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Abstract: New CMOS imaging sensor (CIS) techniques in smartphones have helped user-generated
content dominate our lives over traditional DSLRs. However, tiny sensor sizes and fixed focal lengths
also lead to more grainy details, especially for zoom photos. Moreover, multi-frame stacking and post-
sharpening algorithms would produce zigzag textures and over-sharpened appearances, for which
traditional image-quality metrics may over-estimate. To solve this problem, a real-world zoom photo
database is first constructed in this paper, which includes 900 tele-photos from 20 different mobile
sensors and ISPs. Then we propose a novel no-reference zoom quality metric which incorporates
the traditional estimation of sharpness and the concept of image naturalness. More specifically, for
the measurement of image sharpness, we are the first to combine the total energy of the predicted
gradient image with the entropy of the residual term under the framework of free-energy theory.
To further compensate for the influence of over-sharpening effect and other artifacts, a set of model
parameters of mean subtracted contrast normalized (MSCN) coefficients are utilized as the natural
statistics representatives. Finally, these two measures are combined linearly. Experimental results
on the zoom photo database demonstrate that our quality metric can achieve SROCC and PLCC
over 0.91, while the performance of single sharpness or naturalness index is around 0.85. Moreover,
compared with the best tested general-purpose and sharpness models, our zoom metric outperforms
them by 0.072 and 0.064 in SROCC, respectively.

Keywords: mobile imaging sensor; realistic zoom photos; over-sharpening effect; zoom quality
metric; image sharpness; image naturalness

1. Introduction

With the rapid development of mobile CMOS imaging sensor techniques such as
2-layer transistor pixel and dual vertical gates [1–5], smartphone picture quality has been
improved a lot and user-generated images and videos have become the mainstream of
social media and our entertainment. Among these contents, zoom photos account for
a large portion due to its ability to highlight subjects and make composition easy. For
professional photographers, zoom capability (or focal length choices) with its shadow
depth of field is one of determining factors in taking great pictures; while for average
consumers, magnifying image without losing clarity is also very meaningful. But how to
assess the realistic zoom image quality remains uncovered.

1.1. Difference between Zoom Photos and Gaussian Blur Images

Although many phones have been equipped with one or more zoom lenses, their
focal lengths are fixed and digital zoom is still the universal ways of magnifying images.
The straightforward implementation is to crop a small portion of image, then interpolate
pixel values by the nearest neighbor, bilinear or bicubic methods [6], but it would lead
to pixelated or blurry details. To alleviate blurry appearances, some phone-makers post-
process images through unsharp masking. Other manufacturers utilize learning-based
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super-resolution [7] or multi-frame stacking algorithms in order to add fine details in the
delicate areas such as cement roads and rocks. Representative techniques are the deep
fusion in iPhone and the super res zoom in Google Pixel [8]. However, both post-processing
and synthesis-based approaches would produce over-sharpening effects, unnatural details
and ringing into the image, for which traditional sharpness metrics over-estimate. In fact,
this is where zoom photos differ from purely gaussian blurred images. To better visualize
these artifacts, Figure 1b–d show the over-sharpening effect, unnatural details and ringing
artifacts, respectively. It can be seen that, the details of Figure 1b look more grainy and
noisier than Figure 1a because of over-sharpening; the lines of the buildings, windows,
walls in Figure 1c are zigzag; and the ringing phenomenon appears around the edges of
Figure 1d due to JP2K compression and over-sharpening. To our best of knowledge, this
paper is the first attempt to deal with realistic zoom photos in the task of IQA.

Figure 1. Four zoom photos with (a) high-quality details, (b) over-sharpening effect, (c) unnatural
details, (d) ringing.

1.2. Laboratory Measurements of Targets vs. Perceptual Metrics on Natural Photos

In industry, the edge blur is often measured through SFR or MTF, which can be calcu-
lated via a slant checkerboard, or the more complex Sine Siemens Star and Log-F contrast
target. To overcome the texture loss problem due to edge-preserving filters, DxO Lab
proposed the dead leaves model in [9], and the IE group came up with the Gaussian white
noise target for the same purpose [10]. Although the correlation between measurements of
both targets and subjective scores of photographic images has been confirmed in [11], there
is no doubt that human-made targets are not as realistic and complex as natural photos. The
measurement of the energy fall-off by DxO or the kurtosis changes of Gaussian noise image
by IE are also more simpler than what current objective IQA algorithms model. Moreover,
the over-sharpening phenomenon, which affects both edges and textures of the images,
can’t be handled by these texture-blur measures. Therefore, in this paper, we address the
zoom photo quality assessment problem realistically, instead of using laboratory targets
and environments.
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1.3. Limitations of Sharpness, Super-Resolution, and General-Purpose Metrics

Since the sharpness/blurriness is the most related quality factor for realistic zoom
images and can be used to assess the zoom quality naturally, we review them next in
more details.

In [12], the author first detected edge points by Sobel operator, then measured the
sharpness through the edge width. This method works well for images with the same
content, but can’t handle heterogeneous contents. Ferzli et al. [13] proposed the probability
of just noticeable blur (JNB) in consideration of contrast masking effect. The edge width
and local contrast were first computed in edge blocks, and then fed into a probabilistic
summation model to estimate the whole image blur. To deal with images with different
portions of background blur, a saliency map was incorporated into JNB [14]. Furthermore,
by utilizing the cumulative probability, the same pooling effect is achieved under a unified
framework [15]. Inspired by the triangle model of gradient profile, Yan et al. [16] defined
the edge sharpness as the triangle height divided by the width. Vu et al. [17] combined
the slope of spectrum magnitude with the total variation of pixel values in the spatial
domain into a sharpness value S3. The spectral term is responsible for fine-detailed
textures while the spatial part accounts for high-contrast edges. Thereafter, the same
author proposed a fast sharpness index called FISH where the energy of different high-
frequency sub-bands are accumulated in the wavelet domain [18]. Observing that different
scale local phase maps align in strong image structures, Hassen et al. [19] measured the
image sharpness through the local phase coherence. Besides image blur, LPC can respond
effectively to noise contamination, which distinguishes itself from other sharpness metrics.
Based on the re-blurring process, the sharpness was defined as the decreased percentage
of fourth-order moments of the re-blurred version relative to its test image [20]. More
recently, Li et al. [21] decomposed gradient image blocks into a novel set of Tchebichef
basis. The square Tchebichef moments were normalized by the variance to compensate
influence of image contents, and further weighted by a saliency model. Besides spatial and
spectral domain, there are a few metrics making use of high-level features. Gu et al. [22]
proposed a sharpness metric where autoregressive (AR) parameters are estimated, then
the differential energy and contrast between AR values are linearly combined. Li et al. [23]
and Han et al. [24] both measured the blurriness through sparse representation. The latter
needs partial information of the original image, thus belonging to the reduced-reference
category. Liu et al. [25] developed a new sharpness metric for realistic out-of-focus images
where phase congruency and gradient magnitude maps are merged by max pooling, and
further weighted through a saliency map to form the sharpness value.

