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Abstract: Acoustic energy mapping provides the functionality to obtain characteristics of acoustic
sources, as: presence, localization, type and trajectory of sound sources. Several beamforming-based
techniques can be used for this purpose. However, they rely on the difference of arrival times of the
signal at each capture node (or microphone), so it is of major importance to have synchronized multi-
channel recordings. A Wireless Acoustic Sensor Network (WASN) can be very practical to install when
used for mapping the acoustic energy of a given acoustic environment. However, they are known for
having low synchronization between the recordings from each node. The objective of this paper is to
characterize the impact of current popular synchronization methodologies as part of the WASN to
capture reliable data to be used for acoustic energy mapping. The two evaluated synchronization
protocols are: Network Time Protocol (NTP) y Precision Time Protocol (PTP). Additionally, three
different audio capture methodologies were proposed for the WASN to capture the acoustic signal:
two of them, recording the data locally and one sending the data through a local wireless network. As
a real-life evaluation scenario, a WASN was built using nodes conformed by a Raspberry Pi 4B+ with
a single MEMS microphone. Experimental results demonstrate that the most reliable methodology is
using the PTP synchronization protocol and audio recording locally.

Keywords: wireless acoustic sensor network; synchronization; beamforming; acoustic mapping

1. Introduction

The analysis of the acoustic scene can be used in multiple applications: urban monitor-
ing [1], where acoustic sensors capture information from the environment and compares it
with known events to determine urban activity; bio-localization [2], where microphones
arrays are deployed to determine the position of sound emitting animals; rescue work in
catastrophe situations [3,4], where the sensors are deployed to measure acoustic activity
of to-be-rescued entities to determine their position; domestic smart systems [5], where
sensors are used to locate the user that is to be serviced inside a domestic environment; etc.
In such scenarios, the acoustic information of the environment (sources of interest, noise,
interference and reverberation) is obtained by processing acoustic signals captured by a
monitoring system [6,7] as shown in Figure 1. The problem of detecting of acoustic events
for the mentioned applications has been approached by implementing a network of sensors
that capture information from the environment and processing it to determine the type of
acoustic event and its position.

With this configuration, different mathematical models can be used to generate what
is known as an ‘acoustic energy map’, which provides information that could be used to
localize sound sources, to establish how ‘loud’ they are, etc. To carry this out, an acoustic
sensor network is usually used to sample the acoustic scene [8]. However, approaching the
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problem like this requires a vast amount of nodes (or microphones) in the acoustic network.
Thus, we propose to employ mathematical models that rely on the concept of beamforming
which do not require as many nodes in the acoustic network to provide an acoustic energy
map, but heavily depend on the difference in time of arrival of an acoustic source to each of
the nodes of the acoustic network. These acoustic mapping model is described in Figure 2,
where xi(t) is the acoustic signal captured for the ith node of the network, and an acoustic
source is assumed to exist in a point (x, y). The signal is formed by applying a beamformer
with which it is possible to determine the energy in that point. Then, a grid of candidate
points (or proof points) are proposed and for each one its energy is calculated and plotted
to obtain the acoustic energy map.

Figure 1. Acoustic signal analysis.

Figure 2. Methodology for acoustic energy mapping.

Additionally, it is of interest to employ a Wireless Acoustic Sensor Network (WASN) to
capture the multi-channel data from which the acoustic energy map is estimated, because
of their ease of installation and modification due to its nodes not being tethered by any
physical cabling. However, the recordings may be affected by synchronization issues which,
in turn, may affect the performance of the aforementioned beamforming-based acoustic
energy mapping technique.

The main goal of the paper is to characterize how different synchronization/recording
methodologies impact beamforming-based acoustic energy mapping. The methodologies
employed are:

• Local recording with Network Time Protocol (NTP) synchronization. The WASN is
synchronized with NTP and each node records its captured acoustic data locally.

• Local recording with Precision Time Protocol (PTP) synchronization. The WASN is
synchronized with PTP and each node records its captured acoustic data locally.

• Remote recording with PTP synchronization. The WASN is synchronized with PTP
and each node transmits its captured acoustic data to a centralized server.

Then, the shape of the acoustic energy map, as well as the statistical values on the syn-
chronization error in the node timestamps, are employed to characterize these methodologies.

In summary, the overall process presented and characterized in this work of generating
an acoustic energy map using a WASN consists on:
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• The design of the WASN: obtained by analyzing the characteristics of different pro-
cessing units and microphones and selecting the ones that suited the most for the
desired application.

• The implementation of the synchronization protocols: it consisted on the selection of
available synchronization protocols for a WASN (NTP and PTP), and their characteri-
zation in the creation of an acoustic energy map.

• The proposal of several acoustic signal recording methodologies: it took in considera-
tion the advantages and disadvantages that each methodology presented and their
evaluation in a controlled experiment.

• The generation of an acoustic energy map through beamforming techniques: there
was a stage of research for beamformers techniques and the characterization of the
selected ones in the application of acoustic energy mapping.

The paper is structured as follows: Section 2 describes the methodologies used for
synchronization; Section 3 describes the acoustic energy mapping methodologies; Section 4
presents the results of several beamforming-based acoustic energy mapping techniques
using signals from a simulated WASN and simulated sound sources, artificially inserting
synchronization errors; Section 5 presents the results using signals recorded with a real-life
WASN, while employing the aforementioned synchronization methodologies; Section 6
discusses the advantages, disadvantages and what are the feasible applications for each
synchronization methodology; finally Section 7 presents some concluding remarks.

