) is used. Thus, as a basic security primitive, it can
cover different scenarios and vulnerable points of privacy leakage in the whole data flow
of SMSs.

Furthermore, HE is a generalized technique based on encryption. For example, in
SWM systems, user data can be sparse under fine-grained granularity, and HE can fit
well into it. Hence, we can use HE for any SMS. After applying HE, adversaries cannot
infer any useful information from the ciphertexts or from the public and evaluation keys
generated by HE schemes based on its cryptographic mathematics, as detailed in Section 6.1.
Additionally, the same plaintexts are encrypted into different HE ciphertexts with the help
of randomized noise. HE has shown great generalization ability for data protection and a
strong security guarantee. Furthermore, it avoids the possibility of side-channel attacks
based on statistical analysis, complex machine-learning techniques, and other attacks, such
as a chosen plaintext attack.

In HE, the secret key must be kept safe without exposure.

5.2. Certificate Authorities

A certificate authority (CA) is a trusted third-party entity in a public key infrastructure
(PKI) used to verify the identity of individuals, companies, or devices on the Internet. They
are normally reputable external organizations with prestige. A certificate issued and signed
by a trusted CA to an entity contains crucial information about the certificate holder’s
identity and its public key. Because HE depends on the keys it generates to protect data
privacy, the key distribution of HE schemes is important to keep the whole system secure.
Hence, we combine CA to issue certificates as an important step for key distribution in HE
schemes to avoid adversaries of type 0, which is discussed in Section 6.4.

5.3. SMS Scenarios with Trust Boundary (TB)

Concerning the risks described in Section 4, we describe three necessary scenarios to
be handled here. Scenario 1 is typical because the service provider normally deploys smart
meters. Therefore, we can trust the service provider. Scenario 2 can also be reasonable, as
privacy risks such as activity recognition exist in some service providers, and regulations
such as GDPR [21] severely constrain data processing. Thus, service providers are greatly
motivated to adopt varying methods to protect data privacy. This is where Scenario 2 comes
in and can be achieved using HE. In Scenario 3 there is a possibility that a neighbor in a
community can be malicious and will try to tamper with the data of other households.

5.3.1. Scenario 1: Households and Service Provider in the Trust Boundary

The first scenario aims to eliminate adversaries from the analysts’ viewpoint (i.e.,
adversaries of type 1), who can eavesdrop. As initialization, entities must set up a secure
communication channel (using a protocol such as TLS) between them. To achieve this, the
service provider and each analyst must generate their public/private key pairs and request
a certificate from the CA.

After the framework has set up secure communication channels, the following steps
describe the framework process depicted in Figure 3.
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1. The service provider generates a set of keys (secret, public, and evaluation keys) for
HE and keeps the secret key safe.

2. Each household sends its consumption data to the service provider through the secure
communication channel.

3. After receiving each household’s data, the service provider encrypts each household’s
consumption data to ciphertexts with the HE public key.

4. The service provider determines the computation metrics and sends them together with the
collected ciphertexts and the evaluation keys to a list of third-party analysts of cooperation.

5. After receiving the ciphertexts, evaluation keys, and computation metrics, the analysts
utilize them to perform homomorphic computations over the ciphertexts to obtain
the ciphertext results C∗.

6. The analysts return the ciphertext results to the service provider.
7. The service provider decrypts the ciphertext results to plaintext results using its secret key.
8. The service provider sends the plaintext results to each household through the secure

communication channel (TLS), which is encrypted by the TLS session key while in transit.

Figure 3. The proposed framework of SMS for Scenario 1.

In Figure 3, the communication channels between each household, the service provider,
and each third-party analyst are enhanced by introducing CA and certificates. After
verifying its certificate, the identity of the service provider and analysts can be trusted.
With a trust boundary containing all the households and the service provider, data privacy
is guaranteed by HE. Furthermore, data are encrypted by HE when transferred from the
service provider to the third-party analysts and when homomorphic computations occur
on the analysts’ sides. As a result, adversaries of type 1 who want to eavesdrop can be
eliminated. They can not obtain valuable information, such as inferring with the identity of
any household or identifying any activity from the corresponding ciphertexts.

To better illustrate the data flow of the entities in Scenario 1, we provide a sequence
diagram in Figure 4.

This scenario has the highest requirements for system assumption because it requires
all households and the service provider to be honest and not curious inside TB. This
scenario is possible. Because normally, it is the service provider who deploys the smart
meters for each household, and each house can trust the service provider to be honest and
not curious.
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Figure 4. The sequence diagram for Scenario 1. E stands for encryption, D stands for encryption,
EVAL stands for evaluation, di stands for the consumption data from householdi, ci stands for the
ciphertext encrypted from di, c∗ stands for the ciphertext result, ri stands for the plaintext result
to householdi, and f stands for the homomorphic functions chosen by the service provider that
third-party analysts perform.

5.3.2. Scenario 2: Households in the Trust Boundary

The second scenario aims to eliminate adversaries from the analysts’ point (i.e., ad-
versaries of type 1) and adversaries from the service provider’s point (i.e., adversaries of
type 2), who can eavesdrop. As initialization, entities must set up a secure communication
channel (TLS) between them. To achieve this, the randomly selected main household, the
service provider, and each analyst must generate their public/private key pairs and request
a certificate from the CA.

After the framework has set up secure communication channels, the following steps
describe the framework process depicted in Figure 5.

Figure 5. The proposed framework of an SMS for Scenario 2.

1. The randomly selected main household generates a set of keys (secret, public, and
evaluation keys) for HE and keeps its secret key safe.

2. Other households send plaintext data to the main household through the secure
communication channel.
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3. After receiving the plaintext data, the main household encrypts them into ciphertexts
with the public key.

4. The main household sends the ciphertexts it collects to the service provider, along
with the evaluation keys it generated in step 1.

5. The service provider chooses the computation metrics and sends them together with
the ciphertexts and the evaluation keys to a list of cooperative third-party analysts.