Despite the success of sharpness index on gaussian blurred images, they generally
over-estimate the sharpened details and artifacts in zoom photos. In [26,27], this over-shoot
problem has been raised, but still limited to the simulated scenario. Moreover, the S3-III [27]
performs moderately in our database. Another relevant work is the quality assessment
for super-resolution [28–30]. These metrics often assume the existence of “original low-
resolution image”. In contrast, our zoom quality metric only relies on the tested zoom
photos and is thus no-reference. The distortion types are also more subtle and complex. It
may be argued that general-purpose IQA metrics [31–35] can assess these artifacts correctly,
but we will demonstrate that they are not effective as the sharpness metric for zoom photos
in Section 4.

1.4. The Contribution of This Article

To tackle the above problem, we propose a novel zoom quality metric which incorpo-
rates the image sharpness and naturalness. For zoom photos, sharpness is the determining
quality factor. To estimate it, we resort to the free energy theory which models the brain
interpretation process by decomposing an image (scene) into the predicted and residual
version [36]. Specifically, the gradient image is first encoded by sparse representation. Then
the square sparse coefficients are summed for the reconstructed gradient image, and the
entropy is computed for the residual part, respectively. The sharper a zoom photo is, the
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higher energy/entropy the reconstructed/residual image has. Thus, we form the sharpness
index by adding these two quantities. As mentioned above, zoom photo differentiate
itself from gaussian blurred image in the over-sharpening details and unnatural looks. To
compensate such perceptually harmful effects, a set of parameters of MSCN distribution
are first extracted from zoom photos, and then compared with that of natural images.
Finally, this NSS score is combined with the sharpness index linearly. In summary, our
contributions are as follows:

• First, we construct a realistic zoom database by collecting 20 phone cameras and
shooting them in 45 texture-complex scenes. Mean expert opinion scores and sev-
eral analyses are also provided. Compared to existing gaussian blur databases, our
database contains the most authentically distorted photos and scenes. The image
resolution is also the highest.

• We are the first to derive the whole formulation of the free-energy under the sparse
representation model, according to which a new sharpness index is proposed.

• A novel zoom quality metric is proposed which incorporates image sharpness and
naturalness. Natural scene statistics are included as a mechanism to prevent over-
sharpening and penalize unnatural appearances.

• The zoom quality metric is tested in both unsharp masking simulations and the
zoom photo database, which outperforms existing sharpness and general-purpose
QA models.

The rest of this paper is organized as follows: Section 2 describes the construction of a
realistic zoom image database. Section 3 explains two components of our sharpness metric
and the important NSS score. Extensive experimental results are given in Section 4. Finally,
Section 5 concludes the paper.

2. Realistic Zoom Photo Database
2.1. The Construction Process and Comparison with Other Databases

Zoom photo refers to the image shot at focal lengths several times longer than the main
camera (e.g., 23–28 mm), which includes both optically and digitally zoomed ones. For their
quality differences, there are three cases. First, between optical zoomed photos, the texture
blur & noise balance is the key quality issue, which is determined by the imaging sensor
size. The smaller sensor has lower signal-to-noise ratio (SNR). Thus, its rendered texture
will be either grainy or muddy depending on whether and how much noise reduction
algorithms are applied [37]. The photo from bigger sensor is often clearer in details.

Second, between optically and digitally zoomed images, the blur itself is the biggest
difference, which can be modeled by a global point spread function (PSF). Third, be-
tween digitally zoomed images, the post-processing algorithm plays a vital role. The
ideal result is to add details without introducing annoying artifacts such as ringing, or
over-sharpening appearances.

However, current image quality databases mainly simulate the second scenario, i.e.,
the original image is convolved with a gaussian PSF. The LIVE database [38] collects
29 original images and filters them through a circular-symmetric 2-D gaussian kernel whose
standard deviation ranges from 0.42 to 15 pixels. The TID2008 and TID2013 database [39,40]
contain 25 reference images and four or five levels of blur distortions. The LIVE MD
database [41] improves LIVE or TID by partly simulating the first quality difference scenario:
independently and identically distributed gaussian noises are added to the Gaussian
blurred image to mimic realistic ISP output.

The BID database [42] is the first attempt to consider realistic blur distortions. Totally,
there are 585 images of five classes: unblurred, out-of-focus, simple motion, complex
motion and other types. Following BID, Liu et al. [25] investigated the out-of-focus type
more deeply. The 150 out-of-focus photos were created by manually focusing a DSLR
elsewhere (e.g., at background objects).

Although motion blur and out-of-focus distortion are more realistic than gaussian
blur, both rarely happen in the image acquisition process, if not intentionally. For motion
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blur, the shutter speed is often faster than 1/100 sec in daylight, while in night time, the
optical image stabilization (OIS) can help to compensate hand shakes. For phone units
without OIS, a safe shutter speed is often enforced by manufacturers (e.g., 1/15 s) to avoid
motion blur. As for the out-of-focus problem, first, the depth-of-field of mobile cameras
is very thick due to small sensors, that is, the out-of-focus or bokeh phenomenon is not
prominent as in the DSLRs. Second, with the advanced dual PDAF and laser autofocus
technique, fewer and fewer photos suffer from focusing issues these days. Practically, the
low-light environment and moving objects are two probable scenarios where the motion
blur or the autofocus system fail, but neither BID [42] nor the out-of-focus database [25]
have considered that.