2. Wireless Acoustic Sensor Network and Synchronization

A Wireless Acoustic Sensor Network (WASN) consists of a set of sensing nodes dis-
tributed on a physical space that captures data from the acoustic environment. Each node
consists of a processing device and an acoustic sensor (microphone) [9–12]. All nodes are
connected through a local wireless network to receive and send data, with the final action-
able device being a multi-channel audio recording WASN(each channel being providing by
a node in the WASN). The basic design of a WASN with M nodes is presented on Figure 3.

Figure 3. Wireless Acoustic Sensor Network.

As mentioned in the introduction, beamforming-based techniques [13] are meant to be
applied towards the generation of an acoustic energy map. Beamformers use the difference
in arrival times of the wavefront of the acoustic source to each node to reconstruct the
signal at a given position.

Thus, the multi-channel audio recording must be synchronized for them to work prop-
erly, since errors in synchronization will affect their performance, the generated acoustic
energy map will not represent the actual acoustic environment [14,15].

2.1. WASN Design

The WASN that will be used to capture signals to generate the acoustic energy map con-
sisted of a set of wirelessly-interconnected capture nodes, each composed by a processing
unit connected to an acoustic sensor (e.g., microphone). Based on previous experimentation
with different capture node configurations, a Raspberry Pi 4B+ with a MEMS (micro electret
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microphone) Microphone Breakout Board was chosen as the processing unit and acoustic
sensor, respectively. The processing unit was selected over other models of Raspberry
and Arduinos because its features allow the network to capture, send and receive data,
while bearing a relatively low cost. The MEMS microphone was selected because of its low
cost, its ease of installation and its high sensibility and SNR. The characteristics of both are
presented in Tables 1 and 2.

Table 1. Processing device characteristics.

Model Processor RAM Conectivity

Raspberry Pi 4B+
Broadcom BCM2711,
Quad core 64 bit @

1.5 GHz
1 GB

2.4 GHz and 5.0 GHz
IEEE 802.11ac wireless,

Bluetooth 5.0

Table 2. Sensor characteristics.

Model of Microphone Sensitivity Signal to Noise Ratio Output Interface

Knowles, I2S Output
Digital Microphone:

SPH0645LM4H-B
−26 dBFS 65 dB(A) I2S

2.2. Synchronization Protocols

Each node in the WASN has its own processing device with its own internal clock
which can be affected by physical interactions with the environment, such as: temperature,
pressure, vibration, etc. When the acoustic signal is captured, the timestamps of each audio
file have to be synchronized. The synchronization represents a problem that can be solved
by using extra hardware (like an external clock) or by applying synchronization protocols
to synchronize all of the node’s internal clocks [16,17]. There are different strategies that
can be implemented to achieve this, most of which use a server to exchange messages with
their respective timestamps, which then are used to adjust the internal clocks of the nodes
of the WASN. The most commonly used are: Network Time Protocol (NTP) (Figure 4)
and Precission Time Protocol (PTP) (Figure 5) [18,19]. Both protocols exchange messages
through a network between a master-server and a client-slave. The client-slave sends a
request to the server-master and when it responds, the client-slave adjusts its internal
clock. The difference between NTP and PTP is that for the latter, there is an extra stage of
verification for the synchronization, which results in higher precision.

Figure 4. NTP.

Figure 5. PTP.

A synchronization implementation is proposed as follows: one of the nodes of the
WASN is the time server for the network, the internal clock of which is the one that all the
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other nodes will adjust their time to. There is also the possibility for the time server node to
synchronize its internal clock with a publicly-available time server.

Although only the the NTP and PTP protocols were implemented, it is left for future
work to explore other strategies for synchronization and protocols.

2.3. Recording Methodologies
2.3.1. Local Recording Methodology

In this methodology, each node is responsible for capturing acoustic data from the
environment, store it, to later send such data to a central processing unit to generate the
acoustic energy map. Each node generates its own timestamp according to its internal
clock. This methodology is presented in Figure 6.

Figure 6. Local recording methodology.

Different synchronization protocols can be used with this recording methodology,
thus, we propose the following:

• Local recording with NTP. Each client node synchronizes its internal clock with the
server node on a background process, and the server node synchronizes its internal
clock with a time server service on the internet.

• Local recording with PTP. It operates on a similar fashion to the previous methodology,
but the slave nodes synchronize their internal clocks with the clock from the master.

In this type of recording methodology, each node is responsible for monitoring the
acoustic environment and generating and storing audio and timestamps files locally. The
data processing for this type of methodology requires the adjustment of the timestamps of
each node to a general frame of time. After the adjustment, the beamforming process is
carried out to generate the acoustic energy map.

2.3.2. Remote Recording Methodology

This methodology generates only one timestamp for all the audio signals captured by
the nodes in the WASN, shown in Figure 7. Hence, instead of storing the recorded data
locally, the data is sent through the local network to a central processing unit for storage.
The advantage of this methodology is that there is no need for post-processing multiple
timestamps. Each node of the WASN only needs to capture the acoustic data and transmit
it, reducing the load of all the processing units.
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Figure 7. Remote recording methodology.

3. Beamforming-Based Acoustic Energy Mapping

A beamformer usually employs a series of weights (or steering vector) to estimate
the radiation pattern related to a given steered position. These weights are calculated
based on the respective time difference of arrival, for the given steered position, for each
node in the WANS. To this effect, a collection of points (x, y) is proposed, referred here
as “proof points”. A beamformer and its respective set of weights are applied as if there
was an acoustic energy source at each proof point. The signal associated to that point is
reconstructed, and its energy calculated and recorded for its respective proof point. The
result is an acoustic energy map which was “sampled” at each proof point.

The aforementioned time differences depend on the geometry of the WASN and the
distance between the acoustic source and each node, as exemplified in Figure 8.

