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Abstract: In the Internet of Vehicles scenario, the in-vehicle terminal cannot meet the requirements of
computing tasks in terms of delay and energy consumption; the introduction of cloud computing
and MEC is an effective way to solve the above problem. The in-vehicle terminal requires a high
task processing delay, and due to the high delay of cloud computing to upload computing tasks to
the cloud, the MEC server has limited computing resources, which will increase the task processing
delay when there are more tasks. To solve the above problems, a vehicle computing network based
on cloud-edge-end collaborative computing is proposed, in which cloud servers, edge servers,
service vehicles, and task vehicles themselves can provide computing services. A model of the
cloud-edge-end collaborative computing system for the Internet of Vehicles is constructed, and a
computational offloading strategy problem is given. Then, a computational offloading strategy
based on the M-TSA algorithm and combined with task prioritization and computational offloading
node prediction is proposed. Finally, comparative experiments are conducted under task instances
simulating real road vehicle conditions to demonstrate the superiority of our network, where our
offloading strategy significantly improves the utility of task offloading and reduces offloading delay
and energy consumption.

Keywords: Internet of Vehicles; collaborative computing; computational offloading; M-TSA

1. Introduction

With the development of 5G technology and smart connected cars, cars have become
equipped with stronger computing and storage capabilities, as well as information collec-
tion and communication capabilities, and many new in-vehicle applications have emerged.
Although these applications can enhance the user experience and improve driving safety,
such as AI-based applications, virtual reality, intelligent assisted driving, image navigation,
and entertainment applications, they all have high requirements for computing and storage
resources and are sensitive to latency. The computational demand for the Internet of Vehi-
cles has thus boomed [1–3], and the limited computational storage resources of in-vehicle
terminals cannot meet the resource demand of computational tasks with high complexity,
data density, and delay sensitivity [4].

The introduction of cloud computing and Mobile Edge Computing (MEC) into the
Internet of Vehicles is an effective way to solve the above problems, but the in-vehicle
terminals have high requirements for task processing delay because the cloud computing
uploads computing tasks to the cloud with high delay. Furthermore, the computing and
storage resources of edge computing servers in MEC are limited, and more tasks will
increase the task queuing delay at the server. Therefore, collaborative central cloud, edge
cloud, and vehicle cloud computing provide better computing services for task vehicles.
The vehicle cloud is a resource of simultaneously empty idle vehicle terminals [5].
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Initial progress has been made in the research of collaborative computing for the Inter-
net of Vehicles scenario, where the computational offloading decision is the core research
point, and the key is to find the optimal offloading decision to improve the computational
efficiency and reduce the computational cost. Unfortunately, the computational offload-
ing problem of collaborative computing in the Internet of Vehicles scenario is a mixed
integer nonlinear programming (MINP) problem, which is difficult to solve directly using
traditional mathematical methods. Although many scholars have studied computational
offloading strategies for the Internet of Vehicles scenario, there is no popular general so-
lution method yet. Based on the above, we study the offloading strategy of collaborative
computation at the cloud-edge-end of the connected vehicle scenario with real road con-
ditions and vehicle motion and fully adopt the intelligent swarm optimization algorithm
to solve the problem and comprehensively optimize the computational delay and energy
consumption. The main contributions of this work can be summarized as follows:

(1) A three-layer architecture of the central cloud, edge cloud, and vehicle cloud
is proposed as a cloud-edge-end collaborative computing system model with the task
offloading strategy problem in an Internet of Vehicles scenario.

(2) A Multi-strategy collaboration-Tunicate Swarm Optimization Algorithm (M-TSA)
introduces a memory learning strategy, a Levy flight strategy, and an adaptive dynamic
weighting strategy on the basis of the standard TSA algorithm, has stronger global opti-
mization seeking capability, and is proposed for multi-objective optimization of offloading
delay, energy consumption, and task offloading utility of cloud-edge-end collaborative
computing systems.

(3) To address the offloading strategy problem presented in (1), a computational of-
floading strategy based on the M-TSA algorithm and combined with task prioritization and
computational offloading node prediction is proposed to significantly improve the system
offloading utility and reduce the computational offloading delay and energy consumption
of the system by taking into account the vehicle motion characteristics and task time delay
sensitivity.

2. Related Work
2.1. Edge Computing Offloading

Many experts and scholars currently have relatively mature research work on compu-
tational offloading strategies, mainly optimizing or jointly optimizing metrics such as time
delay and energy consumption. There are mainly computational offloading frameworks
based on mathematical models [6,7], computational offloading schemes based on intelligent
optimization algorithms such as genetic algorithms [8–10], and whale optimization [11].
Offloading strategies for collaborative computing have also been studied. Dai et al. [12]
designed a probabilistic computational offloading algorithm for cloud-edge collaborative
computing and verified its superiority in reducing task delay in a wide range of scenarios.
Abbasi et al. [13] addressed the problem of allocating workloads in a fog cloud scenario
and proposed a trade-off between task processing energy consumption and delay for the
NSGA-II algorithm to solve this multi-objective model, and they experimentally showed
that both energy consumption and delay were significantly reduced. Huang et al. [14]
studied an optimal offloading scheme considering energy minimization, which addresses
the relationship between energy efficiency and performance in mobile The relationship
between energy efficiency and performance in mobile edge computing systems was inves-
tigated. The results showed that this scheme is better than other offloading methods. Zhao
et al. [15] explored the collaborative computation offloading problem in a MEC system
with multiple users in a heterogeneous cloud system. Based on dynamic planning, an
energy consumption minimization algorithm with joint bandwidth and computational
resource allocation was proposed, and the simulation results showed a reduction in en-
ergy consumption for mobile devices. Ramtin et al. [16] proposed an offloading scheme
based on inter-device collaboration for jointly optimizing energy consumption and delay
in edge computing, applying the maximum matching and minimum cost graph algorithms
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to derive a reasonable offloading scheme, and the results showed a reduction in energy
consumption and delay. Fu et al. [17]—taking into account the effects of changing network
conditions and wireless channel constraints—proposed an improved firefly swarm algo-
rithm that optimizes computation offloading and resource allocation to reduce computation
system latency and energy consumption. Li et al. [8] proposed a genetic-algorithm-based
two-stage heuristic for joint computation offloading and resource allocation in multi-user
and multi-server scenarios, and they proved the effectiveness of their algorithm for reduc-
ing terminal energy consumption. Su et al. [18] proposed a resource deployment and task
scheduling algorithm based on task prediction and Pareto optimization. The user service
quality and system service effect were significantly improved.

