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Abstract: The increasing ubiquity of big data and cloud-based computing has led to increased
concerns regarding the privacy and security of user data. In response, fully homomorphic encryption
(FHE) was developed to address this issue by enabling arbitrary computation on encrypted data
without decryption. However, the high computational costs of homomorphic evaluations restrict
the practical application of FHE schemes. To tackle these computational and memory challenges, a
variety of optimization approaches and acceleration efforts are actively being pursued. This paper
introduces the KeySwitch module, a highly efficient and extensively pipelined hardware architecture
designed to accelerate the costly key switching operation in homomorphic computations. Built on
top of an area-efficient number-theoretic transform design, the KeySwitch module exploited the
inherent parallelism of key switching operation and incorporated three main optimizations: fine-
grained pipelining, on-chip resource usage, and high-throughput implementation. An evaluation on
the Xilinx U250 FPGA platform demonstrated a 1.6× improvement in data throughput compared
to previous work with more efficient hardware resource utilization. This work contributes to the
development of advanced hardware accelerators for privacy-preserving computations and promoting
the adoption of FHE in practical applications with enhanced efficiency.

Keywords: fully homomorphic encryption (FHE); key switching; homomorphic multiplication;
Cheon–Kim–Kim–Song (CKKS); number theoretic transform (NTT)

1. Introduction

With the explosion of the Internet-of-Things-based data and the widespread use of
machine learning (ML) as a cloud-based service, securing private user data during ML
inferences has become a pressing concern for cloud-service providers. Fully homomorphic
encryption (FHE) is a promising solution for preserving sensitive information in cloud
computing because it provides strong defense mechanisms and enables the direct computa-
tion on encrypted data (ciphertext) while preserving confidentiality [1,2]. However, the
requirement for high degrees of security leads to complex parameter settings, resulting in
expensive computation on large ciphertext, which limits the practical realization of FHE-
based applications. Cloud-side analytics can be resource-intensive and time-consuming,
making it necessary to develop cryptographic accelerators to facilitate the deployment
of real-world applications. Cryptographic accelerators are designed to reduce the com-
putational overhead of homomorphic functions, thus enabling faster and more efficient
computation on encrypted data. The development of such accelerators is crucial to unlock
the full potential of FHE-based solutions, make it more accessible to a wider range of users
and supporting the secure processing of sensitive data in real-world settings. Figure 1
illustrates an end-to-end FHE-based cryptosystem with primary homomorphic operations
performed in the cloud server.

FHE cryptographic protocols typically involve integer- and lattice-based schemes.
The most efficient lattice-based schemes rely on the ring learning with errors (RLWE)
problem, which provides strong security guarantees and the desired performance [3].

Sensors 2023, 23, 4594. https://doi.org/10.3390/s23104594 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23104594
https://doi.org/10.3390/s23104594
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0311-9387
https://orcid.org/0000-0001-8815-1927
https://doi.org/10.3390/s23104594
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23104594?type=check_update&version=1


Sensors 2023, 23, 4594 2 of 17

In RLWE-based FHE protocols, the input messages are encrypted by adding noise, and
the generated ciphertexts are composed of two polynomial rings. The growth of noise
through homomorphic computations limits the circuit depth, and the selection of FHE
parameters must balance the security requirements with computational complexity [4].
Parameter selection primarily involves polynomial degree N, and modulo integer Q with
at least 128-bit security is typically required to guard against unpredictable attacks [5]. To
support multiplicative depth, N increases proportionally. High-circuit-depth FHE schemes
inevitably have the drawback of large ciphertexts, which leads to expensive computations,
high-bandwidth data movement, and large storage-space requirements.

Figure 1. Overall FHE-based cryptosystem with main operations: (1) encryption, (2) homomorphic
evaluation, and (3) decryption.

Primary homomorphic operations involve addition, multiplication, and permutation
of ciphertexts. Homomorphic multiplication between ciphertexts is often computationally
expensive because of the convolution of polynomial coefficients. Figure 2 shows a general
diagram of the multiplication between two ciphertexts that dominates homomorphic
operations. Initially, ciphertext consists of two component polynomials. The ciphertext
multiplication results in a tuple of polynomials, making further computation challenging.
Thus, an operation is required to revert the ciphertext to its original form. An expensive
operation known as key switching is required to relinearize the ciphertext. However,
key switching is computationally intensive with number theoretic transform (NTT) and
inverse NTT (INTT) operations being dominant. Therefore, developing key switching
hardware accelerators is significant for speeding up homomorphic multiplication and
realizing FHE-based applications.

Figure 2. Ciphertext multiplication involving the relinearization step (that is, key switching operation).

1.1. Related Works

While FHE holds potential, its primary limitation is inefficiency, which stems from
two factors: complex polynomial operations and time-consuming ciphertext management.
To tackle the computational and memory demands of homomorphic functions, various
optimization and acceleration efforts are underway. Table 1 presents FHE accelerators, high-
lighting the hardware utilized and features of the accelerators. Initially, FHE acceleration
depended on general hardware features. However, CPUs lack the capacity to effectively
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harness FHE’s inherent parallelism [6]. GPU-based implementations tap into this paral-
lelism, but GPU’s extensive floating-point units remain underused as FHE tasks mainly
involve integer operations [7–9]. Furthermore, neither CPUs nor GPUs offer sufficient main
memory bandwidth to cope with FHE workload’s data-intensive nature.