6. After receiving the ciphertexts, evaluation keys, and computation metrics, the analysts
utilize them to perform homomorphic computations over the ciphertexts to obtain
the ciphertext results C∗.

7. The analysts return the ciphertext results to the service provider.
8. The service provider returns the ciphertext results to the main household.
9. The main household decrypts the ciphertext results to plaintext results using its secret key.
10. The main household transfers the plaintext results to other households through the

secure communication channel (TLS), which is encrypted by the TLS session key
in transit.

Similarly, in Figure 5, the communication channels between each household, the
service provider, and each third-party analyst are enhanced by introducing a CA and
certificates. After verifying its certificate, the identities of the main household, the service
provider, and analysts can be trusted. With a trust boundary containing all the households,
data privacy is guaranteed by HE. Data are encrypted by HE when transferred from each
household to the main household and to the analysts through the service provider. Then,
homomorphic computations occur on the analysts’ sides. As a result, adversaries of type 1
at the analysts’ points and adversaries of type 2 at the service provider’s point who want
to eavesdrop can be eliminated. They can not obtain any useful information, such as the
identity or activities of any household from the corresponding ciphertexts.

To better illustrate the data flow of the entities in Scenario 2, we provide a sequence
diagram in Figure 6.

Figure 6. The sequence diagram for Scenario 2. E stands for encryption, D stands for decryption,
EVAL stands for evaluation, di stands for the consumption data from householdi, ci stands for the
ciphertext encrypted from di, c∗ stands for the ciphertext result, ri stands for the plaintext result
to householdi, and f stands for the homomorphic functions chosen by the service provider that
third-party analysts perform.

This scenario has a trust boundary containing each household but excluding the
service provider. This is also possible: although the service provider deploys smart meters,
a curious employee who tries to eavesdrop on customers’ data might be working for the
service provider. This is what regulations such as GDPR [21] are also trying to resolve.
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5.3.3. Scenario 3: Only One Household in the Trust Boundary

The third scenario aims to eliminate adversaries at the points of the analyst, service
provider, and other households (i.e., adversaries of type 1, type 2, and type 3). As initializa-
tion, entities must set up a secure communication channel (TLS) between them. To achieve
this, the service provider and each analyst must generate their public/private key pairs
and request a certificate from the CA.

After the framework has set up secure communication channels, the following steps
describe the framework process depicted in Figure 7.

Figure 7. The proposed framework of an SMS for Scenario 3.

1. Each household generates its own secret key (SKi) and keeps it safe.
2. With the help of an MPC protocol, the collective public key (CPK) is generated

by combining the local share of the computation result of each household. The
collective evaluation keys (CEKs) are also generated. In this way, each household
jointly determines the CPK and CEK, not needing to expose its secret key.

3. Each household encrypts the consumption data to ciphertexts with the CPK and sends
them with the evaluation keys to the service provider.

4. The service provider receives each household’s ciphertexts and evaluation keys. Then,
it chooses the computation metrics and sends all these data to the analysts, including
the computation metrics, the evaluation keys, and ciphertexts from households.

5. After receiving the ciphertexts, evaluation keys, and computation metrics, the analysts
utilize them to perform homomorphic computations over the ciphertexts to obtain
the ciphertext results C∗.

6. The analysts return the ciphertext results to the service provider.
7. The service provider returns the ciphertext results to each household.
8. Each household applies an MPC protocol to turn the ciphertext results into new ciphertext

results encrypted by the service provider’s public key (generated for secure communica-
tion) by combining the local share of the computation result of each household.

9. The new ciphertext results are pushed to the service provider, who can decrypt them
to plaintext results using its secret key (generated for secure communication).

10. The service provider transfers the plaintext results to each household through the secure
communication channel (TLS), which is encrypted by the TLS session key in transit.

In Figure 7, the communication channels between each household, the service provider,
and each third-party analyst are enhanced by introducing a CA and certificates. After
verifying its certificate, the identity of the service provider and analysts can be trusted. With
a trust boundary containing only one entity (i.e., the household) for the specific household,
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data privacy is guaranteed by HE. Data are encrypted by HE when transferred from this
household to the third-party analysts through the service provider and when homomorphic
computations occur on the analysts’ sides. As a result, adversaries of type 1, type 2, and type
3 who want to eavesdrop can be eliminated. They cannot obtain valuable information, such
as the identity or activities of the specific household from the corresponding ciphertexts.

Even when collectively computing the CPK and CEK, privacy is protected because we
leverage the multiparty homomorphic encryption (MHE) proposed by Mouchet et al. [46],
which has a multiparty computation (MPC) protocol to protect the data privacy of each
household on its own. Moreover, they reduced the communication complexity from
quadratic to linear concerning the number of parties. This way, each household efficiently
utilizes its secret key and computes its share of the collective keys for usage (e.g., encryption
and evaluation).

To better illustrate the data flow of the entities in Scenario 3, we provide a sequence
diagram in Figure 8.

Figure 8. The sequence diagram for Scenario 3. cpk and cek stand for the collective public key and
collective evaluation keys generated through MPC protocols; ski stands for the secret key generated
and used by householdi, tpk and tsk stand for the public and secret key pair generated and used by
the service provider, respectively; E stands for encryption; D stands for decryption; EVAL stands
for evaluation; ci stands for the ciphertext encrypted from the consumption data; c∗ stands for the
ciphertexts result in the array after homomorphic computations; c∗i stands for the computation share
of householdi; c∗∗ stands for the ciphertexts result in the array after switching public key from cpk
to tpk; ri stands for the plaintext result to householdi; and f stands for the homomorphic functions
chosen by the service provider that third-party analysts perform.