2.2. Collaborative Computing Offloading under the Internet of Vehicles

Preliminary research has also been conducted on collaborative computational offload-
ing strategies for special scenarios of the Internet of Vehicles. Zhao et al. [7] proposed a
joint optimization scheme for computational offloading and resource allocation based on
a mathematical model to effectively improve the system utility and computation time of
MEC in scenarios with insufficient computational resources; however, their algorithm is not
general. Xu et al. [19] proposed an adaptive multi-objective evolution (ACOM) offloading
method for IoCV scenarios with the introduction of 5G, which reduces the task offloading
delay but does not consider the impact of vehicle mobility characteristics. Song et al. [20]
constructed a unidirectional highway model under which edge servers and vehicle servers
work together, described a safe switching interaction protocol while the vehicle is moving,
and reduced offloading energy consumption and delay. Zhang et al. [21] constructed an
SDN-assisted MEC network architecture for vehicle networks and proposed a joint task
offloading and resource allocation strategy that can effectively reduce system overhead.
Zhu et al. [22] designed a cloud-edge collaborative-based vehicular computing network
architecture, proposed an offloading strategy scheme based on an improved multi-objective
optimization immune algorithm, and verified the effectiveness of the algorithm. In the re-
search of Shen et al. [23], a hybrid genetic algorithm (HHGA) task offloading strategy with
a hill-climbing operator was proposed for mobile edge computing with on-street parking
collaboration in the Internet of Vehicles to reduce the delay and energy consumption of
computational tasks. Lastly, Su et al. [24] proposed an improved sparrow-algorithm-based
computational offloading decision for cloud-edge collaborative computing to fully optimize
task delay and energy consumption.

In summary, the research on edge computing offloading strategies is more mature, but
the research on collaborative computing offloading for special scenarios such as the Internet
of Vehicles is lacking, and the impact of hidden vehicle movement characteristics, task
priority offloading, real road traffic conditions, and other factors, as well as the problem
of ignoring idle vehicle terminal resources, are seldom considered in the research on
computing offloading for Internet of Vehicles scenarios. To address the above problems, we
will study the cloud-edge-end collaborative computational offloading strategy under the
real road traffic condition and vehicle movement in the Internet of Vehicles scenario.

3. Cloud-Edge-End Collaborative Computing System Model in the Internet of
Vehicles Scenario

The cloud-edge-end collaborative computing network in the Internet of Vehicles sce-
nario described in this system consists of vehicles, base stations (BS), Edge Computing
Servers (ECS), and Cloud Servers (CS). As shown in Figure 1, in a two-way straight-road sce-
nario, many base stations equipped with edge servers are evenly deployed on the roadside,
and their communication coverage radius is L. The vehicles and ECS in the communication
area of BS are called an edge computing domain. There are two types of vehicles in an
edge computing domain: one is task vehicles (TaV) that generate computational tasks; the
other is service vehicles (SeV) that have many available computational resources and can
provide computational services to the outside world. The set of edge servers is denoted as
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Es = {1, . . . m, . . . M}, and the sets of TaV and SeV in the ECSm edge computing domain
are denoted as Tam = {1, . . . im, . . . Im}, Sem = {1, . . . jm, . . . , Jm}. For the convenience
of the following formulation, the service vehicles SeV, edge servers, and cloud servers
providing service computing are collectively referred to as service computing nodes in
this system and are denoted as N = {0, 1, . . . m, . . . , M, M + 1, . . . M + jm, . . . , M + Jm}. To
efficiently utilize the spectrum, this system considers an OFDMA-based wireless network
that connects the ECS with the task vehicle TaV and the service vehicle SeV to form a star
topology, where each vehicle can communicate with the ECS in one leap point; wired con-
nections are used between adjacent edge servers and between the ECS and the CS. In this
computing network, ECS is the manager of the computing domain and is responsible for
the scheduling and allocation of all tasks. At the beginning of each time slot, each vehicle
in the computing domain uploads task information and computing resource information
to the edge server. There are vehicles with many available computing resources, which are
what we call SeV. ECS aggregates the computing tasks and the resources of service vehicles
through the intelligent scheduling of tasks, which can provide higher-quality computing
services to the task vehicles at the end of the network. The parameters used in this paper
are listed in Table 1.

Figure 1. Cloud-edge-end collaborative computing network diagram in the Internet of Vehicles
scenario.

There are mainly vertical and horizontal collaborative computing methods for the
vehicles described in this system model, and there are various servers that can provide
computing offload services for the task vehicles in this model, namely, cloud servers, edge
servers, terminal devices of the service vehicles, and terminal devices of the task vehicles
themselves. Through the intelligent scheduling of tasks, the effective utilization of global
resources can be realized, and the task vehicles at the end of the network can be provided
with a more high-quality computing offload service. Vertical and horizontal collaboration
are differentiated as follows:

(1) Vertical collaboration: Comprised of the vehicle cloud, edge cloud, and central
cloud, the three-layer Internet of Vehicles edge computing architecture provides multiple
offload mode options for resource-constrained task vehicles. Thus, task vehicles can choose
to process their tasks locally according to the actual situation or offload tasks to neighboring
service vehicles, edge servers, and cloud servers to achieve task processing.

(2) Horizontal collaboration: The distribution of resources in the time dimension of
edge servers often shows variability. Lightly loaded edge servers may cause waste due to
unutilized resources, while overloaded servers may affect the normal processing of tasks
due to insufficient resources. Therefore, cross-domain edge collaborative computing can be
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used to improve the efficiency of system resource utilization and enhance the offloading
utility of tasks.

Table 1. Meaning of parameters.

Parameters Meaning

TaV The task vehicles.
SeV The service vehicles.

v The vehicle speed.
fi The CPU computing capacity of TaV.
f j The CPU computing capacity of SeV.
fc The CPU computing capacity of CS.
fs The CPU computing capacity of ECS.
fns The CPU computing capacity of other collaborative computing ECSs.
h The linear distance between BS and the road.
L The communication coverage radius of BS.
R The communication distances of V2V.

rV2I The transmission rate of V2I.
rV2V The transmission rate of V2V.
rE2E The transmission rate of E2E.
rE2C The transmission rate of E2C.
pup The vehicle terminal transmits power,
pc The power of the vehicle terminal’s CPU.
bi The amount of data required to complete the task.
ci The amount of computation to complete the task.

tmax
i The maximum delay limit of the computation task.