In comparison with motion blur and out-of-focus, blur induced by zooming is much
more common and susceptible to smartphones, since no current smartphone cameras
possess continuous zooming capability as DSLRs. To build such a zoom photo database, we
first select 20 mobile cameras from the market, which include all kinds of brands and span
from mid-rangers to high-end models. A large majority of them own at least one zoom
lens, while others don’t. Then 45 test scenes are carefully chosen, which include distant
sceneries, buildings, characters, portraits as main subjects. During the shooting process, we
only zoom in at 2, 3 or 5 times according to the photo composition rule [43]. All grid lines
are opened to align image perspectives across different cameras. It is worth noting that no
external lenses are mounted on smartphones, and all photos are straight out of the camera
without filters and retouches. Finally, each scene is simultaneously captured by all cameras,
producing a total number of 900 images. Example images of this Zoom PHoto Database
(which we name ZPHD) are shown in Figure 2.

Figure 2. Example zoom photos in our database.
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2.2. Subjective Quality-Evaluation Study and Analysis

In our pivot subjective study, we found that naïve observers often mistake unnatural
textures and over-rate them. Thus, only 10 experts who have experiences in phone cam-
era quality testing are involved. Since we mainly care about the zoomed detail quality,
subjects are asked to rate photos by the clarity, ignoring their brightness variations and
color differences [44]. According to the recommendations by ITU-R BT.500-12 [45], the
test image should be fully shown and the viewing distance be fixed at three times the
image height. However, first, our photo size is too large to be displayed in full-screen;
second, to differentiate subtle texture differences, more vision acuity (or higher visual
angle/spatial frequency) is required [46]. Thus, we allow observers to magnify the test
image by themselves for pixel-peeping purposes. It may be questioned that the compared
region and magnifying ratio vary across images and subjects. However, except few cases
where images from different lenses are stitched together, the clarity of a zoom image does
not change dramatically across its patches. And although the magnifying factor is not
controlled, the subject tends to compare image details at the same scale. The ambient light
is kept low to reduce fatigue.

Moreover, photos from the same scene are grouped together and rated in a session,
instead of in completely random order. The subject first views through the whole set (e.g.,
20 photos) to form a general idea of the scene content and quality range. Then he/she
gives the opinion score based on the single stimulus method [45]. Score of 100 means
sharp and clear images while 0 represents heavily pixelated or blurry ones. This is what
we improves from our previous work, where only quality rank orders are provided [47].
Table 1 lists major information about the test conditions. Many items have been updated
from traditional setups to adapt to our zoom quality applications, and highlighted in
boldface.

Table 1. Configurations of subjective experiments.

Configuration Values

Evaluation method single-stimulus within a scene

Evaluation scales continuous quality scales from 0 to 100

Evaluation standard image clarity instead of color or overall quality

Image number 20 mobile cameras × 45 scenes

Image encoder JPEG and HEIF

Image resolution mostly 4000 × 3000

Subjects ten experienced experts

Viewing angle can be adjusted by the subject

Room illuminance low

After obtaining the individual scores, we check the inter-subject consistency using
the Spearman correlation coefficient and the Cronbach’s Alpha reliability coefficient [48].
Both results (r = 0.943, α = 0.957) indicate high correlations and reliability of the subjective
scores. Therefore, no second alignment study is performed. Finally, the outlier screening
procedure is conducted as in [45]. No scores are found abnormal, so we average all ten
scores to obtain the final MOS. The MOS histograms of the 2×, 3×, 5× photos are shown
in Figure 3. First, we can observe that, both MOS distributions of 2× and 5× photos are
shorter-tailed than 3×’s, i.e., more MOSs are concentrated on either side of the score scale.
The reason is that, for most 2× zoom photos, the image quality is still very acceptable
(>40) even by the digital zoom of the main camera, not to mention those with 2× optical
lenses. While for the 5× zoom photos, except few phone units with 5× periscope, the
image quality of the digital zoom by the main camera degrades heavily. Hence, the 5×
zoom MOS histogram is more concentrated at the lower end. Second, the overall MOS
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distribution shifts toward higher value when zoom times becomes larger, this is because,
for a single main camera, the 5× zoom photo quality is definitely worse than that of
2× zoom. We also analyze the MOS distribution correlations between difference scenes (of
the same zoom times). The r > 0.9 indicates that the influence of different scene contents is
minor, but the camera with edge-preserving smoothing operation [49,50] indeed obtains
higher MOSs in scenes of characters, architectures than textures. The overall scores are also
computed for each camera, which are included in the database.

At last, we summarize characteristics of this zoomed photo database with other
representative databases in Table 2. It can be seen that our database contains the largest
number of scenes and blur-related images. The image resolution is also the highest.

Figure 3. MOS histograms of 2×, 3× and 5× zoom photos (from left to right).

Table 2. Summary of typical IQA databases having blur-related distortions.

Databases No. of Ref.
Scenes

No. of Dist.
Images

No. of Dist.
Types

No. of Blurred
Levels/Images

Creation Process Resolution Subjects
No.

LIVE [38] 29 779 5 4/174 Gaussian blur 568 × 712 20–29
TID2018 [39] 25 1700 17 4/100 Gaussian blur 512 × 384 838
TID2013 [40] 25 3000 24 5/125 Gaussian blur 512 × 384 971

CSIQ [51] 30 866 6 5/150 Gaussian blur 512 × 512 25
LIVE MD [41] 15 450 2 15/225 Gaussian blur+wn 1280 × 720 18

BID [42] N.A. 585 5 N.A./585 shot by the author 1280 × 960 180 in total
Out-of-focus [25] 30 150 1 5/150 shot by the author 720 × 480 26

Our ZPHD 45 900 20 N.A./900 shot by the author 4000 × 3000 10 experts

3. Methodology
3.1. The Image Sharpness Measurement

As the theoretical foundation, free-energy principle is first introduced in this section.
Then the brain interpretation process is approximated using sparse representation. Based
on these two models, we deduce the whole formulation of the free-energy and propose
a novel sharpness metric, which considers both energy and entropy of the predicted and
residual image. Details are given below.