Table 1. Overview of CKKS-supported HE accelerations.

Name Year Hardware Design N Lmax Acceleration

Privft [7] 2020 GPU SW 210–216 44 Leveled HE

100x [8] 2021 GPU SW 216–217 44 Bootstrapping

TensorFHE [9] 2023 GPU SW 215–216 57 Bootstrapping

F1 [10] 2021 ASIC SW/HW 212–214 24 Bootstrapping

CraterLake [11] 2022 ASIC SW/HW 211–216 60 Bootstrapping

BTS [12] 2022 ASIC SW/HW 217 44 Bootstrapping

ARK [13] 2022 ASIC SW/HW 216 23 Bootstrapping

HEAX [14] 2020 FPGA RTL 212–214 7 Leveled HE

HEXL-FPGA [15] 2021 FPGA HLS 210–214 7 Leveled HE

coxHE [16] 2022 FPGA HLS 211–213 3 Leveled HE

Medha [17] 2023 FPGA RTL 214–215 9 Leveled HE

Poseidon [18] 2023 FPGA HLS 216 57 Bootstrapping

FAB [19] 2023 FPGA RTL 216 23 Bootstrapping

To enhance FHE scheme performance, researchers have been exploring custom hard-
ware accelerators using ASIC and FPGA technologies. ASIC solutions [10–13] show
promise, as they surpass CPU/GPU implementations and bridge the performance gap
between plaintext and ciphertext computations. However, to accommodate large on-chip
memory, expensive advanced technology nodes such as 7 nm or 12 nm are required for
ASIC implementations. Furthermore, designing and fabricating these ASIC proposals
demand significant engineering time and high non-recurring costs. Since FHE algorithms
are not standardized and continue to evolve, any changes would necessitate major ASIC
redesign efforts. Conversely, FPGA solutions are more cost-effective than ASICs, offer
rapid prototyping and design updates, and are better equipped to adapt to future FHE
algorithm modifications.

Several studies have proposed FPGA-accelerated architecture designs for FHE [14–19].
Notably, Riazi et al. introduced HEAX, a hardware architecture that accelerates CKKS-based
HE on Intel FPGA platforms and supports low parameter sets [14]. However, the architec-
ture faces high input/output and memory interface bandwidths, as well as costly internal
memory, making it difficult to place and route multiple cores on the target FPGA platform.
Han et al. proposed coxHE, an FPGA acceleration framework for FHE kernels using the
high-level synthesis (HLS) design flow [16]. Targeting key switching operations, coxHE ex-
amined data dependence to minimize interdependence between data, maximizing parallel
computation and algorithm acceleration. Mert et al. proposed Medha, a programmable
instruction-set architecture that accelerates cloud-side RNS-CKKS operations [17]. Medha
featured seven residue polynomial arithmetic units (RPAU), memory-conservative de-
sign, and support for multiple parameter sets using a single hardware accelerator with a
divide-and-conquer technique. However, these three FPGA-based implementations only
support small parameter sets, insufficient for bootstrapping. Recently, Yang et al. pro-
posed Poseidon, an FPGA-based FHE accelerator supporting bootstrapping on the modern
Xilinx U280 FPGA [18]. Poseidon employed several optimization techniques to enhance
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resource efficiency. Similarly, Agrawal et al. presented FAB, an FPGA-accelerated design
that balances memory and computing consumption for large homomorphic parameter
bootstrapping [19]. FAB accelerates CKKS bootstrapping using a carefully designed datap-
ath for key switching, taking full advantage of on-chip 43 MB on-chip storage. However,
the design’s extensive parallelism consumes numerous logic elements, especially with
larger parameter sets. Additionally, inefficient scheduling can result in redundant resource
consumption and complex workflow synchronization, leading to suboptimal performance.
In this work, we adopt a pipelined KeySwitch design to simplify scheduling and target high-
throughput implementation. Our design method leverages FPGA fabric’s programmable
logic elements and enhances on-chip memory utilization.

1.2. Our Main Contributions

This study presents a comprehensive hardware architecture for the KeySwitch acceler-
ator design, which operates in a highly pipelined manner to speed up CKKS-based FHE
schemes. Built on compact NTT and INTT engines [20], the KeySwitch module efficiently
employs on-chip resources. Importantly, our design approach significantly reduces internal
memory consumption, allowing on-chip memory to hold temporary data. The design
executes subfunctions concurrently in a pipelined and parallel manner to boost throughput.
We demonstrate an example design supporting a three-level parameter set. The proposed
KeySwitch module was evaluated on the Xilinx UltraScale+ XCU250 FPGA platform, and
we provide an in-depth discussion of the design methodology and area breakdown for bet-
ter understanding of key operations. Compared to the most related study, our KeySwitch
module achieves a 1.6x higher throughput rate and superior hardware efficiency.

The remainder of this paper is organized as follows: Section 2 provides an overview
of the underlying operations of RLWE-based HE schemes. Section 3 describes the key
switching algorithm in detail, and Section 4 presents the design of our KeySwitch module.
Section 5 presents the experimental results, compares our approach with related works,
and discusses our findings. Finally, Section 6 concludes the study.