3.1. Vehicle Motion Model

The system uses a two-dimensional coordinate system to model the motion process
of the vehicle, as shown in Figure 2, denoting the BS side of the road as the x-axis and
the vertical line of BS as the y-axis, thus assuming that the coordinates of BS as (0, h),
where h is the linear distance between BS and the road. The TaVi movement pattern
can be represented by a binary group as {(xi, yi), vi}, whereby (xi, yi) is TaVi the starting
position and vi is the TaVi travel speed. Assuming that the right is the positive direction, a
positive sign of vi indicates that TaVi rightward travel, and the negative sign of vi indicates
that TaVi travels to the left. Similarly, the SeVj movement pattern is represented by the
binary group {(xj, yj), vj}.The standard lane width of the road is 3 m. This system assumes
that all vehicles travel in the middle of the lane, i.e., the vehicle vertical coordinate is
y ∈ {−1.5,−4.5}.

Figure 2. Vehicle movement diagram.

This system establishes a vehicle movement model constrained by speed and distance
to simulate the real road vehicle driving environment. Since the calculated offloading time
of the vehicle ∆t is very small, it is assumed that the vehicle maintains a uniform speed
during the time ∆t, that is, vi(t + ∆t) = vi(t), vi(t) denotes the vehicle vhi velocity at t
moment. There are two constraints in this model:
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(1) Speed constraint: Because there is a speed limit on the real road, the speed of each
vehicle must be maintained in a range, i.e., vi ∈ [vmin , vmax ].

(2) Distance constraint: Two vehicles in the same lane, vhi at position xi and vhj at
position xj, need to satisfy

∣∣xi − xj
∣∣ ∈ [lmin, lmax]. lmin indicates the minimum distance

between two vehicles driving continuously on the same lane, also known as the safety
distance; if the distance between two cars is too small, it will increase the risk of traffic
accidents. lmax denotes the maximum distance between two vehicles driving continuously
on the same lane; if the distance between the two vehicles is too large, it will be a waste
of traffic resources. Therefore, the distance between two vehicles must be kept within a
reasonable range.

3.2. Computational Model

The computational task for a single time slot of each task vehicle TaVi ∈ Ta is consid-
ered in this system, denoted as Ti, which is the smallest task and cannot be divided into
subtasks. Each task vehicle TaVi generates a computational task Ti, which is represented
by three parameters {bi, ci, tmax

i }, where bi (bit) is the amount of data required to complete
the task, that is, the amount of input data required for the computational task execution
to be transmitted from the task vehicle local device to the service computation node; ci
(cycles) means the amount of computation to complete the task; and tmax

i refers to the
maximum delay limit of the computation task, determined by the task type. Each task can
be executed locally in the task vehicle or offloaded to the service vehicle SeVj, the ECS, or
the CS. Each service compute node has independent storage resources Bn and compute
resources Cn. The task vehicle saves energy and task processing time by offloading the
compute tasks to the service compute node; however, the amount of compute task input
data sent to complete the task in the compute task offload adds additional time and energy
consumption.

This section defines the task offloading variables, and the equation includes the
upstream scheduling as follows: {ai,j, i ∈ Ta, j ∈ N}, where ai,j = 1 means that the task
vehicle from TaVi of the task Ti is offloaded to the service compute node; otherwise, ai,j = 0.
Since each task can be executed locally or offloaded to up to one service compute node, a
feasible offloading strategy must satisfy the following constraints:

∑
j∈N

ai,j ≤ 1, ∀i ∈ Ta (1)

The location of the calculation task Ti generated by the task vehicle TaVi is as follows:

ai,j =


0, j ∈ N, Ti Local computing
1, j = 0, Ti Offloading to CS
1, 0 < j ≤ K, Tj Offloading to ECS
1, j > K, Ti Offloading to SeV

(2)

For each task vehicle TaVi ∈ Ta generated, due to limited computing resources, some
of the computation tasks need to be transferred to the SeV, the ECS, or the CS, which then
performs the computation. Since the SeV computation storage resources are limited, in
this study, SeV considers single-task computation and does not create a task cache. In this
system, a task queue model of the task buffer of ECS and CS is established, and Q(t + 1)
denotes the accumulated tasks at the moment t + 1, that is,

Q(t + 1) = max{Q(t)−Φ(t), 0}+ D(t) (3)

where Φ(t) is the size of the computational task that leaves the task buffer of ECS at time
slot t, i.e., the task for which ECS completes the computation, and D(t) is the size of the
computational tasks that are offloaded to the task buffer of the ECS by the task vehicle at
time slot t.
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3.3. Delay Model

Once the task vehicle TaVi’s calculation of task Ti processing is complete, the resulting
delay time ti includes: i. upload delay tup (s)—the time to transmit the input on the
uplink to the service node N; ii. cache delay tq (s)—the queuing time in the task buffer;
iii. computation delay texe (s)—the task computation processing time; and iv. the time to
transmit the output on the downlink from the service compute node N to the task vehicle
TaVi. These are described in more detail as follows:

(1) Upload delay: When the transmission rate of the communication between the
computing nodes and the amount of task input data bi are related, then the upload delay
tup of task Ti is

tup
i = U(bi, f ) =

bi
r

(4)

where r denotes the transmission rate of communication between the computing nodes, and
bi is the amount of input data required to transmit the program execution of the computing
task from the local user device to the computing node.