3.1.1. Formulation of Free-Energy Principle

A basic premise of the free-energy-based brain theory [52] is that the cognitive process
is governed by an internal generative model. With this internal model, the brain is able to
generate the corresponding predictions for its encountered visual scenes, and direct our
actions accordingly. For operational amenability, let G denote the brain internal model,
and let θ represent the model parameter vector which can be adjusted by G to explain
perceived scenes. Given an image I, we define its ‘surprise’ or entropy by integrating the
joint distribution P(I, θ) reciprocal over the space of the parameter vector θ:

− log P(I) = − log
∫

P(I, θ)dθ (1)
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Since the P(I, θ) is too complicated to write analytically, we introduce an auxiliary
term Q(θ|I) into both the denominator and numerator of the right part in Equation (1)
and have:

− log P(I) = − log
∫

Q(θ|I) P(I, θ)

Q(θ|I)dθ (2)

Here Q(θ|I) is the posterior distribution of the model parameters given image I, which
can be thought of as an approximate posterior to the true posterior of the model parameters
P(θ|I) calculated by the brain. When perceiving the input image I, the brain intends to
minimize the discrepancy between the approximate posterior Q(θ|I) and the true posterior
P(θ|I). In fact, this approximation technique has been used in ensemble learning and
variational Bayesian estimation framework. Please see [53] for more details.

By using Jensen’s inequality, we can move the logarithm operation inside the integral,
thus Equation (2) can be translated into:

− log P(I) ≤ −
∫

Q(θ|I) log
P(I, θ)

Q(θ|I)dθ (3)

According to statistical physics and thermodynamics [54], the right side of Equation (3)
is defined as “free energy” as follows:

F(θ) = −
∫

Q(θ|I) log
P(I, θ)

Q(θ|I)dθ (4)

Obviously, F(θ) defines an upper bound of ‘surprise’ for image I. In practice, the
integration over the joint distribution P(I, θ) can be intractably complex. By decomposing
P(I, θ) = P(θ|I)P(I), we obtain:

F(θ) =
∫

Q(θ|I) log
Q(θ|I)

P(θ|I)P(I)
dθ

= − log P(I) +
∫

Q(θ|I) log
Q(θ|I)
P(θ|I) dθ

= − log P(I) + KL(Q(θ|I)‖P(θ|I)) (5)

where KL(·) refers to the Kullback-Leibler divergence between the approximate posterior
and the true posterior distributions and it’s nonnegative. It is clearly seen that the free
energy F(θ) is greater than or equal to the image ‘surprise’,− log P(I). In visual perception,
the brain tries to minimize KL(Q(θ|I)‖P(θ|I)) of the divergence between the approximate
posterior and its true posterior distributions when perceiving image I.

Alternatively, noticing that P(I, θ) = P(I|θ)P(θ), (4) can be rewritten as:

F(θ) =
∫

Q(θ|I) log
Q(θ|I)

P(I|θ)P(θ)
dθ

=
∫

Q(θ|I) log
Q(θ|I)
P(θ)

dθ −
∫

Q(θ|I) log P(I|θ)dθ

= KL(Q(θ|I)‖P(θ)) +EQ[log
1

P(I|θ) ] (6)

In the next two subsections, we will explain how to calculate the two parts in the right
hand side of Equation (5) or (6), and leverage both of them for the sharpness estimation.

3.1.2. Approximation of the Brain Generative Model

For the application of free-energy theory into the image quality assessment, the con-
crete form of G needs to be specified first. In [55], the receptive fields of simple cells in
mammalian primary visual cortex are characterized as spatially localized, oriented and
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bandpass. Sparse representation mimic the above biological process by assuming that the
image or its patch can be modeled by a linear combination of few atoms from a predefined
or trained dictionary [56]. Such atoms have been evidenced to resemble neural response
characteristics well, and the superiority of sparse representation for approximating the
internal model has been verified in [57]. Therefore, we utilize the sparse coding as the
deputy of model G.

Mathematically, given an image I, a patch xk ∈ RB of size
√

B ×
√

B is extracted
from I by:

xk = Rk(I) (7)

where Rk(·) simply copies the pixel values from image I at location k into xk, k = 1, 2, 3...N.
N is the total number of image patches.

For the specific extracted patch xk, its sparse representation over a dictionary
D ∈ RB×d (d > B) refers to finding a sparse vector αk ∈ Rd (i.e. most of the elements in αk
are zero or close to zero) to satisfy:

xk = Dαk (8)

If small approximation errors are permitted, the exactly equal relation of (8) can be
relaxed as:

‖xk −Dαk‖p ≤ ξ (9)

where ‖ · ‖p refers to the lp-norm. ξ is a positive number. Because our objective is the
sparsity of coefficients, the constrained problem can be formulated as:

α∗k = argmin
αk

‖αk‖p s.t. ‖xk −Dαk‖p ≤ ξ (10)

Alternatively, the dual problem of (10) could be considered:

α∗k = argmin
αk

‖xk −Dαk‖p s.t. ‖αk‖p ≤ δ (11)

where δ is the threshold of sparsity. Both (10) and (11) can be transformed into an uncon-
strained optimization problem:

α∗k = argmin
αk

1
2
‖xk −Dαk‖2 + λ‖αk‖p (12)

where the first term is the reconstruction fidelity constraint and the second term is to
punish the sparsity of the representation coefficient vector. λ is a positive constant to weigh
the importance of these two terms. When p = 0, the sparsity of αk is controlled by the
l0-norm. An alternative way is to replace the l0-norm with l1-norm, which is convex and
can be solved by iterative shrinkage/thresholding algorithm [58]. We employ off-the-shelf
2-D DCT bases as our predefined dictionary D, which is illustrated in Figure 4. More
implementation details can be found in the Section 4.

After obtaining the sparse coefficient vector α∗k for the image patch xk, we substitute
xk with Dα∗k , then copies it back into the original position by:

I′ =
n

∑
k=1

RT
k (Dα∗k )./

n

∑
k=1

RT
k (1Bs) (13)

where RT
k is the reverse operator of Rk; and I′ refers to the sparse representation for the

image I, or the brain prediction result in the free-energy theory.
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Figure 4. The 144 atoms of 2D-DCT over-complete dictionary.