This scenario has a trust boundary containing only the household itself. This is the
most common in practice as we need to rely on the honesty and the lack of curiosity on
the part of the service provider, the analysts, and even other households. Because after
eliminating the privacy risks of the service provider and third-party analysts, the neighbors
near the household may try to eavesdrop on the data. Hence, each household keeps
its secret key to encrypt data and protect privacy. Therefore, this method can provide a
practical solution for user data privacy preservation.
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5.4. HE Encryption and Decryption Algorithms of the Framework
5.4.1. HE Key Generation for Algorithms

As there is only one pair of public and secret keys in Scenarios 1 and 2; they can be
categorized into single-party homomorphic encryption. The key generator in Scenario 1 is
the service provider, while in Scenario 2, the randomly selected main household serves as
the key generator. The key generator produces the target public key, the target secret key,
the relinearization key, and the rotation key.

In Scenario 3, each household has a secret key to keep their privacy. The other HE
keys are collectively generated among the households via an MPC protocol. The collective
public key, the collective relinearization key, and the collective rotation key are generated
through the MPC protocol. The service provider behaves as the node for information
combination, while each household computes its share of information needed for the keys’
generation. Finally, the keys are generated by the service provider.

5.4.2. HE Encryption Algorithm

The consumption data are then encrypted into ciphertexts by the service provider in
Scenario 1. In Scenario 2, the randomly selected main household encrypts the consumption
data into ciphertexts. They both use the target public key tpk as the encryption key pk in
the Algorithm 1.

Algorithm 1 HE encryption algorithm.

1: Input N: the number of the households
2: Input P: the plaintext consumption data array of the households
3: Input encryptor: the object that performs encryption
4: for index = 1, 2, . . . , N do
5: data← P[index]
6: c← encrypt(data, encryptor, pk)
7: push c into ciphertexts array
8: end for
9: Output ciphertexts array

The encryption process in Scenario 3 is multiparty homomorphic encryption, which is
the same as single-party homomorphic encryption, except that each household uses the
collective public key cpk as the encryption key pk to encrypt the consumption data.

5.4.3. HE Decryption Algorithm

The ciphertext results are then decrypted into ciphertexts at the service provider side
in Scenario 1. In Scenario 2, the randomly selected main household is responsible for
decrypting the ciphertext results into plaintext results. The decryptor uses the target secret
key sk as the decryption key in Algorithm 2.

Algorithm 2 HE decryption algorithm for Scenarios 1 and 2.

1: Input sk: the secret key for the decryption
2: Input ciphertexts: the ciphertexts array
3: Input N: the number of the households
4: Input decryptor: the object that performs decryption
5: for index = 1, 2, . . . , N do
6: c∗ ← ciphertexts[index]
7: data← decrypt(c∗, decryptor, sk)
8: push data into plaintexts array
9: end for

10: Output plaintexts array

For Scenario 3, the scenario of multi-party homomorphic encryption, the service
provider can not directly decrypt the ciphertexts encrypted with the collective public key
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cpk. Thus, the decryption process first requires the SwitchKeyViaMPC function over an
MPC protocol to convert the ciphertexts to the form encrypted with the target public key
pk so that the service provider can directly decrypt these ciphertexts using the target secret
key sk, which are shown in Algorithm 3.

Algorithm 3 HE Decryption Algorithm for Scenario 3

1: Input pk: the target public key for the new ciphertexts after converted from an MPC protocol
2: Input sk: the target secret key for the decryptor
3: Input N: the number of the households
4: Input H: the households array, each household keeping its secret key
5: Input decryptor: the object that performs the decryption
6: for index = 1, 2, . . . , N do
7: c∗ ← ciphertexts[index]
8: c∗∗ ← SwitchKeyViaMPC(params, pk, c∗, H)
9: data← decrypt(c∗∗, decryptor, sk)

10: push data into plaintexts array
11: end for
12: Output plaintexts array

5.5. Computation Metrics’ Implementation

We describe below how third-party analysts perform homomorphic encryption using the
summation and variance metrics in Section 3.4. For simplicity, we provide depictions using an
HE ciphertext with four slots. However, in practice, there are many more slots in a ciphertext,
which depends on N, one of the security parameters of HE schemes, and is often assigned as a
power of two.

We describe the functions applied in the algorithms below. The function sumEachElement
is used to sum each element of the ciphertext c so that each element of the new ciphertext c
has a value that is equal to the sum of all elements of the original ciphertext. The function
averageBy reduces each element of the ciphertext c by n times. The function Add involves
adding two ciphertexts together and returning the sum ciphertext. The function Multiply
acts to multiply two ciphertexts together and return the product ciphertext.

5.5.1. Summation

We illustrate the summation computation in Algorithm 4.

Algorithm 4 Summation algorithm for ciphertexts.

1: Input ciphertexts: the ciphertexts array transferred from the service provider
2: Input evaluator: the object that performs homomorphic computations
3: for index = 1, 2, . . . , N do
4: c← ciphertexts[index]
5: evaluator.sumEachElement(c)
6: end for
7: Output ciphertexts back to the service provider

In detail, the process of the sumEachElement function is shown in Figure 9. Each
element ci of the ciphertext C contains the summation value of the original ciphertext after
the homomorphic computations.
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Figure 9. The process of the HE summation metric over ciphertext.

5.5.2. Variance

We illustrate the variance computation in Algorithm 5.

Algorithm 5 Variance algorithm for ciphertexts.

1: Input N: the number of the household
2: Input rowCount: the count of records per day of each household
3: Input ciphertexts: the ciphertexts array transferred from the service provider
4: Input evaluator: the object that performs homomorphic computations
5: for index = 1, 2, . . . , N do
6: c← ciphertexts[index]
7: ccopy ← copy(c)
8: evaluator.sumEachElement(c)
9: c.averageBy(rowCount)

10: c← evaluator.Multiply(c,−1)
11: c← evaluator.Add(c, ccopy)
12: c′ ← evaluator.Multiply(c, c)
13: evaluator.sumEachElement(c′)
14: c′.averageBy(rowCount)
15: end for
16: Output ciphertexts array back to the service provider

The variance computation involves addition and multiplication operations. Based on
the summation of a ciphertext, it is easy to compute the variance of the original ciphertext.