The upload delay of the task is divided into vehicle-to-vehicle transmission delay
tV2V
i (V2V), vehicle-to-base station upload delay tV2E

i (V2E), transmission delay tE2E
i (E2E)

between edge servers, and upload delay tE2C
i (E2C) from the edge server to the central

cloud server.
(2) Cache delay: When the computational task Ti offloaded to the ECS or CS at moment

t, the task cache queuing time tq is defined as

tq
i = ∑

j∈Q(t)
texe

j (5)

(3) Computation delay: Set f > 0 (cycles/s) denotes the CPU computing capacity of
the computing node. Therefore, the task computation delay texe

i is

texe
i = J(ci, f ) =

ci
f

(6)

Since the output data volume is usually much smaller than the input, and the data
transmission rate of the downlink is much higher than that of the uplink, the transmission
delay of the output is omitted in this model calculation, as also considered in [25–27]. There
are four categories of computational processing described in this system, namely, local
computation, service vehicle computation, edge server computation, and cloud server
computation, where the binary variable yi,j = 1 denotes that the task vehicle TaVi of the
task Ti is offloaded across the domain to the collaborative edge server computation. yi,j = 0
denotes edge computing within the edge computing domain. Then, the task Ti of the total
computation delay computed at ti is

ti =


texe
i , ai,j = 0

tV2 V
i + texe

i , ai,j = 1&j > K
tV2E
i + texe

i + tq
i + yij · tE2E

i , ai,j = 1&0 < j ≤ K
tV2E
i + texe

i + tq
i + tE2C

i , ai,j = 1&j = 0

(7)

The total time delay for this collaborative computing system is

ttol = ∑ ti (8)

3.4. Energy Consumption Model

The main consideration is the task vehicle’s energy consumption in this system,
which is divided into local calculation energy consumption and task offloading energy
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consumption. The energy consumption generated by the task vehicle TaVi while it performs
task Ti locally, or the amount of the local computation energy consumption eloc

i , is

eloc
i = pc · texe

i (9)

where pc indicates the power of the vehicle terminal’s CPU.
Task vehicles TaVi perform task offloading to service computing nodes generated by

transmission energy ei, denoted by

eup
i =

pup · tup
i

ξi
(10)

where pup denotes that the vehicle terminal transmits power, and ξi is the power am-
plifier’s efficiency of the task vehicle TaVi. In a general case, this system assumes that
ξi = 1, and the task vehicle TaVi in the uplink energy consumption is calculated simply as
eup

i = pup · tup
i [27]. The task Ti of the task vehicle TaVi is executed, and its generated

energy consumption is

ei =

{
eloc

i , ai,j = 0
eup

i , others
(11)

The total energy consumption of this collaborative computing system is

etol = ∑ ei (12)

3.5. Prioritization Model

To improve task offloading utility, a comprehensive evaluation of computational task
Ti is performed based on task delay constraints and local computational urgency, and
the priority of computational task Ti offloading is determined. The model uses a mixed
weighting approach to prioritize the computational task Ti, where priority Pri is defined as

Pri = λ1 ·Wi + λ2 ·Ui

Wi =
1

tmax
i

Ui =
1

tmax
i − tloc

i

(13)

where λ1, λ2 ∈ [0, 1] and satisfies λ1 + λ2 = 1, and Ui and Wi are weighting factors. Wi
denotes the task value of the task Ti. Ui denotes the computational task Ti the task urgency,
and tloc

i is the local execution time of the task.

4. Computational Offloading Strategy Problem

For the cloud-edge-end collaborative computing system model in the Internet of
Vehicles scenario proposed in Section 3, this section elaborates on the problem of the
system task offloading strategy. In edge computing systems, the quality of service is mainly
expressed in terms of the delay and energy consumption generated by the computational
task completion. In the considered Internet of Vehicles scenario, this paper, considering
both delay and energy consumption improvements, defines the task offloading utility of
task vehicle TaVi is defined as

Fi = δt
i
tloc
i − ti

tloc
i

+ δe
i

eloc
i − ei

eloc
i

(14)

where δt
i is the time delay weight, δe

i denotes the energy consumption weight, and δt
i + δe

i = 1,
δt

i , δe
i ∈ [0, 1], and i ∈ Ta. For example, a task vehicle TaVi with a small battery capacity can
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increase δe
i , decreasing δt

i and thus saving more energy at the cost of longer task delay. The
task offloading utility of the system described is expressed as F̄ = {Fi | i ∈Ta}.

For a given offloading strategy X, the present collaborative computing system task
offloading strategy problem is formulated as a problem of maximizing the offloading utility
of the system, that is

max F̄

s.t. C1 : ai,j ∈ {0, 1}, ∀i ∈ Ta, j ∈ N

C2 : ∑
j∈N

ai,j ≤ 1, ∀i ∈ Ta

C3 : ∑
i∈Ta

ai,j ≤ 1, ∀j ∈ Se

C4 : ti ≤ tmax
i , ∀i ∈ Ta

C5 : ti ≤
{

ϕi,j, ∀i ∈ Ta, ∀j ∈ Se
ϕi , ∀i ∈ Ta

C6 : di,j ≤ R, ∀i ∈ Ta, ∀j ∈ Se

(15)

where ϕi denotes that TaVi and BS can remain connected, ϕi,j denotes that TaVi and SeVj
can remain connected, and they are calculated as

ϕi =


∣∣∣ L′−xi

vi

∣∣∣, vi > 0∣∣∣−L′−xi
vi

∣∣∣, vi < 0
(16)

ϕi,j =

 50, vi = vj&
∣∣xi − xj

∣∣ < R
R′−(xi−xj) sign(vi−vj)

|vi−vj| , others
(17)

where L′ denotes that TaVi can move a lateral distance within the communication range of
V2I at a fixed transmission power, R′ denotes that TaVi can move a lateral distance within
the communication range of V2V at a fixed transmission power, and sign(·) is a symbolic
function, which is expressed in this equation as follows: when vi− vj > 0, sign

(
vi − vj

)
= 1;

when vi − vj < 0, sign
(
vi − vj

)
= −1. ϕi,j = 50 denotes that the two vehicles TaVi and

SeVj have the same speed and that the initial position is within the communication range,
whereby the two vehicles can keep communication for a long time, thus assigning ϕi,j to an
enormous value. In other cases, when (xi − xj) sign

(
vi − vj

)
> 0, this indicates that TaVi

and SeVj are moving away from each other; when (xi − xj) sign
(
vi − vj

)
< 0, this indicates

that TaVi and SeVj are moving closer to each other.
The constraints in Equation (15) are explained as follows: constraints C1 and C2

imply that each task can be executed locally or offloaded to at most one service computing
node; constraint C3 implies that each service vehicle can service at most one task vehicle;
constraint C4 specifies that each task must be completed within the specified maximum
time delay limit; constraint C5 specifies that the task offloaded to the service vehicle must
be completed within the two-vehicle maintain-communication time, or that offloading to
the ECS must be completed within the hold-communication time with the BS; constraint C6
specifies that the straight-line distance di,j between the task vehicle and the service vehicle
for both vehicles must be no greater than the communication distance R for the task to be
offloaded.