2. Background

CKKS-based HE schemes have been extensively studied to perform meaningful com-
putations on encrypted data of real and complex numbers. In the encrypted data domain,
the ciphertext often consists of two N-degree polynomials, and each coefficient is an inte-
ger modulo Q. Therefore, the underlying homomorphic operations in RLWE-based HE
schemes share similarities, enabling the development of a single hardware accelerator that
can support multiple HE instances. Our study primarily focuses on accelerating CKKS-
based homomorphic encryption; however, the operations described at the ciphertext level
have a broad applicability to almost all lattice-based homomorphic encryption schemes.

2.1. Residue Number System

The Chinese remainder theorem (CRT) enables a polynomial in RQ to be represented
as an RNS decomposition with smaller pairwise coprimes such that Q = ∏L

i=0 qi [21]. This
enables polynomial a in RQ to be represented in RNS channels as a set of polynomial
components. For instance, considering an RNS representation with three pairwise co-
prime moduli q0, q1, q2, the polynomial a can be represented as a set of three polynomials:
a ≡ (a0, a1, a2) mod (q0, q1, q2), where each ai is a polynomial in Rqi. This technique
can significantly reduce the magnitude of coefficients and improve the performance of
arithmetic operations in HE.

a = ([a]q0 , . . . , [a]qi ) ∈
L

∏
i=0

Rqi (1)
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We denote the polynomial component in a ring field Rqi = Zqi

/
(XN + 1) as follows:

[a]qi = a0 + a1X + . . . + aN−1XN−1 ∈ Rqi (2)

Thus, arithmetic operations on large integer coefficients can be performed for each smaller
modulus without any loss of precision.

2.2. Gadget Decomposition

Let q be the modulus and g = (g0, g1, . . . , gd−1) ∈ Zd be a gadget vector. A gadget
decomposition [22], denoted by g−1 : Zq → Zd, maps an integer a ∈ Zq into a vector
a = g−1(a) ∈ Zd

q and 〈g−1(a), g〉 = a (mod q). By extending the domain of the gadget
decomposition g−1 from Zq to Rq, we can apply it to a polynomial a = ∑i∈[N] ai ·Xi in Rq by
mapping each coefficient ai to a vector g−1(ai) ∈ Zd

q and then replacing ai with g−1(ai) · Xi

in the polynomial expression (g−1 : Rq → Rd with a = ∑i∈[N] ai · Xi → ∑i∈[N] g−1(ai) · Xi).
This extension was proposed by [23].

RNS representation can also be integrated with prime decomposition, as exemplified
in [24]. An element a ∈ RQ can be represented in RNS form as ([a]qi )0≤i≤l ∈ ∏l

i=0 Rqi . The
inverse mapping, which allows the retrieval of the original element a from its RNS form, is
defined by the formula a = ∑l

i=0 ai · gi · [g−1
i ]qi (mod Q), where gi =

Q
qi

[14].

2.3. Key Generation

The client begins by generating a secret key sk, which is a polynomial in RQ. Then, they
generate a uniformly random polynomial r from U(RQ) and an error or noise polynomial
e from a distribution χ. The corresponding public key is generated as pk = (b, r) ∈ R2

Q,
where b is obtained by taking the inner product of r and a fixed vector s, and adding the
error polynomial e, that is, b = 〈r, s〉+ e.

Let sk′ be a different key: We sample D1 ← U(RL
Q) and e ← χL. Using the gadget

vector g, we compute D0 = −sk′ · D1 + sk · g + e (mod Q) and return a switching key
(SwK) as SwK = (D0,j|D1,j), in which Dj is a vector of polynomials di ∈ ∏l

i=0 qi [23].

2.4. Encryption and Decryption

CKKS encodes a vector of maximal N/2 real values into a plaintext polynomial m of
N coefficients, modulo q. Using the generated public key pk, the client encrypts an input
message and produces a noisy ciphertext ct = (c0, c1) ∈ R2

Q as follows:

c0 = r1 · r + e0; c1 = r1 · b + e1 + m (3)

where r1 is another uniformly random vector and e0 and e1 are other noise vectors. After
homomorphic computations on ciphertexts, the client obtains the results in the encrypted
form ct′ = (c′0, c′1) and uses the secret key to recover the desired information. Decryption
is performed using m′ = c′1 − c′0 · sk ≈ m + e′ with a small error.

2.5. Homomorphic Operations

Homomorphic addition: Taking ciphertexts a = (a0, a1) and b = (b0, b1) for example,
their homomorphic addition is computed by coefficient-wise adding their co-pair of RNS-
element polynomials:

ctadd = a + b = (a0 + b0, a1 + b1) (4)

Homomorphic multiplication: For ciphertexts a = (a0, a1) and b = (b0, b1), their
homomorphic multiplication is performed by multiplications between their RNS elements:

ctmult = a · b = (a0 · b0, a0 · b1 + a1 · b0, a1 · b1) (5)
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This dyadic multiplication produces a special ciphertext of a1 · b1 for a different secret key
(that is, sk2). Subsequently, key switching is performed to relinearize the quadratic form of
homomorphic multiplication results and obtain a linear ciphertext of the original form.