In detail, we depict each key step in Algorithm 5 mapped into Figure 10. After the
homomorphic computations, each slot of the ciphertext contains the variance value of the
original ciphertext.

Figure 10. The process of the HE variance metric over ciphertext.



Sensors 2023, 23, 4746 17 of 29

6. Security Analysis

As we utilize the HE scheme (CKKS [19]) as the basis of the proposed privacy-
preserving framework, our proposed framework significantly relies on the security of
the HE cryptographic foundation, the choice of the security parameter set, and the key dis-
tribution of the HE scheme. So, we present different perspectives of security considerations.

6.1. Cryptography Security of HE

The security of an HE scheme (i.e., CKKS [19] in this paper) is based on the hardness
of the ring learning with errors (RLWE) problem [47], a variant of the learning with errors
(LWE) problem, which is regarded as a computationally difficult problem where adversaries
are trying to recover the secret coefficients, generating noisy samples when a set of samples
of noisy linear equations on a polynomial ring over finite fields is provided. It is difficult to
solve the RWLE problem with even a quantum computer [48]. Thus, the RLWE problem can
be used to build secure schemes with quantum resistance and behave as the cryptographic
foundation for homomorphic encryption, just as the large number factorization problem
has provided for the RSA, a public key cryptographic algorithm in use since 1977.

6.2. Cryptanalysis of HE Scheme CKKS

A security model based on indistinguishability under the chosen plaintext attack
(IND-CPA) exists. CKKS, among many HE schemes, can be proven to satisfy IND-CPA
security [49] based on the learning with errors (LWE) hardness assumption. Li and Miccian-
cio [50] proposed a stronger security notion called IND-CPA+, which extends the notion of
IND-CPA and to combat passive attacks. They pointed out that the weakness of the CKKS
scheme against IND-CPA+ adversaries mainly comes from the possibility of recovering the
secret key based on the linearity of the decryption function. Additionally, the HE library
we use (Lattigo [17]) was updated to mitigate IND-CPA+ attacks by applying a rounding
strategy to attach a proper error to make CKKS more secure.

6.3. Security Parameter Set of HE Scheme CKKS

Although HE has solid secure guarantees derived from cryptography, in practice, for
an HE implementation (e.g., CKKS), the parameter set that ensures the scheme’s security
must also be carefully chosen. Specifically, there are three parameters [51] related to the
security of HE schemes based on RLWE: (1) n (the dimension of a specified ring R), which
has an impact on both security and scheme performance, with the scheme security increased
at a larger n, but the performance decreased at a larger n; (2) a ciphertext modulus q that
also influences both security and scheme performance by decreasing them at a larger
q for a fixed n; (3) the standard deviation of the error distribution σ, which results in
better security at a larger σ. Consequently, there is a need for researchers, companies,
and government agencies to perform experimentations to realize a standardized choice of
security parameter sets. Chase et al. [52] summarized security parameter sets concerning
different security levels (i.e., 128-bit, 192-bit, and 256-bit). Based on that paper, we chose
the security parameter set described in Section 6.3 for the framework to achieve a 128-bit
security level.

6.4. Security of HE Key Distribution

As mentioned, the secret key for HE must be kept safe without exposure. In con-
trast, the public and evaluation keys must be shared with anyone who wishes to encrypt
plaintexts or perform homomorphic computations over ciphertexts. However, a risk of
privacy leakage is still caused by key exchange. For instance, in the first scenario mentioned
in Section 5.3.1, a faked public key can be pushed to a household by an adversary who
intercepts the communication between the household and the service provider. Then, the
consumption data of the household would be encrypted by that faked public key and
easily decrypted by the adversary. Likewise, homomorphic operations can be influenced
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by the faked evaluation keys when third-party analysts receive them from the faked service
provider. So, it is necessary to ensure the validity of keys by key exchange.

In detail, key exchanging refers to sharing a key securely between two parties through a
protocol without the secret information being intercepted or tampered with by an adversary.
For example, Diffie-Hellman key exchange [53], or its variant ECDH [54], is practically served
for this purpose. Similarly, key distribution is a broader concept meaning distributing keys
to multiple parties to communicate securely and efficiently where a trusted party for key
management is commonly involved. Typical key distribution systems include Kerberos [55]
and a highly secure and scalable public key infrastructure (PKI) [56].

We adopted PKI to ensure key distribution of the privacy-preserving framework by
introducing a certificate authority (CA) to prove the identity of each party so that each
entity in the framework can verify the validity of the public and evaluation keys from the
key generator if needed.

Adversaries of type 0 cannot threaten the privacy or integrity of the data during transmis-
sion, as a secure cryptographic protocol such as transport layer security (TLS) is used to encrypt
and verify the integrity of any data exchanged between two parties [57].

We focused on protecting privacy and security at three points against adversaries:
third-party analysts against adversaries of type 1, the service provider against adversaries
of type 2, and the clients’ points against adversaries of type 3.

The security analysis of HE key distribution for the three scenarios is provided below.

• In Scenario 1, the service provider is inside the trust boundary. Hence, it is honest
and not curious. It is safe for all households to trust the service provider and transfer
the plaintext data to the service provider through secure communication (i.e., TLS
protocol). In this way, there is no need for the HE public key to be distributed. So, the
privacy of each household can never be violated. The evaluation keys need to be
transmitted from the service provider to third-party analysts with ciphertexts through
secure communication.

• In Scenario 2, it is unsafe to trust the service provider because it is outside the trust
boundary. Hence, households cannot trust the keys generated by the service provider
for its possibility of curiosity. Because all households are inside the trust boundary, a
randomly selected household can be the key generator. It is safe for other households to
trust the main household and transfer the plaintext data through secure communication
(i.e., TLS protocol). In this way, there is no need for the HE public key to be distributed.
So, the privacy of each household can never be violated. Additionally, the evaluation
keys need to be transmitted from the main household to third-party analysts through
the service provider with the ciphertexts through secure communication.