3.1.3. The Sharpness Index

In [36], the mathematical expression of free-energy has been derived for AR model
and applied for RR-IQA tasks. In this paper, the sparse representation coefficients α
become the model parameter θ, and the first term of (6), KL(Q(α|I)‖P(α)) measures the
distance between the recognition density and the true prior density of model parameters.
However, although the support (i.g. non-zero position) of α and the distribution of P(α)
have been discussed in structured compressed sensing [59,60], their exact forms are not
determined yet. To simplify computation, we choose Gaussian distribution for the prior
density P(α). This Gaussian prior rightly corresponds to l2-norm relaxation of the l0-norm
in (12), and can be transformed into an inverse Bayesian inference problem [56]. To model
the recognition density Q(α|I), i.e. the posterior distribution of 2D-DCT sparse coefficients,
we use Gaussian function as well.

Specifically, let P(α)=N (αp; µp, Σp), and Q(α|I)=N (αq; µq, Σq), the KL-divergence becomes:

KL(Q(α|I)‖P(α)) = 1
2

(
log
|Σp|
|Σq|

− d + Tr(Σ−1
p Σq)

+(µq − µp)
TΣ−1

p (µq − µp)

)
(14)

where d is the dimension of variable α. If we further assume sparse coefficient vector
αp = [α1, ..., αd] is uncorrelated, (14) can be simplified as:

KL(Q(α|I)‖P(α)) = 1
2
(µq − µp)

Tdiag(λ−1
1 , ..., λ−1

d )(µq − µp) + const (15)

where (λ1, ..., λd) are variances of αp, const = 1
2 (log |Σp |

|Σq | − d + Tr(Σ−1
p Σq). This equation

manifests that, the KL-divergence can be calculated through the quadratic sum of sparse
coefficients, divided by the variance components of α.
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The second term of (6), EQ[log 1
P(I|α) ], measures the average likelihood of the P(I|α)

under Q(α|I). If we approximate Q(α|I) with P(I|α), then

EQ[log
1

P(I|α) ] =
∫

Q(α|I) log
1

P(I|α)dα ≈
∫

P(I|α) log
1

P(I|α)dα

= E(log
1

P(I|α) ) (16)

By combining (15) and (16), the free-energy quantity can be written as :

F(α) = KL(Q(α|I)‖P(α)) +EQ[log
1

P(I|α) ]

≈ 1
2
(µq − µp)

Tdiag(λ−1
1 , ..., λ−1

d )(µq − µp) +E(log
1

P(I|α) ) (17)

which means free-energy equals the model approximation error plus image ‘surprise’.
This factorization can also be seen through (5), where the first term − log P(I) defines the
log-evidence of the image, which is just the negative of ‘surprise’; and the second term
KL(Q(θ|I)‖P(θ|I)) measures the KL-distance between approximate model density and
true posterior density.

In implementation, we set µp = 0 (smooth prior), µq = α∗k , and further compress the
variance vector into a single scalar λ, which is computed through the k-th image patch
variances σ2

k . The σ2
k also serves as the compensation of contrast masking effect induced by

image contents and has been proved effective in previous works [13,23]. The entropy is
calculated in the residual domain. To balance different scales of the model error term and
the entropy, we also introduce a weighing coefficient k1. Thus, (17) is simplified as:

F(α) ≈
(α∗k )

Tα∗k
σ2

k
+ k1 ·E(log

1
P((I − I′)|α) ) (18)

where I′ is the reconstructed image by sparse coding.
Since human visual system is more sensitive to sharper regions, it is effective to only

pool them together [15]. To capture image structures and details efficiently, the gradient
domain is used. Let ∇I denotes the gradient magnitude of image I by Sobel edge detector,
S� is the binary operator which assigns 1s for the top l% sharpest patches (0s otherwise),
and Ns = dl%× Ne denotes the number of these sharpest blocks, where N is the total
number of image patches. We define the sharpness index as:

SS =
Ns

∑
k=1

(α∗k )
Tα∗k

σ2
k

+ k1 ·E(log
1

P(S� (|∇I −∇I′|)|α) ) (19)

Looking at (18, 19), our work is the first to give the complete formulation of free-
energy under the sparse representation model and leverage its full power for sharpness
assessment. In contrast, Wu et al. [61] interpreted the predicted and residual image as
ordered and disordered portion. The latter is regarded useless for high-level inference and
mainly responsible for distortions such as noise, compression artifacts, etc. Gu et al. [22]
decomposed the blurred image through the autoregressive model. The AR-predicted
result is a re-blurred version of the test image and used for the sharpness estimation
afterwards, but the residual part is not considered. Although the residual part is used
in [62], the reconstructed image is ignored. In our paper, the reconstructed part represents
the prominent structure/edges of the image. And decent amounts of fine-grained details
are left in the residual image, which are crucial in the differentiation of small quality gaps
between zoom photos.

Figure 5a,d compare two 3× zoom photo crops. The MOS of Figure 5a is higher
than Figure 5d because of hardware advantage. In their sparse reconstructed gradient
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images, the edge intensity of eaves and decorative patterns in Figure 5e are much stronger
than Figure 5b, which is reflected in the KL-divergence (KLb = 4.2008 , KLe = 6.0919).
Meanwhile, the residuals in Figure 5f are also more obvious and uneven than Figure 5c (see
the decorative patterns), leading to a higher entropy as well. Therefore, both the energy
and entropy of the predicted and residual portions can represent the sharpness changes.

Moreover, we can observe that Figure 5b,e primarily capture the intensity of edges
(i.e., acutance), while Figure 5c,f depict the subtle and fine-grained textures (i.e., resolution).
Acutance and resolution are two complementary factors in the perception of sharpness [17],
both of which form an integral part of our sharpness model.