Key switching: RLWE ciphertexts can be transformed from one secret key to another
using key switching computation with SwK. This method enables the transformation of a
ciphertext decryptable by sk into a new ciphertext under a different secret key sk′ with an
additional error eKS. The SwK is considered a d encryption of sk · gi under different secret
keys sk′, that is, SwK · (1, sk′) ≈ sk · g (mod Q) [23].

• Key switching (ct, SwK) return ct′ = (c0, 0) + g−1(c1)·SwK (mod Q) where ct = (c0, c1),
SwK = (D0|D1). In detail:
ct′ = (c0, 0) + g−1(c1)·SwK
= (c0, 0) + g−1(c1)· (D0, D1)
= ((c0 + g−1(c1)·D0), (g−1(c1)·D1)) = (c′0, c′1)

→ m′ = c′0 + c′1· sk′

= c0 + g−1(c1)·D0 + g−1(c1)·D1· sk′

= c0 + g−1(c1)· (D0 + sk′·D1)
= c0 + g−1(c1)(sk · g + e)
= 〈ct, (1, sk)〉+ eKS, where eKS = 〈g−1(c1), e〉.
→ m′ = m + eKS.

3. Key Switching Algorithm

Algorithm 1 provides a detailed description of the homomorphic multiplication with a
key switching operation, which is a crucial building block of the SEAL HE library [6]. One
remarkable feature of homomorphic multiplication is that NTT is a linear transformation,
and optimized HE implementations typically store polynomials in the NTT form across
operations instead of their coefficient form. Therefore, the first phase of homomorphic
multiplication involves dyadic multiplication. However, the use of the Karatsuba algo-
rithm, a fast multiplication technique, can reduce the total number of coefficient-wise
multiplications from four to three. Dyadic multiplication produces a tuple of polynomials
(ct0,i, ct1,i, ct2,i), where ct2,i is a special ciphertext that encrypts the square of the secret key;
that is, (1, s, s2). To recombine the homomorphic products and obtain a linear ciphertext in
the form (1, s), key switching is required to make ct2,i decryptable with the original secret
key. The homomorphic multiplication is computed using the following equation, which
involves key switching using SwK:

ctmult = (ct0, ct1) + q−1
sp (ct2 · SwK) (6)

Key switching is a computationally intensive operation that typically dominates the
cost of homomorphic multiplication. The key switching operation requires two inputs:
the polynomial component ct2,i and key switching key matrix SwK. The polynomial
component ct2,i is represented in RNS form as (l + 1) residue polynomials, whereas the
key switching key matrix SwK = (D0, j|D1, j) is a tensor of (l + 1) matrices of (L + 2)
residue polynomials. RNS decomposition was used to enable fast key switching with a
highly parallel and pipelined implementation.

Algorithm 1 shows that key switching involves l INTT and l2 NTT operations for
increasing the modulus, and two INTTs and two l NTTs for modulus switching. Thus,
key switching dominates the homomorphic multiplication process in terms of the com-
putational cost. However, at l-depth level, the main costs are memory expense and data
movement. To illustrate the efficient utilization of the on-chip resources on the FPGA
platform, we used a parameter set of five modulo primes as a running example. The
implementation results indicate that the proposed approach maximizes the utilization of
hardware resources.
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Algorithm 1 Homomorphic multiplication algorithm with a key switching operation [6]

Input: a = (a0, a1) and b = (b0, b1) ∈ (∏l
i=0 qi)

2,
SwK = (D0,j|D1,j) ∈ (qsp ∏L

j=0 qj)
2

where Dj = di ∈ ∏l
i=0 qi

Output: c = (c0, c1) ∈ (∏l
i=0 qi)

2

1: /* Dyadic multiplication */
2: for i = 0 to l do
3: ct0,i = a0,i � b0,i
4: ct1,i = a0,i � b1,i + a1,i � b0,i
5: ct2,i = a1,i � b1,i
6: end for
7: /* Key switching */
8: for i = 0 to l do . Modulus raising
9: ã← INTTqi (ct2,i)

10: for j = 0 to l do
11: if i 6= j then
12: b̃←Mod(ã, qi)

13: b← NTTqj(b̃)
14: else
15: b← ct2,i
16: end if
17: c0,j ← c0,j + b� d0,i,j (mod qj)
18: c1,j ← c1,j + b� d1,i,j (mod qj)
19: end for
20: b̃←Mod(ã, qsp)

21: b← NTTqsp(b̃)
22: c0,l+1 ← c0,l+1 + b� d0,i,L+1 (mod qsp)
23: c1,l+1 ← c1,l+1 + b� d1,i,L+1 (mod qsp)
24: end for
25: for k = 0 to 1 do . Modulus switching
26: r̃ ← INTTqsp(ck,l+1)
27: for i = 0 to l do
28: r ←Mod(r̃, qi)
29: r ← NTTqi (r)
30: c′k,i ← ck,i − r (mod qi)
31: ck,i ← [q−1

sp ]qi · c′k,i + ctk,i (mod qi)
32: end for
33: end for
34: return c = (c0, c1)

4. KeySwitch Hardware Architecture

Figure 3 illustrates the pipelined architecture of the KeySwitch module with an initial
depth of L = 3. The KeySwitch module consumes the third component of the dyadic
multiplication result and generates relinearized ciphertext. The KeySwitch design was
divided in two functional modules with a pipelined connection: ModRai and ModSwi. Two
modules have similar structures, and we numbered the sequential operations for clarity.
The numbering makes it easier to track the description of their operations.