• In Scenario 3, each household is protected in its trust boundary, not sharing the same
trust boundary with others and not trusting the service provider, third-party analysts,
or other households. In this way, privacy and security can be maximized. We applied
multiparty homomorphic encryption [46] with an underlying multiparty computation
(MPC) protocol to compute each household’s key share and securely join them as the
combined collective key, for instance, the collective public key for each household to
complete data encryption. Thus, they do not need a certificate verification process.

7. Evaluation
7.1. Data Collection

We used a real-world SWM data set from project DAIAD [58] containing the time series
of smart water meter consumption. It contains the SWM time series for 1007 consumers of
water utility AMAEM. The data set includes 16,857,056 measurements, which amounts to
16,739 per user. Because we focused on the framework overheads, we could use this data
set to group 8640 water consumption records for each user as the evaluation basis.
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7.2. Environment Setup

We have set up a GitHub repository for the project’s code here at https://github.com/
cyberhermitcrab/lattigo (accessed on 29 March 2023). The code was tested via two devices.
We used a Windows laptop with a 1.90 GHz AMD Ryzen 7 5800U -rocessor and 16 GB
RAM for the service provider’s and third-party analysts’ computation tasks. We used a
MacBook Pro with a 2.3 Ghz Intel Core i5 Processor and 4 GB 1333 MHz DDR3 RAM for
households’ computation tasks.

We applied the HE scheme CKKS [19] for fixed-point arithmetic. Moreover, we chose
Lattigo [17] as the code library, written in GO language, with excellent performance and
concurrent operations. Moreover, it supports multiparty homomorphic encryption as an
extension, with a multiparty protocol for computation for each household.

We tested with 8640 records for each household. According to the Homomorphic
Encryption Standards group, we chose the security parameter set for the security level of
128 bits. Hence, we used the below set of security parameters to ensure the hardness of the
scheme with the security level of 128 bits: Log(N) = 14, Log(Q) = 438, Log(Slots) = 14,
De f aultScale = 234.

7.3. Results
7.3.1. Scenario 1: Households and Service Provider in the Trust Boundary

Table 1 lists the amortized time and disk consumption of the operations of roles
in Scenario 1 (Figure 3) that are independent of the number of households. The house-
holds transfer data to the service provider and wait for the analyzed results. The service
provider is responsible for generating the keys and the work of encryption and decryption.
The analysts perform analytical computations over the encrypted data.

Table 1. Amortized time and disk consumption of operations independent of the number of house-
holds concerning roles in Scenario 1 (operations with an asterisk (*) execute multiple times).

Role Operation Type Time (ms) Disk (KB)

service provider

secret key generation 4.859 6741
public key generation 14.148 14,249

relinearization key generation 71.221 90,442
rotation key generation 1267 1,627,943

HE decryption * 0.919 -
HE encryption * 20.620 -

household - - -

analyst
HE addition/subtraction * 0.732 -

HE multiplication * 29.228 -
HE rotation * 31.596 -

As shown in Figure 11, the memory and time consumption are recorded for Scenario 1.
Figure 11a shows the memory consumption of two roles (i.e., the service provider and
the analyst) ( Figure 3). Figure 11b shows the time consumption for the summation and
variance metrics of the analyst.

https://github.com/cyberhermitcrab/lattigo
https://github.com/cyberhermitcrab/lattigo
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Figure 11. Memory and time consumption in Scenario 1. (a) Memory consumption of the service
provider and the analyst; (b) time consumption of computation metrics of the analyst.

Table 1 shows that all operations require less than 100 milliseconds except for rotation
key generation. The rotation key generated requires the biggest disk storage depending on
the size of the security parameter we use. As the key generation takes place once, this is
still acceptable. For third-party analysts, multiplication and rotation account for most of
the HE computation, as expected. Figure 11shows that the memory of the service almost
linearly increases because it needs to encrypt and decrypt the households’ data other than
the keys’ generation. Therefore, the time consumption for metrics by analysts is acceptable
with the increase in households considering the consumption data size per day.

7.3.2. Scenario 2: Households and Service Provider in the Trust Boundary

Table 2 shows the amortized time and disk consumption of the operations of roles in
Scenario 2 (Figure 5) that are independent of the number of households. The households
encrypt data using the public key, transfer ciphertexts to the main household and wait for
the analyzed results. The service provider is the medium for data transmission between
households and third-party analysts back and forth. The analysts perform analytical
computations over the encrypted data.

Table 2. Amortized time and disk consumption of operations independent of the number of house-
holds concerning roles in Scenario 2 (operations with an asterisk (*) execute multiple times).

Role Operation Type Time (ms) Disk (KB)

household

secret key generation 10.616 6901
public key generation 31.389 14,589

relinearization key generation 143.726 92,612
rotation key generation 2508 1,667,020

HE decryption * 1.948 -
HE encryption * 46.601 -

service provider - - -

analyst
HE addition/subtraction * 0.732 -

HE multiplication * 31.181 -
HE rotation * 30.743 -

Figure 12 lists the memory and time consumption for Scenario 2. Figure 12a shows
the memory consumption of two roles (i.e., the service provider and the analyst) in the
scenario in Figure 5. Figure 12b shows the time consumption for the summation and
variance metrics of the analyst.

Figure 11. Memory and time consumption in Scenario 1. (a) Memory consumption of the service
provider and the analyst; (b) time consumption of computation metrics of the analyst.

Table 1 shows that all operations require less than 100 milliseconds except for rotation
key generation. The rotation key generated requires the biggest disk storage depending on
the size of the security parameter we use. As the key generation takes place once, this is
still acceptable. For third-party analysts, multiplication and rotation account for most of
the HE computation, as expected. Figure 11 shows that the memory of the service almost
linearly increases because it needs to encrypt and decrypt the households’ data other than
the keys’ generation. Therefore, the time consumption for metrics by analysts is acceptable
with the increase in households considering the consumption data size per day.