Figure 8. Distance between acoustic source and the nodes of a 4 nodes WASN process.

Let the amount of nodes inside the WASN be M, thus, the Cartesian coordinates of
each can be written as (x1, y1), (x2, y2), (x3, y3), · · · , (xM, yM). Let the frequency-domain
signal captured at each node ith node be Xi. Additionally, let the acoustic source position
be (xs, ys) (which in this case, is the location of a given proof point). The time of arrival of
the wavefront of the acoustic source to each ith node (ti) can be calculated by:

ti =

√
(xs − xi)2 + (ys − yi)2

c
(1)

where c = 343 m
s is the speed of sound in the air. Consequently, the vector of arrival times

(T = [t1, t2, · · · , tM]) can be expressed as:

T =

[√
(xs − x1)2 + (ys − y1)2

c

√
(xs − x2)2 + (ys − y2)2

c
· · ·

√
(xs − xM)2 + (ys − yM)2

c

]
(2)
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To reconstruct a signal S(x, y) at a given proof point located at (x, y), a series of weights
wi(x, y) are applied to the input signals Xi, namely:

S(x, y) =
M

∑
i=1

wi(x, y)HXi (3)

where wi(x, y)H is the complex conjugate factor. As mentioned earlier, the weights are
based on the time differences of arrival at each node, for each possible proof point. Their
calculation differ between beamforming methodologies. The beamformers proposed for
the generation of the acoustic energy map are:

• Delay and Sum (DAS).
• Minimum Variance Distortionless Response (MVDR).
• Steered-Response Power with Phase Transform (SRP-PHAT).
• Phase-based Binary Masking (PBM).

Once the signal is reconstructed for a particular proof point, its energy is proportional
to the signal amplitude squared.

E(x, y) ∝ ‖S(x, y)‖2 (4)

The acoustic energy map is then obtained by proposing a grid of proof points and
plotting the total energy associated of the signal in a period of time to each of them.

In the rest of these sections, the beamformer techniques are briefly explained, noticing
their differences, advantages and disadvantages.

3.1. Delay and Sum (DAS)

This is the simplest version of the beamforming techniques, since it relies in shifting
the input signals such that the information that is received from a given steered position is
aligned across all the input signals [20]. Thus, if summed, the signal in the given steered
position is amplified. To this effect, the weights for this beamformer are simply a series of
delay operators that counter the occurring time differences of arrival. That is to say, they
are calculated as:

wi(x, y) =


e−i2πω1t1 e−i2πω2t1 · · · e−i2πωN t1

e−i2πω1t2 e−i2πω2t2 · · · e−i2πωN t2

...
...

. . .
...

e−i2πω1tM e−i2πω2tM · · · e−i2πωN tM

 (5)

where ωl is the lth frequency bin. Usually, t1 is set to 0, and all the other ti’s are set relative
to that time, such that ti = t1 − ti. It is important to note that this set of weights is known
as the ‘steering vector’, and is re-used in other beamformer techniques.

3.2. Minimum Variance Distortionless Response (MVDR)

This technique approaches the problem of reconstructing the signal by aiming to
optimize the weights such that the energy that is not coming from a steered position is
minimized [21]. It does so by first expressing the output energy (|S(x, y)|2) in terms of
the co-variance (R = XXH) between the input signals (X = [X1, X2, · · · , XM]). Due to
Equation (3), and W(x, y) = [w1(x, y), w2(x, y), · · · , wM(x, y)], it is derived that:

|S(x, y)|2 = |W(x, y)HX|2 = (W(x, y)HX)(XHW(x, y)) = W(x, y)H RW(x, y) (6)

It carries out a minimization of such energy to obtain its optimized weights Wop(x, y),
with the following restriction:

Wdas(x, y)HWop(x, y) = 1 (7)
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where Wdas is the steering vector as calculated in Equation (5). This minimization has the
following generalized solution:

Wop(x, y) =
R−1Wdas(x, y)

Wdas(x, y)H R−1Wdas(x, y)
(8)

3.3. Steered-Response Power with Phase Transform (SRP-PHAT)

This technique tries to maximize the output signal of a DAS beamformer but in a
determined direction, and directly provides the power of the signal that arrives from such
direction [22,23].

The power of the output signal S(x, y), as described in Equation (3), is given by:

P(x, y) =
∫ ∞

−∞
|S(x, y, ω)|2dω (9)

where S(x, y, ω) is the ω frequency of S(x, y).
This integral is called the steered-response power and its discrete form can be writ-

ten as:

P(x, y) =
M−1

∑
n=0

M−1

∑
m=n+1

Rn,m(τn,m(xs, ys)) (10)

where τn,m is the time difference of arrival between nodes n and m of source located at
(xs, ys), and can be calculated similarly as in Equation (1), meaning:

τn,m(xs, ys) =

√
(xs − xn)2 + (ys − yn)2 −

√
(xs − xm)2 + (ys − ym)2

c
(11)

Furthermore, the factor Rn,m(τn,m(xs, ys)) is the cross-correlation between the nth and
the mth microphone of the network and it is calculated by:

Rn,m(τn,m(xs, ys)) =
1

2π

∫ ∞

−∞
ΨPHAT

n,m (ω)Xn(ω)X∗m(ω)eiωtdω (12)

where ΨPHAT
n,m is the weighting function in the frequency domain and the phase transform is:

ΨPHAT
n,m (ω) =

1
|Xn(ω)X∗m(ω)| (13)

Written in its discrete form, Rn,m(τ) is:

Rn,m(τn,m(xs, ys)) =
L

∑
l=1

Xn(ω)X∗m(ω)

|Xn(ω)X∗m(ω)| e
iωlτn,m(xs ,ys) (14)

It is important to note that the output of this technique is not a reconstructed signal,
but the power of the signal at a given point (x, y). When carrying out this technique over
different points, a 2-dimensional steered power response is provided, which be considered
as the acoustic energy map for our purposes.