Key switching operation is computationally intensive, with NTT and INTT operations
being dominant. In an FHE setting, ciphertext polynomials are represented in the NTT form
by default to reduce the number of NTT/INTT conversions. However, this format is not
compatible with the rescaling operation that occurs during moduli switching. Therefore,
the key switching process involves performing NTT and INTT operations before and after
rescaling, respectively. Consequently, the primary computational costs associated with key
switching are for the NTT and INTT operations. Conventionally, the NTT and INTT units
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consume a large amount of internal memory to store precomputed TFs. In this study, the
proposed KeySwitch module employs in-place NTT and INTT hardware designs that aim
to reduce the on-chip memory usage [20]. In particular, each NTT and INTT unit stores
several TF bases of the associated modulus and utilizes built-in twiddle factor generator
(TFG) to twiddle all other factors. Based on the design method of [20] and the exploration
of the key switching execution, we designed different NTT modules for associated moduli
through pipeline stages. By adopting this approach, the proposed KeySwitch module
utilizes hardware resources more efficiently.

In the ModRai module, the first INTT operation transforms a sequence of (l + 1) input
polynomials into the associated modulus (op 1©). The next stage involves performing MOD
operations on the previous INTT results for the (l + 2) moduli. Because operations on
individual (l + 2) moduli are independent of RNS decomposition, we can perform (l + 2)
MODs in parallel (op 2©) to efficiently pipeline the computation. Modular multiplication
(ModMul) also requires the original input polynomial, which reduces the number of
MODs on (l + 2) moduli to (l + 1) MODs at a time. Figure 4 shows selectable MOD
outputs. Subsequently, the (l + 1) NTT modules must run in parallel for subsequent NTT
computations (op 3©). Once the NTT computations are complete, the ModMul module
performs modular multiplications with the SwK using Algorithm 1. To simultaneously
generate two relinearized vectors, we deployed 2× (l + 2) ModMul modules (op 4©). After
the ModMul product, the results were stored in the following memory banks (ops 5© and 6©,
respectively). We used two Ultra RAM (URAM), large-scale, high-speed memory element,
banks to store two polynomials with five RNS components. After accumulating (l + 1)
polynomials in URAMs, the ModRai module transferred the temporary data to the ModSwi
module memory and continued accumulating with the next polynomials. Cooperation
after NTT was indicated as MAR, and its detailed structure is shown in Figure 5.

Figure 3. Block-level diagram of the KeySwitch hardware architecture. The components of ct2

are stored in Buffer and fed to KeySwitch module in turn. TF and iTF RAM units store bases for
associated moduli with 25× 15 constants for each. In each operation of pipelined stages (i.e., 13 stages
of corresponding functions in KeySwitch structure) element units operate in parallel.
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Figure 4. Detailed modular reduction operation (MOD) in op 2©. Because q0 and qsp are the largest
moduli (qsp > q0), their MOD operations are eliminated. The CMP unit compares the input with 2qi

and qi.

Figure 5. Detailed multiply-accumulate operation (MAR) of ModMul 4©, addition 5©, and random-
access memory (RAM) 6© in the ModRai module. The ModMul design was presented in [20].

The ModSwi module performed the second part of the key switching operation after
(l + 1) iterations. In this step, temporary data from ModRai were received and stored
in RAM banks (op 7©). The following INTT unit transformed only the two polynomials
with the associated special modulus qsp (op 8©). The ModSwi module then performed
the flooring operation with (l + 1) MR units and (l + 1) NTT computations (ops 9© and
10©, respectively). For the ModMul operation of the 51-bit modulus, the coefficients were
compared with half of qsp, and the subtraction with the residue of qsp modulo qi was
then determined [6]. At the end of the flooring, subtraction with ModRai outputs and
subsequent multiplication by the inverse value of the special prime were performed for
two polynomials of RNS components in parallel (ops 11© and 12©, respectively). Op 13© added
the remaining two components of the homomorphic multiplication results to the outputs
of the flooring operation, and generated the relinearized ciphertext simultaneously. The
output of the key switching operation consisted of two polynomials of RNS components,
which are referred to as c0 and c1 of the key-switched ciphertext c.

The pipeline timing for the key switching operation is shown in Figure 6, where each
pipeline stage comprises a series of consecutive operations separated by a few cycles. Each
square block represents the approximate delay of the one-polynomial NTT computation.
The ModRai unit can increase the modulus in a highly pipelined manner, with the results
stored in the RAM until all input moduli are transformed (op 6©). Subsequently, the
ModSwi module performs the modulus switching operation only for two polynomials with
the associated special modulus. In a pipelined operation, modulus switching has a timing
delay of two square blocks. However, the delay gap between consecutive key switching
operations depends on the number of modulo primes, which affects the accumulation
latency in the ModRai module.
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In this configuration of KeySwitch with l = 3 and N = 64 K, Figure 7 shows the tensor
form of SwK. In the RNS domain, the component polynomials are 480 KB (= 65536×60-bit

1024×8 )
for q0 and qsp with 60-bit and 408 KB (= 65536×51-bit

1024×8 ) for qi of 51-bit. Each ciphertext

polynomial size is 1704 KB (= 65536(60-bit+3×51-bit)
1024×8 ), and each ciphertext size is 3408 KB.