7.3.2. Scenario 2: Households and Service Provider in the Trust Boundary

Table 2 shows the amortized time and disk consumption of the operations of roles in
Scenario 2 (Figure 5) that are independent of the number of households. The households
encrypt data using the public key, transfer ciphertexts to the main household and wait for
the analyzed results. The service provider is the medium for data transmission between
households and third-party analysts back and forth. The analysts perform analytical
computations over the encrypted data.

Table 2. Amortized time and disk consumption of operations independent of the number of house-
holds concerning roles in Scenario 2 (operations with an asterisk (*) execute multiple times).

Role Operation Type Time (ms) Disk (KB)

household

secret key generation 10.616 6901
public key generation 31.389 14,589

relinearization key generation 143.726 92,612
rotation key generation 2508 1,667,020

HE decryption * 1.948 -
HE encryption * 46.601 -

service provider - - -

analyst
HE addition/subtraction * 0.732 -

HE multiplication * 31.181 -
HE rotation * 30.743 -

Figure 12 lists the memory and time consumption for Scenario 2. Figure 12a shows
the memory consumption of two roles (i.e., the service provider and the analyst) in the
scenario in Figure 5. Figure 12b shows the time consumption for the summation and
variance metrics of the analyst.



Sensors 2023, 23, 4746 21 of 29Sensors 2023, 1, 0 21 of 29

25 50 75 100
0

1

2

3

Number of households

M
em

or
y

(u
ni

t:
G

B)

Households
Analyst

(a)

25 50 75 100
103

104

105

106

Number of households

Ti
m

e
(u

ni
t:

m
s)

Summation
Variance

(b)
Figure 12. Memory and time consumption in Scenario 2. (a) Memory consumption of the households
(including the main household) and the analyst; (b) time consumption of computation metrics of the analyst.

Table 2 shows that all operations require less than 150 ms except for rotation key
generation, which is a little slower than that in Scenario 1 because households usually have
fewer memory resources than the service provider. The rotation key generated requires the
biggest disk storage depending on the size of the security parameter we use. As the key
generation takes place once, this is still acceptable. For third-party analysts, multiplication
and rotation account for most of the HE computation, as expected. Figure 12 shows that
the memory of the households almost linearly increases because they need to encrypt
and decrypt all households’ data and generate the keys. Therefore, the time consumption
for metrics by analysts is acceptable with the increase in households considering the
consumption data size per day.

7.3.3. Scenario 3: Households and Service Provider in the Trust Boundary

Table 3 lists the amortized time and disk consumption of the operations of roles in
Scenario 3 (Figure 7) that are independent of the number of households. In detail, multi-
party homomorphic encryption includes a multiparty computation protocol by collectively
generating HE keys. Except for the secret key entirely produced by each household, other
keys’ generations are split into two parts: the time of computing its share locally for each
household (i.e., labeled with “local”) and the time of combination of these shares by the
service provider (i.e., labeled with “cloud”). After keys are generated, they will be dis-
tributed appropriately. Public keys are assigned to households, and evaluation keys are
sent to third-party analysts. The households encrypt data using the public key, transfer
ciphertexts to the main household, and wait for the analyzed results. The service provider
is the medium for data transmission between households and third-party analysts back
and forth. The analysts perform analytical computations over the encrypted data.

Figure 12. Memory and time consumption in Scenario 2. (a) Memory consumption of the households
(including the main household) and the analyst; (b) time consumption of computation metrics of
the analyst.

Table 2 shows that all operations require less than 150 ms except for rotation key
generation, which is a little slower than that in Scenario 1 because households usually have
fewer memory resources than the service provider. The rotation key generated requires the
biggest disk storage depending on the size of the security parameter we use. As the key
generation takes place once, this is still acceptable. For third-party analysts, multiplication
and rotation account for most of the HE computation, as expected. Figure 12 shows that
the memory of the households almost linearly increases because they need to encrypt
and decrypt all households’ data and generate the keys. Therefore, the time consumption
for metrics by analysts is acceptable with the increase in households considering the
consumption data size per day.

7.3.3. Scenario 3: Households and Service Provider in the Trust Boundary

Table 3 lists the amortized time and disk consumption of the operations of roles in
Scenario 3 (Figure 7) that are independent of the number of households. In detail, multi-
party homomorphic encryption includes a multiparty computation protocol by collectively
generating HE keys. Except for the secret key entirely produced by each household, other
keys’ generations are split into two parts: the time of computing its share locally for each
household (i.e., labeled with “local”) and the time of combination of these shares by the
service provider (i.e., labeled with “cloud”). After keys are generated, they will be dis-
tributed appropriately. Public keys are assigned to households, and evaluation keys are
sent to third-party analysts. The households encrypt data using the public key, transfer
ciphertexts to the main household, and wait for the analyzed results. The service provider
is the medium for data transmission between households and third-party analysts back
and forth. The analysts perform analytical computations over the encrypted data.

Figure 13 shows the time consumption for the cloud parts of the MPC protocol in the
service provider concerning different numbers of households (e.g., 25, 50, 75, and 100).

Figure 14 displays the memory and time consumption for Scenario 3. In Figure 14a,
we depict the memory consumption of two roles (i.e., the service provider and the analyst)
for the scenario in Figure 7. Figure 14b shows the time consumption for the summation
and variance metrics of the analyst.
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Table 3. Amortized time and disk consumption of operations independent of the number of house-
holds concerning roles in Scenario 3 (operations with an asterisk (*) execute multiple times).