3.4. Phase-Based Binary Masking (PBM)

Phase-based Binary Masking (PBM) [24,25] is not an actual beamformer, but it has
a similar application for the acoustic mapping. This technique employs the first stage of
the DAS beamformer, such that the information arriving from a given steered position is
aligned in all nodes. Then, the average phase difference |ϕ|ω is calculated between all of
the possible pairs of mth and nth nodes in the network, for all ω of the input signal.

|ϕ|ω =
2

M(M− 1)

M−1

∑
m=1

M

∑
j=n+1

|ϕm,ω − ϕn,ω | (15)
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where ϕm,ω is the phase of the signal captured at node m at frequency ω after it being
aligned by multiplying it by the weights in Equation (5).

Consequently, a phase difference threshold (ϕmax) is then used to establish if ω is a
frequency component of the reconstructed signal or not, effectively creating the following
binary mask:

B(x, y, ω) =

{
1, if |ϕ|ω ≤ ϕmax

0, otherwise
(16)

The output signal is then calculated as:

S(x, y, ω) = B(x, y, ω) ∗ X1(ω) (17)

4. Simulation Results and Analysis

In this section, the impact of synchronization errors in the generation of the acoustic
energy map are studied to determine the required precision levels. The hypothesis pre-
sented is that if there is an error in synchronization, the shape of the acoustic energy map
will be modified which will result in an error of the position of the acoustic sources.

For this analysis, an acoustic source is simulated on a known fixed point (x, y), as well
as a WASN with four nodes on a rectangular distribution with the source located in the
same plane. For simplicity, the position of the source is set at (x, y) = (0, 0), so the distance
between each microphone and the source is the same.

Then, the four previously described beamformers are used to reconstruct a signal at
each given proof point. The obtained acoustic map can be represented in a 3D plot where
the XY-plane is the physical plane of the WASN and the Z-axis represents the acoustic
energy associated to each point. Another way to present the acoustic map is as a heat-map,
where each proof points is presented with a determined color associated to its energy.

The characteristics of the simulated acoustic environment are:

• Sampling rate of the capturing nodes: fs = 48, 000 Hz
• Speed of sound in air: c = 343 m

s
• Amplitude signal of the source = cos(2 ∗ π ∗ω ∗ t)
• Frequency of the source: ω = 300 Hz
• Time between samples: τs =

1
fs
= 0.0208 ms

• Coordinates of the source: (x, y) = (0, 0)
• Coordinates of the nodes:

– (x1, y1) = (−0.32, 0.32)
– (x2, y2) = (0.32, 0.32)
– (x3, y3) = (−0.32,−0.32)
– (x4, y4) = (0.32,−0.32)

As it was mentioned, the time-dependent energy function is proportional to the
squared amplitude of the time-dependent signal function, for simplicity and without losing
generality, the proportionality constant is proposed to be 1, so that the energy function is:

E(x, y, t) = ‖S(x, y, t)‖2 (18)

The original amplitude and energy for the source are represented in Figure 9:
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Figure 9. Original amplitude and energy signal of the source.

The signals captured by the four nodes of the simulated WASN are shown in Figure 10.
In this image, all of the signals are overlapped since all of them have the same arrival time.
In the synchronization analysis, one of this nodes will be artificially de-synchronized so
that the signal is delayed a certain amount of samples.

Figure 10. Input signals of the four nodes of the WASN.

The acoustic maps obtained by applying each of the beamformers to the simulated
input signals are shown in Figure 11, and their respective heatmaps are shown in Figure 12.
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Figure 11. Acoustic energy map with: DAS, MVDR, SRP-PHAT and PBM beamformers.

Figure 12. Heatmap of acoustic energy for beamformers: DAS, MVDR, SRP-PHAT and PBM.
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The proof point with the largest energy is (x, y) = (0, 0). The energy obtained with the
reconstructed signal in this proof point with the DAS, MVDR and PBM beamformers are
shown in Figure 13. Additionally, the 2D steered power response provided by SRP-PHAT
is also shown.

Figure 13. Energy of the reconstructed input signal at (x, y) = (0, 0).

To analyze the performance on the generation of the acoustic energy map, the total
energy in a period of time will be calculated. In the simulated signal, the acoustic energy
in a period of time can be calculated by the integral and approximated by the trapezoidal
method with the following expression:

∫ t=t f

t=0
S(x, y, t)dt ≈

t f

2N

N

∑
n=1

(S(x, y, tn) + S(x, y, tn+1)) :=
N

∑
n=1

S(x, y, t) (19)

where S(x, y, t) is the simulated signal of the source, t f is the time length of the signal, and
N is the size of the signal in number of samples. The calculated sum for the simulated
signal is:

t f

2N

N

∑
n=1

(cos2(2 ∗ π ∗ω ∗ tn) + cos2(2 ∗ π ∗ω ∗ tn+1)) = 0.0049791 (20)

While the calculated sum for the reconstructed energy in proof point (0, 0) is:

N

∑
n=1

SDAS(0, 0, t) =
N

∑
n=1

SMVDR(0, 0, t) =
N

∑
n=1

SPBM(0, 0, t) = 0.0049861 (21)

This shows that the energy shown in the acoustic map is quite close to the energy of
the original simulated signal.