Figure 5. Demonstration of the effectiveness of both energy and entropy for sharpness. The first
column shows two image crops from our 3× zoom database by digitally and optically zooming, while
the second and third columns contain their predicted gradient and residual images, respectively (we
have extended the dynamic range of the residual image for a clearer view, which has no influence
on the computed entropy). (a) MOS = 43.6. (b) KL= 4.2008. (c) Entropy = 2.3151. (d) MOS = 87.4.
(e) KL = 6.0919. (f) Entropy = 3.2535.

3.2. The Image Naturalness Measurement

Although the sharpness metric can distinguish quality differences between optical
and digital lenses, it easily over-estimates the over-sharpening effect and spurious artifacts
present in the zoom photos due to the the post-processing algorithms. The image natural-
ness, by its name, can measure such loss of naturalness and degradation of the perceptual
quality. In literature, different forms of the natural scene statistics have been used: the
power law of the spectrum energy is measured in [9,17]; the non-gaussian distribution of
the gradient component, DCT or Fourier coefficients are used in [63,64] for noise estimation
and quality assessment; the Rayleigh or Weibull distribution of the variance or gradient
magnitude are leveraged in [33,65]. Here, we utilize the distribution of mean subtracted
contrast normalized (MSCN) coefficients as in [31,32].

Specifically, let x and y denote the pixel coordinates, and I(x, y), µ(x, y), σ(x, y) refer
to the original images, mean and standard deviation of the local image patch centered at
(x, y), respectively, then the MSCN coefficient Î(x, y) at (x, y) is defined as:

Î(x, y) =
I(x, y)− µ(x, y)

σ(x, y) + 1
(20)

According to [66], the image structure transitions are reduced due to this local non-
linear divisive normalization, and for pristine natural images, the highly leptokurtic and
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long-tailed characteristics are transformed into a unit normal Gaussian distribution. How-
ever, for over-sharpened photos, the abrupt details would change the behavior of both
peaks and tails of the empirical coefficient distribution, which can be well modeled by a
generalized Gaussian distribution (GGD):

g(x; α, β) =
α

2βΓ(1/α)
exp

(
−
(
|x|
β

)α)
(21)

where Γ(·) refers to the gamma function, which is defined as:

Γ(x) =
∫ ∞

0
φx−1e−φdφ, x > 0 (22)

where α and β are the GGD parameters, which can be estimated by the moment matching-
based method [67].

In order to better visualize the effects of over-sharpening and zoom blur, Figure 6a
shows a natural-looking photo crop from our 5× zoom database, while Figure 6b,c are two
other photos from the same scene that suffer from over-sharpening problems and slight blur,
respectively. Figure 6d plots the corresponding empirical distributions of Figure 6a–c. It is
observed that the MSCN coefficients of Figure 6a follow a uniform Gaussian distribution,
while Figure 6b reduces the weight of the tail of the histogram and Figure 6c appears to
exhibit a more Laplacian appearance. Instead of calculating sample statistics such as the
variance, skewness or kurtosis [10,68], we directly use α and β to encompass a wider range
of distortion changes.

Figure 6. (a–c) are three crops of high-quality, over-sharpening, zoom blur photos, respectively;
(d,e) show histograms of their MSCN and product of horizontal MSCN coefficients.

Aside from the MSCN coefficients, the products of the adjacent MSCN coefficient
pairs are also powerful to characterize the image quality. Figure 6e shows the empirical
distribution of the horizontal product MSCN coefficients of Figure 6a–c. As we can see, the
histogram of Figure 6c is more peaked and leptokurtic than Figure 6a, while the distribution
shape of Figure 6b looks more flat-topped. In this paper, we calculate the products of the
adjacent MSCN coefficients along four directions, i.e., horizontal, vertical, main-diagonal
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and second-diagonal as in the [31]. Each of these products can be modeled with the
zero-mode asymmetric GGD (AGGD):

g(x; γ, βl , βr) =


γ

(βl + βr)Γ( 1
γ )

exp
(
−
(
−x
βl

)γ)
∀x ≤ 0

γ

(βl + βr)Γ( 1
γ )

exp
(
−
(

x
βr

)γ)
∀x > 0

(23)

Unlike MSCN, the mean of the product MSCN distributions also differs for Figure 6a–c,
indicating the changes of zoom quality. Thus, we compute the mean as:

η = (βr − βl)
Γ( 2

γ )

Γ( 1
γ )

(24)

The informative model parameters (γ, βl , βr, η) of the AGGD are estimated and in-
troduced into our quality-aware NSS features. As research in quality assessment has
demonstrated that incorporating multi-scale information correlates better with human
perception [69,70], we extract the above features in two scales (low-pass filtered and down-
sampled by 2).

Instead of calculating feature vectors on the whole image, we partition the photo into
non-overlapping patches and perform feature extraction on each of them, leading to a
36-dimensional vector for each patch. Then we stack all the feature vectors together and fit
them with a multivariate Gaussian (MVG) density as:

f (x) =
1

(2π)k/2|Σx|1/2 exp
{
− 1

2
(x− µx)

TΣ−1
x (x− µx)

}
(25)

where x refers to the quality feature vector and k refers to the dimension of x.
To learn a model that serves as the pristine anchor for the NSS features, we select one

hundred pristine images from the Berkeley image segmentation database [71], then model
their patch-based feature vectors using MVG as well:

f (y) =
1

(2π)k/2|Σy|1/2 exp
{
− 1

2
(y− µy)

TΣ−1
y (y− µy)

}
(26)

A common measure between two distribution distances is the KL-divergence. How-
ever, the KLD is asymmetrical. In this paper, we use the square root of the symmetric
Jenson-Shannon (JS) divergence [72] to define our unnaturalness score:

JS( f (x), f (y)) = KL( f (x)‖ f (x) + f (y)
2

) + KL( f (y)‖ f (x) + f (y)
2

) (27)

NS =

√
(µx − µy)

T
(

Σx + Σy

2

)−1

(µx − µy) (28)

where NS measures the distance between the tested zoom photos and pristine images,
thereby representing the inverse of image naturalness. The smaller NS is, the more natural
a zoom photo appears.