The SwK matrix dominated, accounting for 17,472 KB (= 4× 65536(2×60-bit+3×51-bit)
1024×8 ). The

same SwK matrices for all homomorphic multiplication operations at a specific level
can be reused. However, these matrices are often too large to be stored in the on-chip
memory, leading to a significant data movement overhead and a bottleneck in the overall
performance of the cryptosystem. Thus, reducing data movement between the on-chip and
external memory is critical for improving the efficiency of the system.

Figure 6. Pipelined key switching operation of consecutive ciphertext multiplications. The flow of
major operations is numbered corresponding to operations in Figure 3.

Figure 7. Rearrangement of SwK extracted from the SEAL key switching function to feed the
KeySwitch module.

5. Results and Discussion
5.1. Evaluation Results

We developed the proposed KeySwitch architecture using SystemVerilog HDL and
converted it into register-transfer-level (RTL) designs. We then performed logic synthesis
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for the Xilinx UltraScale+ XCU250 FPGA platform utilizing the Xilinx Vivado (v2020.1) tool.
The KeySwitch hardware design stored the TF bases in Block RAM (BRAM) units and saved
temporary data in URAM. For our chosen parameter settings, we kept the SwK in the main
memory and supplied it to the KeySwitch module for verification. With default synthesis
settings, the KeySwitch module achieved a maximum clock frequency of 236 MHz.

The security level of our KeySwitch design is based directly on the CKKS FHE
primitive [25], without introducing any functional modifications. Parameter choices, such
as polynomial degree N and modulus size log Q, significantly influence the security and
achievable multiplication depth of a CKKS instance. In this research, we opted for a large
log Q to allow for a high circuit depth and increased N to ensure a higher security level.
Specifically, we set N = 216 and a large modulus of log Q = 1760 bits to achieve 128-bit
security [26]. These parameters allowed for a multiplication depth of up to 32 levels during
ciphertext evaluation. Implementations with a circuit depth less than 32 yield a security
level greater than 128 bits. We used L = 3 as a study example throughout this evaluation to
illustrate the effectiveness of our proposed KeySwitch module in comparison to prior work.

The synthesis results for our proposed KeySwitch module, which supports five moduli,
are presented in Table 2. In the initial design, we stored all the TF constants for the utilized
moduli in the on-chip BRAM. This conventional approach required a large amount of
storage for precomputed TFs, leading to memory overhead. By effectively integrating TFG
into the NTT and INTT hardware designs, we were able to significantly improve internal
memory utilization. The NTT design approach employing runtime TFG led to a remarkable
reduction (by approximately 99%) in on-chip memory usage compared to the traditional
method of storing all precomputed TFs in memory. Furthermore, this approach resulted
in a moderate increase (by around 21%) in DSP slices, accompanied by a negligible rise
in logic elements. These outcomes highlight the effectiveness of the KeySwitch module
regarding on-chip resource utilization, allowing for more internal memory allocation to
evaluation keys and temporary data during calculations.

Table 2. Hardware consumption of the KeySwitch module on the Xilinx XCU250 FPGA platform.

Design LUT FF DSP BRAM * URAM *
(%) (%) (%) (%) (%)

KeySwitch module
w/o TFG

816,188 796,331 5376 1842 464
(47%) (23%) (44%) (69%) (36%)

w/TFG
850,843 887,095 6534 47 464
(49%) (26%) (53%) (2%) (36%)

Xilinx XCU250 1,728,000 3,456,000 12,288 2688 1280
* This study explicitly employed BRAM to store TF constants and URAM to store polynomial coefficients.

To provide a comprehensive breakdown of on-chip resource usage, Tables 3 and 4 de-
tail the FPGA hardware utilization of the ModRai and ModSwi modules, respectively. The
functional modules corresponding to the operations shown in Figure 3 were synthesized
and reported separately. This approach facilitates a more precise assessment of resource
utilization. With the NTT and INTT modules operating on a single modulus, we were able
to derive the TF memory from LUTRAM instead of BRAM, resulting in significant savings
in on-chip RAM utilization. Additionally, it is worth noting that 60-bit integer multiplier
necessitated the use of twelve DSP slices, while 51-bit integer multiplier only necessitated
six DSP slices. As a result, we developed various NTT modules for different moduli to
maximize the utilization of DSP slices.
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Table 3. FPGA resource breakdown of the ModRai module.

Ops Module LUT FF DSP BRAM URAM No. 1

1© INTT 105,563 86,401 564 12.5 16 1

2© MOD 14,496 14,720 0 0 0 4

3©
NTTq0123

3 187,974 160,101 1128 34.5 48 3

NTTqsp 54,294 56,073 564 0 2 16 1

4© MARq0 27,904 41,216 384 0 32 2

5© MARq123 77,376 97,056 576 0 96 6

6© MARqsp 22,912 37,408 384 0 32 2

ModRai 490,519 492,975 3600 47.0 240
1 No. denotes the number of separate units in each corresponding Ops. 2 TF memory for NTT module of only
one modulus is derived from LUTRAM. 3 NTTq0123 consists of three NTT modules for respective q01, q12, and q23.
Because of different modulus sizes, NTTq01 module consumes 564 DSP slices while q12 and q23 consume 282 DSP
slices each.