5. Multilateral Collaborative Computing Offloading Strategy Based on the
M-TSA Algorithm

To cope with the more complex cloud-edge-end collaborative computing system
in the Internet of Vehicles scenario, this section proposes a multi-strategy collaboration-
based TSA algorithm (M-TSA) and then proposes a multilateral collaborative computing
offload strategy based on the M-TSA algorithm. The M-TSA algorithm, which introduces
multiple population evolution strategies into the TSA algorithm, can better meet the



Sensors 2023, 23, 4682 10 of 22

optimization of the computational offload quality of service metrics (system delay, system
energy consumption) in the collaborative computing system in the Internet of Vehicles
scenario.

5.1. Standard TSA Algorithm

The Tunicate Swarm Algorithm (TSA) is an intelligent swarm optimization algorithm
proposed by Kaur et al. [28] to simulate the foraging behavior of a swarm of animals in the
ocean. Its execution includes jet propulsion and group behavior. It has the advantages of
a simple structure, strong local search ability, high accuracy of search and optimization,
and has been validated in function optimization problems and engineering applications.
However, the search mode is single and there is no individual memory, so the local search
is not sufficient and the accuracy is low when solving high-complexity problems.

5.1.1. Jet Propulsion

Equation (18) denotes the principle of conflict avoidance between individuals, A
denotes the factor of conflict avoidance between individuals, G is gravity, and c1, c2, c3 is a
random number between [0, 1], respectively. H represents the social interaction between
individuals, and pmin, pmax are the initial and subordinate velocities of social interactions
between individuals, respectively, setting pmin = 1, pmax = 4. Equation (19) denotes the
movement toward the optimal individual, PD denotes the distance between the food
(optimal individual) and the individual, k is the current iteration number, FS is the position
of food, and Pp(k) denotes the current position of the individual. Equation (20) denotes
convergence to the optimal individual, and rand is a random number between [0, 1].

A = G
H

G = c2 + c3 − 2c1
H = bpmin + c1(pmax − pmin)c

(18)

PD = FS− rand · Pp(k) (19)

Pp(k) =

{
FS + A · PD, rand ≥ 0.5
FS− A · PD, rand < 0.5

(20)

5.1.2. Swarm Behavior

Equation (21) represents the location of the optimal solution of the updated individual,
which is calculated based on the optimal location of the current two generations of search
individuals, and the tunicate individuals perform swarm behavior to gather towards the
food’s (the optimal individual’s) location.

Pp(k + 1) =
Pp(k) + Pp(k + 1)

2 + c1
(21)

5.2. M-TSA Algorithm

For the complex computational offloading problem of the more complex cloud-edge-
end collaborative computing system in the vehicle networking scenario, the M-TSA algo-
rithm is proposed to improve the algorithm’s global exploration and local exploitation
capabilities by introducing a memory learning strategy, a Levy flight strategy, and an adap-
tive dynamic weighting strategy based on the standard encapsulated swarm algorithm, as
described below.
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5.2.1. Memory Learning Strategy

The memory learning strategy, introduced by Particle Swarm Optimization (PSO)
memory learning, includes the update speed v and position x, as

vi = ω× vi + c1 × rand × (pbesti − Xi)+

c2 × rand × (gbest− Xi)

Xi = Xi + vi

ω(t) = ωmin + (ωmax −ωmin)(K− k)/K

(22)

where vi is the individual velocity, Xi is the individual position, pbesti is the individual
optimal solution, gbest is the global optimal solution, ω is the inertia factor, c1 is the
self-learning factor, and c2 is the swarm learning factor. The memory learning of PSO is
introduced in this algorithm to strengthen the self-memory learning; let c1 = 2, c2 = 2, rand
is the random number between [0, 1], k is the current population iteration number, K is the
maximum iteration number, and it is taken in this algorithm ωmax = 0.9, ωmin = 0.4. The
dynamic inertia factor ω has better merit-seeking results than fixed values, so this algo-
rithm adopts a linearly decreasing weight strategy, with the iteration period ω decreasing
gradually, and the swarm individuals have strong global search merit-seeking ability in the
early stage and enhanced local search merit-seeking ability in the later stage.

5.2.2. Levy Flight Strategy

To increase the diversity of populations, this algorithm introduces a stochastic cross-
learning strategy based on Levy flight, which allows the algorithm to have greater ran-
domness in the optimization process and avoid the algorithm from falling into the local
optimum.

Xi(k + 1) =


Xi(k) + α

(
Xj(k) · lev y(β)− Xi(k)

)
, rand < J

Xi(k) + α
(
Xj(k)− Xi(k) · levy(β)

)
, J ≤ rand < 1− J

Xi(k) + α
(
Xj(k)− Xi(k)

)
· levy(β), rand ≥ 1− J

(23)

levy(β) =
u
|s|−β

(24)

σu =

Γ(1 + β) sin
(

πβ
2

)
Γ
(

1+β
2

)
β× 2

β−1
2


1
β

, σs = 1 (25)

where u ∼ N(0, σu), s ∼ N(0, σs), rand is a random number between [0, 1], and J ∈ [0, 1]
denotes the probability variable that determines which cross-learning method is used by
the individuals in the population. In order for individuals in the population to select each
cross-learning mode with equal probability, set J = 1/3. α denotes the cross-learning
coefficient; levy(·) denotes the random number that satisfies the Levy distribution.

5.2.3. Adaptive Dynamic Weighting Strategy

To improve the performance of the TSA algorithm, an adaptive dynamic weighting
strategy is proposed to balance the global exploration and local exploitation capabilities
of the TSA algorithm. For the position of each capsule individual, we use the following
equation to enhance the algorithm’s ability to search for the global optimum and increase
the current capsule search step to enhance the algorithm’s ability to escape the extreme
values, calculated as follows.