Role Operation Type Time (ms) Disk (KB)

household

secret key generation 12.912 6772
public key generation(local) 9.795 14,264

relinearization key generation(local) 208.277 90,174
rotation key generation(local) 649.591 1,645,357

key switching (local) * 43.361 -
HE encryption * 21.958 -

service provider HE decryption * 0.814 -

analyst
HE addition/subtraction * 0.776 -

HE multiplication * 30.423 -
HE rotation * 32.515 -

Table 3 shows that all operations locally require less than 250 ms except for rotation
key generation. The generated rotation key requires the most disk storage depending on
the size of the security parameter we use. As the key generation takes place once, this
is still acceptable. For third-party analysts, multiplication and rotation account for most
of the HE computation, as expected. Figure 13 shows the time consumption of the cloud
part of the MPC protocol on the service provider’s side. It shows that the time required
increases enormously with increasing number of households. The rotation key again
accounts for most of the time, which has the same pattern among all the keys. Figure 14
shows that the memory of the households and the service provider notably increases while
the memory of the analysts remains stable. The households account for most of the memory
consumption because they are responsible for key generation and encryption. Therefore,
the time consumption for metrics by analysts is acceptable with the increase in households
considering the consumption data size per day.
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Figure 13. Amortized time consumption of the combination part (i.e., the service provider) of an
MPC protocol for collective keys’ generation.
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Figure 14. Memory and time consumption in Scenario 3. (a) Memory consumption of the households,
the service provider, and the analyst; (b) time consumption of computation metrics of the analyst.

7.4. Performance Comparison with Related Work

The HE library we used, Lattigo [17], provides a competitive performance compared
with other common HE libraries, such as Microsoft SEAL [18], which is discussed in [59].
The performance of HE schemes is not constant and varies based on factors such as security
parameters, plaintext and ciphertext sizes, and the underlying hardware and software im-
plementations. Even for the same CKKS scheme, implementations of different libraries also
matter. Therefore, it is difficult to provide exact cost comparisons for primitive operations
such as encryption, decryption, addition, and multiplication in general. However, we can
still provide a meaningful comparison between the results we measured in our proposed
framework and the results from [60] (8-core CPU and 16 GB RAM), as shown in Table 4.
We utilized the results from Scenario 1, where the encryption and the decryption operations
were measured with a Windows laptop (1.90 GHz CPU and 16 GB RAM) for Scenario 1.
The Lattigo* column provides from the results of this study.

Table 4. Amortized time for encryption and decryption in CKKS scheme.

Operation Type
HE Parameters HE Library

n log2 q Palisade HELib SEAL Lattigo*

Encryption 16,384 438 23.183 12.581 19.344 20.620
Decryption 16,384 438 13.776 183.254 1.166 0.919

As mention in Section 7.2, we chose our security parameter set: Log(N) = 14,
Log(Q) = 438, Log(Slots) = 14, De f aultScale = 234, which is equivalent to the param-
eter set of N = 16384, log2 q for CKKS in [60]. The comparison shows that the amortized
time of primitive HE operations (i.e., encryption and decryption) are equal in the order of
magnitude for Lattigo [17] and SEAL [18].

8. Discussion
8.1. Type 1 Adversaries

In all three scenarios described above, type 1 adversaries at the analysts’ point fall
outside the trust boundary (TB). In this way, they may perform malicious activities, such
as deliberately performing erroneous computations. We can address this issue in several
ways. First, we can accept this risk and assume that the analysts are honest but curious.
Under this assumption, the analysts are interested in the data of the customers but do

Figure 14. Memory and time consumption in Scenario 3. (a) Memory consumption of the households,
the service provider, and the analyst; (b) time consumption of computation metrics of the analyst.

7.4. Performance Comparison with Related Work

The HE library we used, Lattigo [17], provides a competitive performance compared
with other common HE libraries, such as Microsoft SEAL [18], which is discussed in [59].
The performance of HE schemes is not constant and varies based on factors such as security
parameters, plaintext and ciphertext sizes, and the underlying hardware and software im-
plementations. Even for the same CKKS scheme, implementations of different libraries also
matter. Therefore, it is difficult to provide exact cost comparisons for primitive operations
such as encryption, decryption, addition, and multiplication in general. However, we can
still provide a meaningful comparison between the results we measured in our proposed
framework and the results from [60] (8-core CPU and 16 GB RAM), as shown in Table 4.
We utilized the results from Scenario 1, where the encryption and the decryption operations
were measured with a Windows laptop (1.90 GHz CPU and 16 GB RAM) for Scenario 1.
The Lattigo* column provides from the results of this study.

Table 4. Amortized time for encryption and decryption in CKKS scheme.

Operation Type
HE Parameters HE Library

n log2 q Palisade HELib SEAL Lattigo*

Encryption 16,384 438 23.183 12.581 19.344 20.620
Decryption 16,384 438 13.776 183.254 1.166 0.919

As mention in Section 7.2, we chose our security parameter set: Log(N) = 14,
Log(Q) = 438, Log(Slots) = 14, De f aultScale = 234, which is equivalent to the param-
eter set of N = 16,384, log2 q for CKKS in [60]. The comparison shows that the amortized
time of primitive HE operations (i.e., encryption and decryption) are equal in the order of
magnitude for Lattigo [17] and SEAL [18].

8. Discussion
8.1. Type 1 Adversaries

In all three scenarios described above, type 1 adversaries at the analysts’ point fall
outside the trust boundary (TB). In this way, they may perform malicious activities, such
as deliberately performing erroneous computations. We can address this issue in several
ways. First, we can accept this risk and assume that the analysts are honest but curious.
Under this assumption, the analysts are interested in the data of the customers but do
not perform any malicious activities such as deliberately making erroneous computations
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because they have a reputation to uphold; if they perform malicious activities, we reason
that these activities will be eventually identified, and the service providers will no longer
work with these analysts.

The service provider can also address this issue by outsourcing the same data to
multiple third-party analysts for computation. Then, we assume that the result produced
by most analysts is correct. This way, we can reduce the threat of type 1 adversaries and
the possibility of an accidentally incorrect computation by one of the analysts. However,
one drawback of this approach is the increased costs and time to calculate the result due to
using multiple analysts for each customer.