Table 4. FPGA resource breakdown of the ModSwi module.

Ops Module LUT FF DSP BRAM URAM No. 1

7© RAM 25 25 0 0 144 9

8© INTT 53,758 56,016 564 0 2 16 1

9© MOD 20,368 15,440 0 0 0 4

10© NTTq0123 182,977 193,527 1410 0 2 64 4

11© SMq0 21,120 33,248 384 0 0 2

12© SMq123 64,992 79,104 576 0 0 6

13© ADD 17,083 16,760 0 0 0 8

ModSwi 360,324 394,120 2934 0 224
1 No. denotes the number of separate units in each corresponding Ops. 2 TF memory for NTT and INTT modules
of only one modulus are derived from LUTRAM.

Table 3 shows that the ModRai module dominates on-chip resource consumption in
the KeySwitch hardware design. In particular, the INTT unit consumed 12.5 BRAMs to
store the TF bases of four moduli. The moduli switching circuit used more LUT elements
and FFs. The first three NTT units alternatively operated on two modulo primes and
shared the multiplexing circuit from the previous MOD units to select the appropriate
modulus. The associated RTL designs of these NTT units are denoted as NTTq0123, in which
NTTq01, NTTq12, and NTTq23 consume 564, 282, and 282 DSP slices and 12.5, 11, and 11
BRAMs, respectively. For dyadic multiplication and accumulation, we grouped the RTL
modules into designs denoted as MARs of the corresponding modulus primes. Each unit
simultaneously processed 16 coefficients during key switching.

Table 4 provides a clear breakdown of the hardware consumption of subunits in the
ModSwi module. The INTT and NTT units in this module operate only on a singular
modulus, which is the reason we derived the TF memories from LUTRAM. To simplify the
design, we grouped the RTL modules of the four NTT units into a single design, denoted as
NTTq0123, because they shared the same control circuit. The DSP utilization of the NTT unit
of q0 was 564 DSP slices, whereas each NTT unit of the others qi consumed only 282 slices.
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For the KeySwitch module, we utilized URAM to construct temporary data memory units.
Using our design method, we confirmed that the memory unit of each RNS component
consistently consumed 16 URAM blocks for the 16-bank data memory units.

5.2. Comparison with Related Works

Comparing with the software implementation, we used a computer system equipped
with an Intel Core i9-9900KF CPU, 32 GB DDR4 DRAM that runs on the Windows 10
operating system. We installed version 3.7 of the widely used SEAL HE library [6] and
then executed the switch_key_inplace() routine to evaluate the execution time of
key switching. Latency measurements were performed using Chrono C++ functions.
Then, we extracted the test vectors from the SEAL source code and ran them through the
KeySwitch module for verification. As shown in Table 5, our KeySwitch design achieved a
speedup of approximately 113.4× compared with the software implementation.

The most suitable comparison for our key switching accelerator is with HEAX [14]. In
Table 6, we compare the efficiency of both KeySwitch hardware designs. Even though the
polynomial sizes differ, both studies performed key switching at the same circuit depth,
enabling fair comparisons. We calculated data throughput and assessed hardware effi-
ciency metrics for this comparison. Our KeySwitch module design operates at a lower clock
frequency on Xilinx FPGA technology than HEAX but achieves a 1.6× higher data through-
put. Comparing LUT efficiencies is impractical due to structural differences between Intel
FPGA’s ALM elements and Xilinx FPGA’s LUT elements. Differences in DSP slice struc-
tures between the two FPGA technologies led to distinct modulus bit width selections.
Although our design exhibited lower DSP efficiency, we employed enhanced Barrett-based
modular multiplication and reasonable numbers of DSP slices, combined with lightweight
modular reduction. Our KeySwitch design also used flip-flops more effectively than HEAX
for pipelined registers. Importantly, our proposed KeySwitch design achieved a 2.15×
improvement in RAM efficiency. Despite a 10× larger polynomial size, our KeySwitch
module consumed 1.3× less internal RAM than HEAX. The primary advantage of our
design lies in the use of TFG modules in the NTT and INTT hardware designs, as well as
the minimal number of TF constants stored in on-chip memory.