Pp(k) =
{

FS + 2 · A · PD, rand ≥ 0.5
FS− A · PD, rand < 0.5

(26)
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where A is the conflict avoidance factor between individuals, PD is the distance between
the food (optimal individual) and the individual, k is the current iteration number, FS is
the position of the food, Pp(k) denotes the position of the current individual, and rand is a
random number between [0, 1].

To balance the global exploration and local exploitation abilities of the capsule swarm
algorithm, this paper proposes an adaptive dynamic weighting strategy to update the
positions of capsule individuals. In this strategy, the updated formula for the position of
the capsule individual includes the current position of the individual, the position of the
previous generation individual, and the adaptive weight. The size of the adaptive weight
is related to the position of the capsule individual and can be dynamically adjusted during
the iteration of the algorithm. When the adaptive weight is larger, the step size of the
individual position update is smaller, which is beneficial to the global exploration ability of
the algorithm. When the adaptive weight is smaller, the step size of the individual position
update is larger, which is beneficial to the local exploitation ability of the algorithm. Com-
pared with the random parameters in the original TSA algorithm, the adaptive dynamic
weighting strategy can improve the performance of the algorithm and avoid the problems
caused by the blindness of the algorithm. The specific calculation formula is shown as
follows:

z = 2e−(3k/K) (27)

where k is the number of current iterations and K is the maximum number of iterations.
The swarm behavior update formula for introducing adaptive dynamic weight values

in the swarm behavior of the M-TSA algorithm is

Pp(k + 1) =
Pp(k) + Pp(k + 1)

2 + z
(28)

where Pp(k) denotes the current individual’s position, and z denotes the adaptive dynamic
weight value. During the iteration of the algorithm, the adaptive weight value decreases
gradually with time, which leads to an overall increase in the position update weight and
a corresponding increase in the update step size, which makes the algorithm a strong
exploration capability at a later stage.

5.2.4. Adaptive Dynamic Regulation of Populations

This algorithm performs adaptive dynamic adjustment of the number of individuals
performing memory cross-learning and jet propulsion to enhance the ability of global full
search finding of the population. In the early iteration, most of the individuals in the
population of this algorithm performed memory cross-learning to increase the population’s
local search and enhance the global search directionality in the later iteration. In the
later iteration, to avoid falling into the local optimal results, most of the individuals
performed TSA jet propulsion mode to improve the algorithm’s ability to jump out of the
local for global search, effectively balancing the local search and global search abilities.
The algorithm uses an adaptive decay adjustment strategy for the number of subgroup
individuals num, as defined below.

num(k) = S · e−3k/K − 1 (29)

where k is the number of current population iterations, K is the maximum number of
iterations, and S is the overall population number of individuals. The variable gbest(k) is
used to denote the global optimal individual at generation k. The steps of the population
adaptive dynamic adjustment algorithm are shown in Algorithm 1.
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Algorithm 1 Adaptive dynamic regulation of populations algorithm.

Input: S, k, K, gbest
Output: num
procedure Anum
if gbest(k + 1) = gbest(k) then /* gbest(k) is the global optimal individual at generation
k.*/

num← 0
else

num← S× exp(−3× k/K)− 1
end if
return num
end procedure

5.2.5. M-TSA Algorithm Steps

The flow of the M-TSA algorithm is shown in Figure 3, and the specific steps are as
follows. The M-TSA algorithm pseudocode is shown in Algorithm 2.

Algorithm 2 M-TSA algorithm.

Input: S, K, populationX
Output: Xbest
procedure M-TSA
pmin ← 1
pmax ← 3
X1← 0
pbest, Xbest ←CaculateFitness(X)/* Initialize the individual fitness value using the Cal-
culateFitness function.*/
for k← 1 to K do

num← Anum( S, k, K, Xbest ) /* Anum() is adaptive dynamic regulation of popula-
tions algorithm, see Algorithm 1.*/

for i← 1 to S do
if i < num then

rand ← Rand() /* Rand() is a function to generate the random number in
the range [0, 1]. */

if rand < Cr then
X1← X + v /*Memory learning strategy according to Equation (22).
*/

else
X1← Levy_strategy() /* Levy_strategy() is a function that Levy flight

strategy according to Equation (23).*/
end if

else /*Jet propulsion according to Equations (18), (19), (26).*/
c1, c2, c3 ← Rand()
H ← bpmin + c1(pmax − pmin)c
A← (c2 + c3)− 2× c1/H
PD ← abs(Xbest − Rand()× X)
if Rand() >= 0.5 then

X1← Xbest + 2 ∗ A ∗ PD
else

X1← Xbest − A ∗ PD
end if

end if
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Algorithm 2 Cont.

/*Adaptive swarm behavior to Equation (28).*/
X ← (X1 + X)/(2 + z)

end for
pbest, Xbest ←CaculateFitness(X) /* Calculate the individual fitness value of the

new population using CaculateFitness function*/
end for
return Xbest
end procedure

procedure CaculateFitness(X)
for i← 1 to S do

f it[i]← f itness f un(X[i, :]) /* Calculate the fitness of each individual */
if f it[i] < pbest f it[i] then

pbest f it[i]← f it[i]
pbest[i]← X[i]

end if
end for
if Min(pbest f it) < X f itbest then

Xbest ← X[argmin(pbest f it)]/* argmin() is the function to obtain the minimum
value index */

end if
return pbest, Xbest
end procedure

Step 1: First, according to the task example, randomly generate the initial population
of the capsule; the individuals in the population include the location to be optimized
xi(i = 1, 2, . . . , n) and its fitness value to be optimized fi.

Step 2: Calculate the individual fitness value fi, and derive the initial per-individual
optimal solution pbesti and the global optimal solution gbest.

Step 3: Based on the update situation of the global optimal individual gbest and the
number of iterations, the number of subpopulation individuals num is calculated adaptively,
as described in Algorithm 1.

Step 4: The num individuals of the subpopulation perform memory learning or Levy
flight strategy, when the random number rand < Cr, performing memory learning, Cr is
the cross-learning factor; the remaining S− num individuals perform the jet propulsion of
TSA, where convergence to the optimal individual is calculated according to the improved
Equation (26).

Step 5: Apply the adaptive dynamic weighting strategy to perform swarm behavior
learning according to Equation (28), update its position, and generate a new generation of
population.

Step 6: New populations are checked for transgression, and individuals beyond the
constraint range are processed for transgression.