Furthermore, the results show that the beamformers generate an acoustic energy map
with an important amount of energy centrally located around the position where the simu-
lated signal originated. However, there are some considerations that need to be addressed:

• There are differences in the shape of the acoustic energy map obtained with each
beamformer. In this regard, some are more robust against noise and reverberation
(such as MVDR), while others are more efficient in terms of processing time and
simplicity on their implementations (such as DAS and PBM). The main objective of
this analysis is in terms of performance in the presence of errors in synchronization,
thus, the analysis of these other elements are left for future work.

• The value of the calculated energy from the reconstructed signal in the proof point
(x, y) = (0, 0) for DAS, MVDR and PBM has a small 0.14% error in comparison to
the energy of the original input signal. This can be considered as evidence of good
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performance of these beamformers when it comes to reconstructing the source of
interest in the proof point that matches the simulated position of the source.

• DAS, MVDR and SRP-PHAT provide moderately high energy values in proof points
that are not at the position of the source. The PBM beamformer finds energy only in
the simulated position of the source.

• The PBM beamformer seems to be the most accurate for locating the position of the
source. However, this technique requires a parameter to be set a-prori, thus, there is an
extra stage of calibration for the implementation of this technique.

• The SRP-PHAT beamformer, like DAS and MVDR, finds energy in points where
there is not acoustic energy from the source, but also encounters a pattern that is not
representing an expected effect of the beamformer.

Simulation of Synchronization Error

The acoustic energy map model for the four proposed beamformers results in the
correct localization of the simulated acoustic source. Now, their performance in the presence
of error in synchronization will be analyzed.

It is important to remember that the beamformers rely on the proper synchronization
of node network, which is not always the case with WASNs. To simulate this, a delay
(established as a determined number of samples) is artificially inserted in the first simulated
node, located in (x1, y1) = (−0.32, 0.32), in the upper left position of the array, referred
here as “sync-error node”.

A synchronization error implies that before the signal arrives to the delayed node,
there is no acoustic signal, as shown in Figure 14: the delayed input signal bears a value
of zero for the simulated delay time. The beamformers may have problems with this
discontinuity in the time domain, which may be solved by applying a window (such as
Hann or Hamming) to reduce its effects, but this analysis is left for future work.

(a) 20 samples delay (b) 40 samples delay

(c) 60 samples delay (d) 80 samples delay

Figure 14. Input signals delayed by 20 samples intervals.
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This simulated synchronization error is then fed to the beamformers, and its impact is
observed in the following figures, and quantified in the change in the shape of the acoustic
energy map, in the position of the source and in the value of its reconstructed energy.

The DAS beamformer energy maps are shown in Figure 15. As it can be seen, the posi-
tion of the maximum value of energy (and its surrounding “hill” or lobe) gets reallocated
to a different position as the samples delay increases, shifting away from the sync-error
node. In Figure 15a,b, this behavior is consistent up until the 60-sample delay; from then
on, another lobe appears close to the sync-error node.

(a) 20 samples delay heatmap (b) 40 samples delay heatmap

(c) 60 samples delay heatmap (d) 80 samples delay heatmap

Figure 15. DAS energy heatmap for the simulated delay in capture.

The “moving” trends of the DAS beamformer are also present in the MVDR beam-
former, as it is shown in Figure 16. However, an important difference is that the size of the
lobes are far smaller, providing better precision.
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(a) 20 samples delay heatmap (b) 40 samples delay heatmap

(c) 60 samples delay heatmap (d) 80 samples delay heatmap

Figure 16. MVDR energy heatmap for the simulated delay in capture.

The reason why these trends occur is many-fold: these beamformers rely on the
time-difference-of-arrival between nodes, and a delay adds to this, resulting in the source
“moving”; they also compensate these time differences by artificially shifting the input
signals, which bares a cyclical a nature, causing the “return” to the sync-error node. In any
case, it can be seen that for DAS and MVDR the shape of the acoustic energy map changes
if the nodes of the network aren’t synchronized. This results in a change of the estimated
position of the source, determined by locating the maximum value of energy in the map.

As for the PBM beamformer, as it can be seen in Figure 17, with most simulated delays,
the maximum energy value is in the (x, y) = (0, 0) position. However, there are some
simulated delays in which this is not the case.
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(a) 20 samples delay heatmap (b) 40 samples delay heatmap

(c) 60 samples delay heatmap (d) 80 samples delay heatmap

Figure 17. PBM energy heatmap for the simulated delay in capture.

As for the SRP-PHAT, since it does not calculate the actual energy (only the steered
power), the heatmaps shown in Figure 18 aren’t technically acoustic energy maps. However,
they can still be used for locating acoustic sources. It can be seen that the shape of the
steered power response map doesn’t change much, even between 20 and 80 delay samples
(reason which no other heatmaps is shown in Figure 18). Meaning, this technique is mainly
used to only determine the most probable proof point where a single source may be located.
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(a) 20 samples delay heatmap (b) 80 samples delay heatmap

Figure 18. SPR-PHAT energy heatmap for the simulated delay in capture.

With these results it is possible to find the position of the acoustic source by locating
the maximum value of energy. Thus, the next part of the analysis is to determine, if there
is any, a relationship between the errors in synchronization and the position shift of the
acoustic source. After finding the position of the acoustic source, the difference between the
known position of the source rs and the obtained position of the source rm was calculated:

∆~r = |~rs − ~rm| (22)

The results of the simulation in 10 samples intervals are shown in Figure 19. It can
be seen that there is a tendency in the DAS and MVDR beamformers to increase the
localization error as the error in synchronization increases. The PBM and the SRP-PHAT
beamformer present the lowest errors in localization, but the PBM beamformer generates
errors in localization for particular values of delay (not with the tendency observed in DAS
and MVDR). The SRP-PHAT beamformer has the most consistent performance, but given
the noisiness of the shape of its steered response, it should only be used for acoustic source
localization, not for the generation of an acoustic energy map.