Comparing with other FPGA-based implementations: Medha presents a single hardware
design for RNS-CKKS acceleration using a Xilinx Alveo U250 FPGA, offering a versatile instruction-
set architecture that supports two HE parameter sets (Set-1: N = 214, log Q = 438 bits and Set-2:
N = 215, log Q = 564 bits) [17]. With a 497.24 µs execution time of homomorphic mul-
tiplication for Set-1, Medha reaches a throughput rate of 14,431 Mbps. In contrast, our
design employs a pipelined strategy, achieving 3.4× higher throughput than Medha at
the cost of increased hardware resource usage. Poseidon, an FPGA-based FHE accelerator
featuring bootstrapping capabilities, utilizes optimization methods to enhance resource
efficiency [18]. By leveraging an advanced Xilinx Alveo U280 FPGA with high-bandwidth
memory (HBM), Poseidon reports a key switching latency of 218.6 µs for a specific parame-
ter set of (N = 216, L = 44). Our KeySwitch module exhibits a comparable execution time
of 284.6 µs, but with reduced hardware overhead. FAB, an additional U280 FPGA-based
FHE accelerator with bootstrapping support, refines on-chip memory access to remove
memory-access-related bottlenecks [19]. For a parameter set of (N = 214, log Q = 438 bits),
FAB attains an execution time of 180.3 µs for homomorphic multiplication and a throughput
rate of 39,802 Mbps, which is marginally lower than our KeySwitch module’s 49,046 Mbps.
Nonetheless, FAB consumes a higher hardware ratio than our design, with the excep-
tion of DSP slices. To summarize, our design focuses on accelerating key switching using
pipelined and parallel implementations. By deploying the processor in consecutive pipeline
stages, key switching operations are unrolled, resulting in high asymptotic throughput
with minimal hardware resource overhead.
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Table 5. Comparison with software implementation on SEAL HE library [6].

Parametrics Key Switching

Device CPU (SEAL) Xilinx Alveo U250

No. of CCs - 67,168

Clock frequency 3.6 GHz 236 MHz

Latency (µs) 32,402 284.6

No. of ops/s 31 3514 (113.4×)

Table 6. Comparison of the KeySwitch module with the most related work.

Parametrics HEAX [14] This Work

Device Intel Stratix10 Xilinx Alveo U250

N 213 216

Max. prime (bits) 54 60

log Q (bits) 218 273

Levels 3 3

Frequency (MHz) 300 236

ALM
/

LUT 699 K (ALM) ∗ 851 K (LUT)

REG
/

FF 1976 K (REG) 887 K (FF)

DSP slices 2610 6534

RAM (MB) 22 16.5

Throughput (Mbps) 30,279 49,046

Norm. Throu.
/

REG 1 3.6

Norm. Throu.
/

DSP 1 0.65

Norm. Throu.
/

RAM 1 2.15
∗ ALM (adaptive logic module) is a core logic unit including two combinational adaptive LUTs, a two-bit full
adder, and four 1-bit REGs.

Comparing with 100×, the GPU-based FHE implementation by Jung et al. [8]: The 100×
focuses on large parameter sets (N = 216, log Q = 2364 bits and N = 217, log Q = 3220 bits)
and achieves a significant speedup for CKKS compared to previous GPU-based attempts.
Through memory-centric improvements, 100× enhances overall performance and reaches
an acceleration rate more than 100 times faster than single-threaded CPU execution. While
it is challenging to make a fair comparison between their work and our architecture, our
KeySwitch module attains a similar processing time with a more adaptable and customiz-
able FPGA technology implementation. In addition, there are some other studies that
demonstrate impressive performance by utilizing modern GPU features, such as tensor
cores. For instance, TensorFHE accelerates NTT computation by adopting GPU fine-grained
operation and data parallelism [9]. However, TensorFHE still faces suboptimal acceleration
due to GPU architectural limitations.

5.3. Limitation of This Study

As shown in Figure 7, SwK is larger than the on-chip BRAM capacity. Although
SwK is reusable, the internal memory of existing FPGA devices for storing all SwK re-
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mains an overhead. To mitigate this issue, we reserved on-chip BRAMs for intermediate
data and stored SwK test vectors in the main memory. However, this resulted in data
movement from the main memory becoming a critical performance bottleneck, thereby
limiting the acceleration of the KeySwitch module. An effective solution to further increase
the main memory bandwidth is to use alternative main memory technologies, such as
HBM [27]. HBM can provide several times higher bandwidth than the DDRx technology,
thus improving the performance of the KeySwitch module.

Han and Ki proposed a method to reduce the length of SwK by using a decomposition
number (dnum) to split SwK and decompose ciphertexts into dnum slices [26]. However,
an increasing dnum also increases the number of SwK components. To overcome this
limitation, we can store each component at each computation time, which reduces the
number of accesses to the external memory during key switching. Choosing a proper dnum
is crucial to strike a balance between the multiplication depth and homomorphic evaluation
complexity. Furthermore, the NTT and INTT units perform computations iteratively, and
the SwK components are cached in the internal buffer over time. Therefore, the use of dnum
can significantly reduce the SwK length, whereas careful consideration of the trade-offs
can enhance the overall performance of the KeySwitch module.

6. Conclusions

This study proposed an efficient hardware design for the KeySwitch module that
accelerates the homomorphic multiplication by utilizing efficient NTT and INTT engines.
The KeySwitch module achieved high hardware efficiency by utilizing on-chip resources
and reducing the internal memory consumption. The pipelined key switching operation
also enabled fast homomorphic multiplication with high-throughput rates.

In the future, the proposed KeySwitch module can be applied to accelerate realistic
HE-based applications, such as logistic regression inference and simple convolutional
neural networks. Efficient NTT and INTT hardware designs can support large circuit
depths, making the instruction-set KeySwitch architecture a promising approach for prac-
tical HE-based applications. Further research should investigate the integration of the
proposed KeySwitch module with other HE-based cryptographic schemes to develop a
more comprehensive hardware acceleration platform.
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