Step 7: Calculate the individual fitness value of the new population, and update the
individual optimal solution pbesti and the global optimal solution gbest.

Step 8: Determine whether the maximum number of iterations is reached, and if it is
satisfied, output the global optimal solution gbest; otherwise, return to Step 2.
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Figure 3. M-TSA algorithm steps.

5.3. Multilateral Collaborative Computing Offloading Strategy Based on the M-TSA Algorithm
5.3.1. Computational Offloading Strategy’s Code

To facilitate the task offloading strategy execution in the swarm intelligence optimiza-
tion algorithm, the computational nodes are encoded. This offloading strategy X is defined
as X = {x1, x2, . . . , xi, . . . , xI}, where xi is the task vehicle TaVi’s task computation node
xi ∈ {0, 1, 2, . . . m + 1, . . . , M + 1, M + 2, . . . M + jm + 1, . . . , M + Jm + 1}, whereby xi = 0
denotes the task vehicle TaVi local compute node, xi = 1 indicates at the central cloud
server compute node, xi = {2, . . . m + 1, . . . , M + 1} indicates at the edge server compute
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node, and xi ≥ M+ 2 when xi = M+ jm + 1 indicates at the service vehicle SeVj computing
node.

The offload policy is coded as shown in Figure 4, assuming that the task set
Ti = {T1, T2, T3, T4, T5}, M = 4 means there are four edge server ECS, and the offloading
strategy X = {1, 0, 3, 10, 2} indicates that T1 is offloaded to CS for execution, T2 is executed
locally, T3 is offloaded to ECS2 execution, T4 is offloaded to SeV5 for execution, and T5 is
offloaded to ECS1.

Figure 4. Computational offloading strategy’s code.

5.3.2. Computational Offloading Strategy’s Code

In the TSA algorithm, the fitness function is used to evaluate the distance between the
tunicate individual and the food source, i.e., the gap between this solution and the optimal
solution to the problem. This offloading strategy is evaluated in three aspects, namely,
computational delay, energy consumption, and offloading utility. The fitness evaluation
function is constructed with the offloading utility of balanced computational delay and
energy consumption, and the fitness evaluation value for the offloading strategy X is f (X),
as shown in the following equation:

f (X) = F̄ (30)

where F denotes the system task offloading utility, F = {Fi | i ∈ Ta}.

5.3.3. M-TSA Based Multilateral Collaborative Computing Offloading Strategy’s
Algorithm Steps

For the complex computational offloading problem in the cloud-edge-end collaborative
computing system in the Internet of Vehicles scenario, multiple evolutionary strategies are
introduced, and a multilateral collaborative computational offloading strategy based on
the M-TSA algorithm is proposed with the following algorithmic steps:

Step 1: Create cloud-edge-end collaborative computing system task instances in the
Internet of Vehicles scenario, including creating CS instances, edge computing group Es,
task vehicle set Ta, and service vehicle set Se that simulate real road conditions and vehicle
movement.

Step 2: According to Equation (13), calculate the task offloading priority of each task Ti
in each edge computing domain and determine the task offloading order from the highest
priority to the lowest priority.

Step 3: According to Equation (15) constraints C4–C6, predict the set of task unloadable
nodes SeN, i.e., the individual boundary of the population, to narrow the search range of
the algorithm and improve the task unload utility.

Step 4: Execute the M-TSA algorithm, see Section 5.2.5 for details. Take the ordered
task set Ta and the predicted node set SeN as inputs, and execute the M-TSA algorithm to
derive the optimal computational offloading decision Xbest.

6. Simulation Verification

To verify the effectiveness of the proposed M-TSA-based multilateral collaborative
computing offloading strategy, this section presents our simulation experiments using
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Python, and the main parameters of the experiments are shown in Table 2. The experiments
are conducted to compare three computing systems, namely, cloud-edge-end collaborative
computing, end-edge collaborative computing, and local computing. Further, the experi-
ments are conducted to compare the offloading strategies based on the M-TSA algorithm
with the TSA algorithm, PSO algorithm, Grey Wolf Optimizer algorithm (GWO), and
Differential Evolution Algorithm (DE) offloading strategy comparison experiments. The
algorithm parameters of this experiment are set as iteration number K = 50, population
size size = 40, one central cloud server, four edge computing domains, and a random
group of vehicles in one computational domain.

Table 2. Parameters of the experiments.

Parameters Value

v/km·h−1 [30, 80]
fi/GHz [0.5, 1]
f j/GHz [1, 2]
fc/GHz 50
fs/GHz 20
fns/GHz [10, 20]

h/m 1
L/m 1000
R/m 20

rV2I/Mbit·s−1 1000
rV2V/Mbit·s−1 400
rE2E/Mbit·s−1 2000
rE2C/Mbit·s−1 1500

pup/W 30
pc/W 50

bi/Mbit [10, 100]
ci/G cycles [0.1, 2]

tmax
i /s [0.2, 5]

The communication simulation parameters of V2I and V2V are set with reference to the 5G-V2X network standard
adopted by most car companies nowadays.

6.1. Cloud-Edge-End Architecture Verification

Under the same experimental environment and the same task instance, the mixed
weights of delay and energy consumption (δt

i = 0.8, δe
i = 0.2) under the M-TSA algorithm

are compared, and the optimization results of cloud-edge-end collaborative computing,
end-edge collaborative computing, and local computing for three computing systems
on delay and energy consumption are discussed. In the created task instance, the three
computing systems are run 20 times independently, and the average of the optimal solutions
of the results of 20 runs of each algorithm is taken.

As can be seen in Figure 5, in the same experimental environment and with the same
task instance input, the solution results of the cloud-edge-end collaborative computing
system under the mixed weight evaluation are significantly better than those of the other
two architectural computing systems, resulting in a smaller system delay and lower system
energy consumption, and the advantage grows as the task computation volume increases.
The experimental results show that the cloud-edge-end collaborative computing system
is significantly better than other architectures and can realize complementary resources
of cloud computing, edge nodes, and vehicle terminal devices, which can be flexibly
configured according to the characteristics of the task and real-time demand to better adapt
to different task scales.
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(a) System Delay (b) System Energy Consumption

Figure 5. Comparison of different computing systems.