Figure 19. Localization errors for a source in (x, y) = (0, 0) and errors in synchronization in node 1.
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As it can also be seen in Figure 19, there is a considerable “jump” in localization
error over the 60-sample simulated delay. Thus, this is the upper delay value we used to
establish a relationship between localization error and synchronization error. In Figure 20,
this relationship is shown using all possible delays in the range of 1 to 60 samples:

Figure 20. Errors in localization for all beamformers.

As it can be seen, there is a near-linear relationship between localization error and
synchronization for DAS and MVDR. Applying basic statistic fitting, these are the models
that best describe this relationship:

• ∆~rDAS = 124.8∆t− 0.0002519, with R2 = 0.9933
• ∆~rMVDR = 123.6∆t− 0.0019950, with R2 = 0.9844

where ∆t is the synchronization error in node 1.
It is important to note that MVDR has some values for ∆t where ∆~r is much larger

than the rest, thus, were treated as outliers for the fitting process. The resulting location-
synchronization models for DAS and MVDR are shown in Figure 21:

Figure 21. Fitting for the DAS and MVDR beamformer errors in localization.

There is a “step” behavior in Figure 21, which can be explained by the grid-type search
that the acoustic energy map is based on. Additional simulations were carried out with
a larger number of proof points, and it was observed that these “steps” were closer to
each other, i.e., the grid is refined. The maximum values for synchronization errors didn’t
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change, but the processing time did increased considerably. Thus, there is a compromise to
be made: a refined “step” behavior for a larger processing time.

As for the PBM and the SRP-PHAT beamformers, they tend to locate the acoustic
source exactly in the position where it was simulated in a near-consistent manner across
the simulated time-delays, having an error near to zero for the same limit of 60 samples of
delay. Thus, no relationship model was calculated for these beamformers.

5. Experimental Results and Analysis

In this section, the recording methodologies proposed for the capture of acoustic signal
and its application on the generation of the acoustic energy map will be analyzed. A WASN
composed by the devices described in Section 2 was used to capture an acoustic source (a
speaker emitting an acoustic sinusoidal wave of 300 Hz) placed in the center of the WASN.
The network was built into a rectangular array with the dimensions presented in Section 4.
The WASN and the capture node are shown in Figure 22a,b. The schematic representation
of the WASN and the source is shown in Figure 23.

(a) WASN and speaker for testing (b) Capture node

Figure 22. Experimental design for testing.

Figure 23. Experimental array for the evaluation of the methodologies.

Each of the nodes captured a signal with the MEMS microphones. Then, a post-processing
adjustment was applied for the generation of the acoustic energy model, as follows:

1. Retrieve data and timestamps adjustment. Each node generates audio and time data
files for the local recording methodologies: an audio file (in WAV format) for the
captured signal and a text file with the timestamps generated during the recording.
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Afterwards, these files are retrieved by a processing unit. The four captured signals
are shown in Figure 24a, without any post-processing, with their own timestamps
and amplitude values. As it will be seen later, when the local methodologies for signal
capture are implemented, each node begins recording at a different time. Thus, the
timestamps of each of the recordings of the nodes are adjusted to begin at the time
where all the timestamps are closest. Each recording has associated the time of the
local clock, so it is also necessary to establish a global frame of reference for the time.
All signals are normalized and adjusted to begin at t = 0 as Figure 24b shows.

(a) Input signals without post-processing (b) Input signals with adjusted timestamps

Figure 24. Retrieving and adjusting of audio data signals.

2. Sample selection. With the adjusted timestamps, a segment of the full signal was
selected for the generation of the acoustic energy map. A Hann window was applied
to this segment to avoid frequency bleed-over effects when the signals are processed
by all the proposed beamformers shown in Figure 25a,b.

(a) Sample of the acoustic signal (b) Signal with a Hann window applied

Figure 25. Post-processing of the acoustic input signals.

3. Acoustic energy map generation. The post-processed captured signals were pro-
cessed by the beamformers to generate the acoustic energy map with the techniques
described in Section 3. In this stage of the processing it is also possible to determine
the position of the acoustic source by finding the maximum value on the acoustic
energy map.
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5.1. Synchronization Analysis

Given the location of the acoustic source, its signal should arrive to the each of the
nodes of the WASN at approximately the same time. Thus, the analysis of synchronization
can be based on the difference of the arrival times of the acoustic signal of the source to each
node of the WASN. Additionally, it can also be based on the shape of the acoustic energy
map generated by the signals captured by the WASN, compared to the ones obtained in the
simulation without simulated synchronization errors, as well as to each other.

For the difference in arrival times analysis for each synchronization methodologies, the
time of arrival of the signal of the source to each node was calculated and, by taking node 1
as reference, the differences of arrival times were calculated. In a perfectly synchronized
WASN, with a perfectly placed acoustic source, the difference in arrival times between the
reference node and all the other in the WASN should be zero. It is important to mention
that synchronization errors may happen because of wireless interferences or mishaps
in the TCP/IP hardware/software stack; the geometry of the array has no effect on the
synchronization errors. Thus, each methodology will perform differently solely based on
its characteristics and implementation. The results are shown in Figure 26.

Figure 26. Synchronization errors, as boxplots, for each node and each methodology.

These results show that the PTP-Local methodology has the lowest errors in synchro-
nization, while the NTP-Local methodology has the largest errors in synchronization.