3.3. The Final Zoom Quality Metric

After calculating the sharpness and image naturalness, we attempt to merge them into
a single zoom quality index. We found that a simple linear combination is enough to yield
good results. Other weighting strategies such as geometric weighting, Boltzmann machine
and SVM regression can achieve similar results, but their interpretability is not as good as
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linear combination and may suffer from over-fitting problems. Thus, the final zoom quality
metric Q is defined as:

Q = SS + w · NS (29)

where w is a negative constant that determines the relative importance of SS and NS. We
will discuss it more deeply in the Section 4. For intuitive understanding of the proposed
zoom quality metric, we show its flowchart in Figure 7.

Figure 7. Flowchart of the proposed zoom quality metric.

4. Experiments
4.1. Implementation Details

In implementation, the zoom photo is divided into 8 x 8 non-overlapping patches.
Then we reshape the square patch into a 64× 1 column, which constitutes xk in Equation (7).
To construct the 2D-DCT dictionary, we first create a 1D-DCT matrix A1D of size 8 ×
12, where the k-th atom (k = 1,2,. . . ,12) is given by ak = cos((i − 1)(k − 1)π/12), i =
1,2,. . . ,8. Then all the atoms except the first constant one are processed by removing
their mean. The final 64 x 144 over-complete dictionary D is obtained by a Kronecker-
product D = A1D ⊗A1D. The non-convex l0-minimization problem (10, 11) is solved using
the orthogonal matching pursuit (OMP) algorithm [73]. We set the sparsity degree at 6
experimentally. The l = 60%, k1 = 0.5 and w = −0.7 are optimized to achieve the top result
on the zoom photo database.

To easily follow the process of this zoom quality metric, we show its pseudo code in
the Algorithm 1 below.
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Algorithm 1: Pseudo-code of the proposed zoom quality metric
Input: Zoom photo I, over-completer DCT dictionary D, mean and variances of

pristine MVG parameters µy, Σy, weighting parameters k1, w and l.
1 Initialization:
2 Compute the photo gradient ∇I using Sobel operator;
3 Partition the photo I into non-overlapping 96 x 96 patches xk;
4 The measurement of sharpness:
5 foreach k = 1, 2, . . . , N do
6 Solve the sparse coding coefficients α∗k using the OMP algorithm [73];
7 Calculate the patch variance σ2

k ;
8 Sort and select the top l% patches according to the variance σ2

k ;
9 end

10 Compute mean KL-divergence or energy: ∑Ns
k=1

(α∗k )
Tα∗k

σ2
k

;

11 Compute the residual gradient image: ∇I −∇I′;
12 Compute entropy of the residual: E(log 1

P(S�(|∇I−∇I′ |)|α) );

13 The sharpness index: SS = ∑Ns
k=1

(α∗k )
Tα∗k

σ2
k

+ k1 ·E(log 1
P(S�(|∇I−∇I′ |)|α) );

14 The measurement of naturalness:
15 foreach k = 1, 2, . . . , N do
16 Compute the MSCN map of I using (20);
17 Compute the GGD and AGGD parameters of each patch using (21), (23), (24);
18 end
19 Estimate the µx and Σx through (25);

20 The naturalness index: NS =

√
(µx − µy)

T
(

Σx+Σy
2

)−1

(µx − µy);

Output: Zoom quality metric Q = SS + w · NS

4.2. Illustrative Results

Before quantitative results, let us examine three scenarios where our zoom quality
metric succeeds while single SS or NS fails to predict the image quality in Figure 8:

1. In its top row, the quality of A1 > A2 > A3. Specifically, A1 is a 5× zoom photo
taken with an optical camera, while A2 comes from a smaller sensor and looks more
grainy. A3 is interpolated from a 3× zoom camera, which suffers from zoom blur.
From Figure 9, we can observe that the sharpness score (i.e., SS) wrongly judges
A2 > A1 > A3, and the naturalness score (i.e., −NS) mistakes A1 > A3 > A2. This
fact reveals drawbacks of the SS and SS: SS over-estimates the sharpening effect
(A2 > A1), while NS over-emphasizes the image naturalness or smoothness (A3 > A2).
In contrast, our zoom quality metric, indicated by the level sets of straight lines in
Figure 9, successfully gives the order of A1 > A2 > A3;

2. Similarly, in the second row of Figure 8, all B1, B2 and B3 are 5× zoom photos
interpolated from three 2× optical lenses but with different ISPs and post-processing
algorithms. The quality order is B1 > B2 > B3. However, the SS of B2 is larger than
B1 because of annoying artifacts. Although the NS predicts the quality of B1 > B2
without error, it over-estimates the zoom blur (softness) present in B3, thus wrongly
judging B3 > B2. By combining the SS with NS, the correct order of B1 > B2 > B3 can
be achieved with our metric Q;

3. In the bottom row, C1 is the original “hestain ” image, and C2 and C3 are created using
the Matlab imsharpen function with different amounts of unmask sharpening. The
quality order is C2 > C1 > C3, as it is well-known that moderate amounts of sharp-
ening can improve an image’s perceptual quality, while excessive sharpening would
lead to a more unnatural appearance, thereby degrading the naturalness. However,
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from Figure 9, we can see the SS scores increase monotonically with the sharpening
amounts, that is, C3 > C2 > C1, while the NS penalizes the C2 too much, leading
to C1 > C2 > C3. In contrast, our metric Q can evaluate them more appropriately
(C2 > C1 > C3). This fact implies our zoom quality metric can be used to control the
parameter of sharpening algorithms.

Figure 8. Three scenarios where both sharpness and naturalness fail to predict the image quality, but
our zoom quality metric can. The detailed explanation is in the main text.

4.3. Performance Comparison

In this subsection, we compare the proposed quality metric with seventeen state-of-
the-art NR-IQA algorithms on the zoom photo database, which can be classified into three
categories: sharpness-specific, unsupervised and supervised general-purpose ones. The
sharpness metrics include JNB [13], CPBD [15], S3 [17], FISH [18], LPC [19], SPARISH [23]
and S3-III [27]. The unsupervised or opinion-free algorithms are NIQE [32], SNP-NIQE [33],
IL-NIQE [65], NPQI [74], LPSI [75] and QAC [76]. Belonging to the supervised models are
BIQI [77], BRISQUE [31], BLIINDS-II [64] and M3 [78]. Except S3-III [27], all source codes of
these algorithms are obtained from original authors or their public websites. We implement
the S3-III algorithm [27] by ourselves. The SROCC, KROCC and PLCC are calculated using
the protocol suggested by VQEG [79].
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Figure 9. Two dimensional plots of naturalness versus sharpness for example images in Figure 8
(A1–C3). Each straight line represents the same level of Q and the top-left one indicates a higher Q.
The line passing through C2 almost overlaps with that of A3, thus is omitted for a better view.