6.2. Delay and Energy Mixing Weighting Optimization Comparison

Figure 6 depicts the optimization comparison results of offloading utility, delay, and
energy consumption for five algorithms to calculate offloading under mixed weights of
delay and energy consumption with the same experimental environment, the same task
instance, and the same initial population when the number of TaV is 20 and the number of
SeV is 30. In the created task instance, the five algorithms are run 20 times independently
with the same input, and the optimal solution is taken from the results of the 20 runs of
each algorithm.

(a) System Delay (b) System Energy Consumption

(c) System Utility

Figure 6. When δt
i = 0.8, δe

i = 0.2, the comparison curve of system utility and delay and energy
consumption calculated by different algorithms.

As can be seen in Figure 6, the solution results of the M-TSA algorithm under the
mixed weight evaluation are significantly better than the other four algorithms in the same
experimental environment with the same task instances and the same initial population
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input, obtaining higher offloading utility, a shorter system time delay, and a lower system
energy consumption, which is proof that the M-TSA algorithm has a stronger global
optimization-seeking ability to derive the optimal computational offloading strategy. In
addition, it can be seen in Figure 6 that the M-TSA algorithm can obtain the optimal solution
in fewer iterations compared to other algorithms, indicating that the M-TSA algorithm
has a fast optimality finding capability, which enhances its application to delay-sensitive
vehicular networking special scenarios to compute offloading strategies.

6.3. Delay Orientation Optimization Test

Figure 7 depicts the comparison results of offloading utility and delay for five algo-
rithms to perform delay orientation optimization (δt

i = 1.0, δe
i = 0.0) experiments with the

same experimental environment, the same task instances, and the same initial population
when the number of TaV is 20 and the number of SeV is 30.

From Figure 7, it can be seen that the M-TSA proposed also has better results in
calculating the offloading directed optimization delay compared with the PSO, TSA, GWO,
and DE algorithms. From Figure 7a, we can see that the M-TSA algorithm has several large
upward jumps relative to other algorithms, which in turn leads to better solutions. This
is proof that the M-TSA algorithm has a stronger ability to jump out of the local global
optimum and can continuously jump out of the local to fully search the global to arrive at
the optimal computational offloading strategy.

(a) System Utility (b) System Delay

Figure 7. Comparison curve of system utility and delay of different algorithms for computational
offloading in delay orientation optimization.

6.4. Impact of Changes in the Number of Task Vehicles in the Computational Domain

This section is a simulation experiment in which the number of service vehicles (SeV)
is 30, given δt

i = 0.8, δe
i = 0.2, and the optimization comparison results of offloading utility,

time delay, and energy consumption for five algorithms for the different number of task
vehicles in the same experimental environment and same task instance are presented. The
five algorithms are run 20 times independently with the same input under a fixed number
of TaV, and the average of the optimal solutions of the 20 runs of each algorithm is taken.
Please refer to Tables 3–5 for the data on the impact of the number of TaV.

As can be seen in Figure 8, the solution results of the M-TSA algorithm proposed
are significantly better than the other four algorithms for the different number of task
vehicles. It can derive a better computational offloading strategy, which enables the vehicle
cooperative system to handle all computational tasks with higher offloading utility, a
minimum system time delay, and a minimum system energy consumption, indicating that
this algorithm is effective.
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(a) System Delay (b) System Energy Consumption

(c) System Utility

Figure 8. Effect of number of TaV on system utility, delay, and energy consumption.

Table 3. Data on the impact of the number of TaV—System Delay.

Number of TaV
System Delay/s

M-TSA PSO TSA GWO DE

5 0.7816 0.8615 0.8075 0.8075 0.8037
10 1.7947 1.9322 1.8426 2.0618 1.8569
15 1.7502 1.8346 1.7969 1.7739 1.7800
20 3.0281 3.3211 3.2356 3.5881 3.3168
25 4.0265 4.5479 5.7373 6.8484 7.4391
30 4.3004 4.9402 5.2001 10.0968 9.1898
35 6.2045 6.8987 7.0080 8.8794 13.0259
40 6.7945 7.0596 7.4746 13.0574 13.8094

Table 4. Data on the impact of the number of TaV—System Energy Consumption.

Number of TaV
System Energy Consumption/J

M-TSA PSO TSA GWO DE

5 11.28 11.28 11.28 11.28 11.28
10 16.82 17.67 17.67 17.67 17.67
15 19.24 21.24 21.24 21.24 21.24
20 30.69 33.69 33.69 33.69 33.69
25 35.37 38.37 39.14 50.88 42.56
30 40.26 40.26 45.26 55.44 60.93
35 55.45 60.45 60.45 65.00 69.59
40 65.35 67.35 67.35 95.26 80.54
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Table 5. Data on the impact of the number of TaV—System Utility.

Number of TaV
System Utility

M-TSA PSO TSA GWO DE

5 0.9106 0.9061 0.9006 0.9005 0.9016
10 0.9387 0.9282 0.9362 0.9221 0.9354
15 0.9041 0.8930 0.8918 0.8997 0.8960
20 0.9137 0.9061 0.9110 0.8969 0.9062
25 0.9245 0.9142 0.9042 0.8754 0.9009
30 0.9218 0.9198 0.9118 0.8524 0.8473
35 0.9228 0.9122 0.9167 0.8941 0.8789
40 0.9236 0.9217 0.9195 0.8502 0.8576

7. Conclusions

We discuss the problem of simultaneous computational offloading of multiple vehicles
on a two-way straight highway in an Internet of Vehicles scenario and design a vehicle
computational network model based on cloud-edge-end collaboration. The offloading
utility, system time delay, and system energy consumption are the optimization objectives,
and the vehicle motion characteristics and task time delay sensitivity are taken into account
to make the computational offloading scheme more consistent with the actual, real situation.
The simulation results show that the proposed offloading strategy can significantly improve
the system task offloading utility and effectively reduce the system time delay and system
energy consumption. In future research, relevant strategies will be further designed for
more complex Internet of Vehicles scenarios to better match the actual situation.

The proposed approach takes into account the vehicle motion characteristics and
task delay sensitivity to make the computational offloading scheme more realistic, but
further challenges such as dynamic changes in the vehicle network topology and unreliable
connections still need to be addressed. An interesting future research direction for this
work is to employ predictive algorithms to predict the location and connectivity of vehicles
for more accurate design and tuning of computational offloading strategies to better match
the real-world situation.
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