As for the map-shape analysis, in the following sub-sections (one for each synchro-
nization methodology), two maps for each beamformer will be presented. The map on the
left is representative of the best maps the beamformer provided given the synchronization
methodology, and the map in the right representing the worst maps. The best and worst
energy maps were obtained by capturing the signal of an acoustic energy source with
a WASN as shown in Figures 22 and 23. The evaluation process involved running each
methodology to capture 30 samples of 60 s each. With these signals, in post-processing,
the beamformers were applied to generate an acoustic energy map from each sample. The
map that was the most similar to the real acoustic environment is presented here as the
best map. The worst map is the one that presented the most discrepancy with the real
acoustic environment.

5.1.1. NTP-Local Methodology

The NTP-Local methodology generated the worst acoustic energy maps, which is
expected since it obtained the largest amount of synchronization errors. Thus, in the worst
cases, the beamformers did not generate an acoustic energy map that represented the nature
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of the acoustic environment. However, in the best cases where synchronization errors were
low, the generated acoustic energy maps were able to locate a maximum of energy in the
shape of an acoustic source.

For DAS, Figure 27a,b, the shape of the acoustic energy map doesn’t present a max-
imum value as a point source, instead it is distributed in a region (or lobe). For MVDR,
Figure 28a,b, the energy map presents two regions where there seems to exists two acoustic
sources, neither of which correspond to the real position of the acoustic source. For PBM,
Figure 29a,b, the best case presented an almost point acoustic source, but not in the position
of the acoustic source; in the worst case, several proof points presented a considerable
amount of acoustic energy, none of which represented the acoustic source’s position. Finally
for SPR-PHAT, Figure 30a,b, in the best map, the most likely point for the localization of
the source is close to the real position; in the worst map, there are many possible points
where the source can be located.

Figure 27. Acoustic energy maps obtained with DAS (left: best, right: worst).

Figure 28. Acoustic energy maps obtained with MVDR (left: best, right: worst).
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Figure 29. Acoustic energy maps obtained with PBM (left: best, right: worst).

Figure 30. Acoustic energy maps obtained with SRP-PHAT (left: best, right: worst).

5.1.2. PTP-Local Methodology

The PTP-Local methodology shows an improvement over the NTP-Local methodology
in terms of the shape and position of the lobes in the acoustic energy map. It was the most
consistent of the methodologies, for all of the beamformers, locating the acoustic source
near its real position.

For DAS, Figure 31a,b, even in the worst map, the acoustic energy map always
presented a lobe with a localized maximum acoustic energy. For MVDR, Figure 32a,b, it
presents smaller lobes (which are desirable), centered around a location that is close to the
real location of the source. For PBM, Figure 33a,b, it presents the same problem as it did
with the NTP-Local methodology: when there is a synchronization error, the beamformer
finds energy in many proof points of the acoustic energy map. For SPR-PHAT, Figure 34a,b,
it also performs similarly as with the NTP-Local methodology.
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Figure 31. Acoustic energy maps obtained with DAS (left: best, right: worst).

Figure 32. Acoustic energy maps obtained with MVDR (left: best, right: worst).

Figure 33. Acoustic energy maps obtained with PBM (left: best, right: worst).
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Figure 34. Acoustic energy maps obtained with SRP-PHAT (left: best, right: worst).

5.1.3. PTP-Remote Methodology

The PTP-Remote methodology shows that when the WASN is correctly synchronized,
the acoustic energy maps obtained are close in precision to the ones obtained with the
PTP-Local methodology. However, when the WASN presents synchronization errors,
the maps obtained have a performance with the same problems as the ones seen in the
NTP-Local methodology.

It is important to mention that, although the worst maps are similar to the worst
maps obtained using NTP-Local methodology for DAS, Figure 35a,b, in the case of MVDR,
Figure 36a,b and PBM, Figure 37a,b, their best maps are similarly localized compared to
their respective best maps obtained using the PTP-Local methodology, except for SPR-
PHAT, Figure 38a,b. Additionally, acquiring the audio data is more practical using the PTP-
Remote methodology compared to the other two methodologies (which require manual
extraction from each node).

Figure 35. Acoustic energy maps obtained with DAS (left: best, right: worst).
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Figure 36. Acoustic energy maps obtained with MVDR (left: best, right: worst).

Figure 37. Acoustic energy maps obtained with PBM (left: best, right: worst).

Figure 38. Acoustic energy maps obtained with SRP-PHAT (left: best, right: worst).

6. Discussion

In terms of precision in the localization of a simulated acoustic source, PBM tends
to find high energy values only in the simulated position of the source, which is the
ideal expected behavior. However, it is important to note that PBM requires a parameter
(the phase difference threshold) to be established prior to the generation of the acoustic
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energy map; the rest of the beamformers do not require any a-priori calibration. As for
SRP-PHAT, although it does not technically create an acoustic energy map, the location
with the highest steered power matches the location of the simulated acoustic source
even when synchronization error are inserted. And as for DAS and MVDR, although
they present larger localization errors when synchronization errors are simulated, the
relationship between these errors is near-linear. This insight can be very valuable since
this relationship can be used to establish a type of precision threshold given an expected
level of synchronization errors which, in turn, can be estimated from the nature of a given
application scenario. Thus, from the findings in the experimental analysis, a user can know
beforehand what type of localization errors are bound to happen using a WASN to create
an acoustic energy map.

Interestingly, DAS and MVDR provide very similarly shaped acoustic energy maps,
and share similar tendencies of shifts of the location of the lobe above the simulated acoustic
source, displacing it away from the sync-error node up to a simulated synchronization error
of 60 samples. This can be explained by the geometrical characteristics of the array and its
relationship to the wavelength of the signal. The analysis of the nature of the beamformers
and its implications to the acoustic energy map generation are left for further studies.