Table 3 lists the performance on the our zoom photo database. The best performed
method is marked in boldface. It can be seen that the general-purpose NR methods assess
the quality of the zoom blurred images moderately due to their general QA ability for
distorted images. Compared with the general-purpose methods, the sharpness specific
methods achieve better prediction results. This can be verified by the observation that
most of the SROCC values of the sharpness metrics are higher than 0.75. Moreover, S3-
III [27] doesn’t improve the S3 [17] by a large margin in our database. Last but not least,
our proposed zoom quality metric earns superior prediction performance to all of the
competing methods and outperforms them remarkably.

Table 3. Overall prediction performance on our zoom photo database.

Methods SROCC KROCC PLCC

NIQE [32] 0.8493 0.6863 0.8490
SNP-NIQE [33] 0.7216 0.3754 0.6932

IL-NIQE [65] 0.5022 0.3034 0.5257
NPQI [74] 0.7247 0.5506 0.7106
LPSI [75] 0.7538 0.6620 0.7435
QAC [76] 0.6892 0.5831 0.6431

BIQI [77] 0.7576 0.5419 0.7344
BRISQUE [31] 0.6385 0.4530 0.6700

BLIINDS-II [64] 0.5265 0.3031 0.5134
M3 [78] 0.4078 0.2263 0.4530

JNB [13] 0.7580 0.6678 0.7699
CPBD [18] 0.8305 0.6713 0.8017
FISH [15] 0.7662 0.6076 0.7423
LPC [19] 0.8567 0.7046 0.8436

SPARISH [23] 0.8456 0.6871 0.8328
S3 [17] 0.7962 0.6153 0.7829

S3-III [27] 0.8114 0.6347 0.8163
The proposed metric 0.9216 0.7908 0.9129

4.4. The Discussion of w: The Tradeoff between Sharpness and Naturalness

The special case of w = 0 corresponds to the sharpness measure, while −w = ∞
refers to the naturalness measure. Figure 10 plots the SROCC value versus different w.
It can be seen that, the SROCC increases steeply when −w is in (0–0.3), then reaches a
plateau in (0.4–1) and eventually drops down as −w increases to ∞. This is because a
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small −w (−w < 0.3) only emphasizes the importance of sharpness, ignoring the photo
smoothness or naturalness. This is also the drawback of existing sharpness indices, which
are not close-looped. At the other end, a very large −w (−w > 1) gives more weight to
the image softness, which contradicts the common sense that an appropriate sharpening
operation can improve the perceptual quality. By choosing an appropriate −w, we can
obtain a trade-off between sharpness and naturalness. In this paper, we choose −w = 0.7,
as it achieves the best result in Figure 10. However, it is worth noting that −w ∈ (0.4, 1) are
all reasonable choices, which depend on personal preference. People who tend to prefer
a smoother photo may choose a larger w, and vice versa. There have been phone models
such as Galaxy S23 series that offer this softness adjustment option.

Figure 10. Plot of SROCC trends with different w.

4.5. Limitations of the Current Work

Despite the best result achieved by the proposed metric in the zoom quality database,
there exist several limitations: (1) our metric doesn’t consider the influence of color differ-
ences and exposure variations. Although detail rendering is perhaps the most determining
factor in the zoom photo quality, taking into account other quality aspects is also necessary,
since the HDR capability and color rendering in zoom lenses are always not consistent and
good as the main camera [47]; (2) the constant w could be generalized to a function w(c, q).
As we mentioned in Section 2.2, image contents of characters could bear more sharpening
amounts than textures, animal fur and people skin. And compared to high-quality photos,
images suffering heavy zoom blur could benefit from more sharpening, too. In these two
cases, the w could be lowered; (3) besides using w(c, q), another way to improve the metric
performance is to utilize machine-learning [80], which we will look into in the next future;
(4) There has been a trend of using AI-restoration technique, especially for the long-range
zoom photos. These AI-generated textures may improve perceptual quality for charac-
ters, but the fake, wrinkle-like details would make photo dirty and weird. Currently, our
algorithm couldn’t handle the quality degradation of AI-generated textures very effectively.

5. Conclusions

Zoom photos differ from gaussian blurred images in their over-sharpening appear-
ances and harmful artifacts. To assess them rightly, we first build a zoom photo database
which consists of 20 mobile units and 45 texture-complex scenes. Then we propose a
novel zoom quality metric, considering both sharpness and naturalness. To evaluate the
sharpness, we are the first to give the whole formulation of free-energy theory under sparse
coding, and leverage both the energy and entropy of the predicted and residual images.
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To measure the naturalness, we extract a set of MSCN coefficients, and then compare it
with that of pristine images under the multi-variant Gaussian model. In the experiments,
drawbacks of the single sharpness or naturalness are revealed, and the effectiveness of
their summation is illustrated by three scenarios. We also discuss different choices of
the linear combination coefficient. Finally, the SROCC, KROCC, and PLCC in the zoom
photo database demonstrate the superiority of our metric over traditional sharpness and
general-purpose methods.
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Abbreviations

The following abbreviations are used in this manuscript:

CMOS Complementary Metal Oxide Semiconductor
DSLR Digital Single-Lens Reflex
ISP Image Signal Processor
IQA Image Quality Assessment
PDAF Phase-Detection Auto Focus
MOS Mean Opinion Score
RR-IQA Reduced-Reference Image Quality Assessment
NR-IQA No-Reference Image Quality Assessment
HDR High Dynamic Range
SROCC Spearman Rank Order Correlation Coefficient
KROCC Kendall Rank Order Correlation Coefficient
PLCC Pearson Linear Correlation Coefficient
VQEG Video Quality Experts Group
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