8.2. Type 2 Adversaries

In Scenarios 2 and 3, type 2 adversaries at the service provider’s point fall outside the
trust boundary (TB). Although we apply the same assumptions that they are honest but
curious, we must consider the possibility of them behaving maliciously. Some possible
malicious activities include tampering with the data by performing computations to inflate
the customers’ actual usage, so they are billed for more resources than they consumed.
Furthermore, a type 2 adversary might collaborate with a type 1 adversary. Therefore,
if we want a complete data integrity guarantee without making assumptions about the
honest but curious nature of type 1 and 2 adversaries, we must integrate a separate data
integrity-preserving technology into our framework.

8.3. Integrity Preservation

It may be possible to use distributed ledger technology (DLT) to preserve the integrity
of the customer’s data throughout the SMS data flow, providing a solution to the concerns
above. In a blockchain-based DLT system, each modification to a piece of data is recorded
as an immutable transaction, ensuring that the data cannot be tampered with without
breaking the chain and being noticed. However, while the blockchain guarantees data
integrity, it is not completely impervious to attacks or vulnerabilities [61]. Therefore, further
research is required to establish a method to integrate the DLT with our framework.

8.4. Computation Metrics

The metrics we use for HE computation are simple and easy to implement, while third-
party analysts may perform complex computations that require more advanced metrics
for analysis, such as load forecasting, which can be very challenging. As of now, code
implementations of the current HE library (e.g., Lattigo [17] and SEAL [18]) use primitive
operations, such as addition, subtraction, multiplication, and rotation. There are significant
limitations for more advanced computation metrics. Hence, not all metrics can be converted
into HE computations. However, some parts of the metrics’ calculation can be transferred
into HE computations and be used for the whole metrics to enhance privacy. For instance, if
a complex metric includes summation and variance, then the results of the summation and
variance by HE can be returned to analysts for the rest of the calculation of that complex metric.

8.5. Security Level of the Proposed Framework

The security level of HE schemes refers to the protection they can provide against
adversaries’ attacks. The choice of the security level of 128 bits, 192 bits, or 256 bits is
the length of the HE encryption keys. Thus, a longer key length requires more keys an
attacker needs to try to break the encryption. However, a higher security level may increase
the computational overhead, including time consumption, memory consumption, and
disk storage of HE keys. So, 128 bits is a good choice for balancing HE security and
HE performance for most applications, which is why it is a consensus among the HE
community, as listed in [52]. As for its quantum resistance [48], HE is based on the hardness
of the RLWE problem, which has no evidence of being able to be easily attacked by a
quantum computer for now.
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8.6. Identity-Based Encryption

In the proposed framework, we utilize a common PKI depending on CA and TLS
protocol to keep the communication channel between each entity safe. However, it re-
lies on distributing the public key of the trusted entities in the SMS. Alternatively, we
can introduce identity-based encryption (IBE) to simplify the key distribution for secure
communication, so that the plaintext result can be securely transferred from the service
provider to the households.

To use IBE, we can set up a central trusted authority, the private key generator (PKG),
to generate users’ private keys. The PKG publishes a master public key and retains a
master secret. A user’s public key can be computed from the master public key with its
identity. Then, the master secret and a user’s public identity are used together to generate
the corresponding private key for that user. Other entities can encrypt messages using the
recipient’s public identity, and only the recipient with the corresponding private key can
decrypt the messages.

8.7. Energy Consumption

We proposed, designed, deployed, and evaluated the privacy-preserving HE frame-
work for SMSs regarding the trade-off between privacy protection and time/disk consump-
tion. However, other aspects in the deployment of HE solutions need to be considered.

One common aspect of HE deployment is energy consumption. In this field, some
studies used hardware to accomplish this task. For example, Reis et al. [62] proposed
a computing-in-memory-based HE implementation to gain energy savings of between
266.4 times and 532.8 times for homomorphic multiplications (the most expensive HE
operation) compared with a CPU-based HE solution. In addition, Lei et al. [63] proposed an
energy-efficient accelerator for fully homomorphic encryption that improves the through-
put per Watt by 6.3 times compared with that of previous accelerators.

8.8. The Complexity of Privacy, Security, and Safety in SMS

Obtaining adequate billing information is quite an ordinary but useful and necessary
service in SMSs. Therefore, three aspects of SMS solutions need to be considered: pri-
vacy, security, and safety. Privacy and security are well protected based on our proposed
framework. We also have some assumptions of adversaries listed in the threat model
and discussed in Sections 8.1 and 8.2. The safety [14] of SMSs is a broader perspective
and can rely on protecting the physical devices, adhering to electromagnetic compatibility
standards, and maintaining the reliability of the SMS to prevent accidental or malicious
manipulation, which could cause disruptions or damage to the system.

9. Conclusions

This paper proposed a privacy-preserving framework for SMS to protect data privacy
by applying HE. The framework utilizes different trust boundaries to analyze HE configura-
tions for various scenarios in practical applications, including data flow, privacy risks, and
HE key distribution under each scenario. Furthermore, we adopted simple computation
metrics (i.e., summation and variance) for third-party analysts applied in HE schemes and
evaluates the feasibility of the proposed framework based on real-world time series data
of the smart water metering system. We tested the overheads of the proposed framework.
Our results show that the computational overhead is still acceptable from a cost–benefit
perspective while ensuring customer data privacy.
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SMS Smart Metering System
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LWE Learning with Errors
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HE Homomorphic Encryption
FHE Fully Homomorphic Encryption
MHE Multi-Party Homomorphic Encryption
MPC Multi-Party Computation
CPK Collective Public Key
CEK Collective Evaluation Key
TB Trust Boundary
CA Certificate Authority
PKI Public Key Infrastructure
DoS Denial of Service
MitM Man-in-the-Middle
TLS Transport Layer Security
DP Differential Privacy
LDP Local Differential Privacy
TEE Trusted Execution Environment
AMI Advanced Metering Infrastructure
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IND-CPA Indistinguishability under the Chosen Plaintext Attack
IBE Identity-based Encryption
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