The experimental analysis show that an acoustic energy map can be generated using
any of the described synchronization methodologies. The NTP-Local and the PTP-Remote
methodologies provide the largest synchronization errors, while the PTP-Local methodol-
ogy presented the lowest synchronization errors, as well as the lowest variance. Addition-
ally, when an acoustic source was located in the center of the array, where the difference in
arrival times between nodes should close to 0, the PTP-Local methodology provided the
lowest values and variance. In the simulation analysis, 60 samples was found to be a type of
upper threshold of synchronization error; with higher values, a big “jump” in localization
errors was observed with DAS and MVDR. A synchronization error of 60 samples, sampled
at 48 kHz, is equivalent to 1.25 ms. Connecting this with the observed mean difference of
arrival times to the reference capture node (mean1−2 = 0.0958 ms, mean1−3 = −0.1555 ms,
and mean1−4 = 0.3035 ms) when using the PTP-Local methodology, it can be deduced that
it provides synchronization errors well below the aforementioned threshold and, thus, well
suited to calculate acoustic energy maps with any of the described beamformers.

Having calculated an acoustic energy map using all the described beamformers along
with the described synchronization methodologies, the position of their maximum value
was found and considered as the estimated position of the acoustic source. The localization
errors in the experimental scenario are shown in Table 3. The statistical measures presented
are the mean and the Median Absolute Deviation (MAD) [26], which is a distribution-
free measure of dispersion. These quantities are used as a comparison factor between
methodologies.

Table 3. Localization error analysis for each methodology and each beamformer.

Methodology Localization Error [m] DAS MVDR SRP-PHAT PBM

NTP-Local Mean 0.3429 0.3224 0.2814 0.3198
MAD 0.1013 0.1182 0.0823 0.1359

PTP-Local Mean 0.2585 0.2533 0.3046 0.2151
MAD 0.1069 0.1126 0.0949 0.1247

PTP-Remote Mean 0.2461 0.2922 0.3067 0.2803
MAD 0.0930 0.1005 0.1015 0.1021

As it can be seen, these localization errors are considerably larger than the ones
found in the simulation analysis. This is expected since a real acoustic scenario has more
variables that were not simulated (reverberation, other interferences, etc.). Additionally,
the simulated synchronization errors were inserted into just one node (the sync-error node),
while in the experiment scenario all nodes are affected by such issues. Finally, the speaker
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used in the experiments is not a point acoustic source, as was the case in the simulation.
However, given all these factors, it is important to note that since these acoustic maps were
generated from signals captured using a WASN, the placement of the nodes are not limited
to any tethering, thus, are easily positioned anywhere in the acoustic scenario, such as in a
living room. Considering this, the observed localization errors are reasonably low, with
PBM using the PTP-Local methodology providing the lowest mean error. Interestingly,
SRP-PHAT provides the lowest variance (also using the PTP-Local methodology), however,
it provides the largest mean error, thus, it may not be as suitable as PBM.

7. Conclusions

In this paper, three different synchronization methodologies were used to generated
an acoustic energy map applying four popular beamforming techniques: Delay-and-Sum
(DAS), Minimum Variance Distortionless Response (MVDR), Steered-Response Power with
Phase Transform (SRP-PHAT), and Phase-based Binary Masking (PBM).

The synchronization methodologies were conformed by: (1) a WASN capture protocol
(either local or remote) used to capture a multi-channel audio recording from the environ-
ment; and (2) a synchronization protocol, which could be either Network Time Protocol
(NTP) or Precision Time Protocol (PTP). The beamforming techniques were then applied
to the captured signals, to measure the energy coming from a given series of proof points
(arranged in a grid) to generate the acoustic energy map.

A simulation was carried to, first, validate this proof of concept, and to characterize
the behavior each beamforming technique against a simulated synchronization error.

Furthermore, an experimental scenario was used to test the synchronization method-
ologies. The devices used for capture nodes in the WASN were conformed by a Raspberry
4B+ as a processing unit and a MEMS microphone breakout-board. This configuration was
chosen because of its low cost, accessibility and straightforward implementation.

With the results obtained by simulation and experiments, the following conclusions
can be stated:

• In the simulation, SRP-PHAT and PBM showed higher robustness against synchro-
nization errors. DAS and MVDR were more sensitive, but a near-linear relationship
between localization errors and synchronization errors was found which can be used
for ease of expectation of the user.

• In the experimental scenario, from a subjective point of view, MVDR and PBM pro-
vided an acoustic energy map close to what was expected, with either a lobe or point
over the acoustic source location; SRP-PHAT and DAS provided unexpected maps.
While PBM requires a parameter to be calibrated beforehand, it generates a more pre-
cise acoustic energy map. And, while MVDR generates a less precise acoustic energy
map, it is robust against environmental elements (such as noise and interferences) and
does not require any a-priori parameter calibration.

• The PTP-Local and PTP-Remote methodologies are the most suitable for acoustic
energy mapping using a WASN. The PTP-Local methodology has the best performance
in terms of synchronization errors, but the process to capture, retrieve and process the
data collected is more tedious than the PTP-Remote methodology, since it requires
the user to manually extract the recording from the capture node. The PTP-Remote
methodology is less reliable in terms of synchronization (with a higher mean error
value). However, the captured signals can still be used to provide a close-to-precise
acoustic energy map (with either PBM or MVDR), while being easier to implement
(since no synchronization agent is required to run locally in the capture nodes), and
the recordings are directly streamed to the server (no manual extraction necessary).

For future work, other synchronization protocols are to be explored. Additionally,
other characterizations are to be carried out, such as: robustness against noise and rever-
beration, processing time, implementation complexity, etc. Finally, the effect of different
windows (other than Hann, used in this work) to reduce time-domain discontinuities is to
be characterized.
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