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Abstract: This paper addresses the problem of disentangling nonoverlapping multicomponent signals
from their observation being possibly contaminated by external additive noise. We aim to extract
and to retrieve the elementary components (also called modes) present in an observed nonstationary
mixture signal. To this end, we propose a new pseudo-Bayesian algorithm to perform the estimation of
the instantaneous frequency of the signal modes from their time-frequency representation. In a second
time, a detection algorithm is developed to restrict the time region where each signal component
behaves, to enhance quality of the reconstructed signal. We finally deal with the presence of noise in
the vicinity of the estimated instantaneous frequency by introducing a new reconstruction approach
relying on nonbinary band-pass synthesis filters. We validate our methods by comparing their
reconstruction performance to state-of-the-art approaches through several experiments involving
both synthetic and real-world data under different experimental conditions.

Keywords: time-frequency; nonstationary component estimation; robust divergences; variational
approximation; hypothesis test; assumed density filtering; synchrosqueezing

1. Introduction

Fast and reliable disentangling of natural signals is a necessary step for a variety of
applications including biomedicine, audio, seismic applications, and radar [1,2]. Such
complex signals are often generated by physical systems that can be modeled as a superim-
position of Amplitude-and Frequency-Modulated (AM-FM) waves (or modes), and referred
to as MultiComponent Signal (MCS).

Although extracting the signal components can be challenging depending on the signal
nature or its acquisition, a large number of techniques have been developed to tackle those
limitations. From the different existing approaches, expanding MCSs is often completed
by computing a Time-Frequency Representation (TFR) (resp. time-scale representation) by
using popular methods such as the Short-Time Fourier Transform (STFT) or the Continuous
Wavelet Transform (CWT) [3], which can reveal curves (also called ridges), associated
with each signal mode in the time-frequency plane. Estimating the position of the ridges
approximates the Instantaneous Frequency (IF) of each mode, which can then be extracted
and reconstructed through an adapted filtering method [4]. Knowing the ridges of a signal
enables a large variety of advanced applications such as signal enhancement and denoising,
source separation, or information extraction [5–7]. The main motivation of this work is
to enhance signal analysis through MCS modeling. Knowing the main components of a
signal is almost always sufficient to extract relevant information and to estimate physics-
related parameters as proposed in [7]. Although disentangling a signal can lead to a better
understanding of the observed phenomena, it also provides the opportunity to remove
undesired noise and to improve its readability.

Several approaches have been proposed during the last decades to extract the modes
of a MCS. Data-driven methods such as Empirical Mode Decomposition (EMD) [8] or
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Singular Spectrum Analysis (SSA) [9] allow us to decompose an arbitrary time series into a
set of intrinsic mode functions. Although these techniques can obtain promising results in a
large variety of real-world applications, they suffer from a lack of robustness when dealing
with AM-FM modes, or in the presence of external noise, involving the need of adapting
the original approach [10]. On the other hand, other methods perform ridge estimation by
interpolating the curves along the time axis by using the detected local maximums [11].
This enables intensive studies, especially in the field of audio processing, for which partial
tracking algorithms have been previously proposed for dealing with harmonic signal
components made of a fundamental frequency and its integer multiples [12]. Because the
estimation performance of the ridges depends on the presence of interfering components,
efforts are made to improve the accuracy and robustness of the methods [13]. Existing
work improves the readability of the computed TFR using the Synchrosqueezing transform
(SST) [4,14,15], possibly combined with a demodulation technique [16] to obtain sharpened
and reversible TFR for improving modes retrieval. A filtering method based on spectrogram
zeros was proposed in [17] for extracting the signal components in the time-frequency
plane. Even though this approach can deal with the presence of noise, it becomes limited in
extreme scenarios involving low Signal-to-Noise Ratio (SNR). Although the presence of
noise can be considered as the main challenge for estimating MCS modes, a wide range
of methods in the literature are deterministic and often neglect the presence of outliers.
Estimating modes of MCS remains an interesting problem depending on the quality of
the observations and of the acquisition conditions that can traduce incomplete data or the
presence of external noise. Nonetheless, the presence of noise is not the unique reason
of mismatch between a postulated observation model and observed data. For instance,
some approaches have been devoted to identify the effective time support of a signal
to achieve the mode reconstruction based on TFR ridge detection. For example in [18],
an indicator term is plugged in a classical MCS observation model to inform on the presence
or lack of a ridge. The algorithm estimates the noise spectrum through multipass filtering,
before detecting the signal peaks associated with signal components by using a hypothesis
test. A similar model was proposed in [19], in which the spectrogram is first segmented to
highlight modes birth (start) and death (end), before performing IF estimation by using
a peak tracking method. Bayesian methods [5,6], which rely on the computation of a
posterior probability function to infer estimates, can be easily adapted for estimating
model parameters from noisy observations. Although related approaches can significantly
improve the estimation performances of MCS modes in challenging scenarios, they remain
computationally expensive.

In this work, we address the problem of reconstructing MCS from observations cor-
rupted by external noise. Although it is common to focus on a specific step of the whole
reconstruction process, we propose three different methods aiming, respectively, to perform
robust estimation of the ridges position in a TFR to mitigate the noise effect during the
signal reconstruction. To this aim, we estimate for the first time the components’ IF from its
TFR by using a Bayesian framework. A simple observation model is postulated to ensure
computational tractability of further inference process. Although the lack of generality of
the observation model avoids proper estimation of the model parameters in the case of
model mismatch, an adapted estimation strategy is used to enhance the robustness of the
method. Moreover, a novel objective function is introduced to regularize the estimation
process according to both the presence of multiple ridges or a strong noise level involving
possible model mismatch. This generalizes and extends our previous contribution [20],
which only addressed one of these two constraints separately by respectively minimizing a
divergence enforcing either the robustness or the mass-covering character of the variational
approximation [21]. More precisely, an Alpha-Beta (AB) variational objective [21,22] is used
to obtain a more general control over the inference process.

For a second time, we propose a new detection algorithm that uses an alternative
observation model to predict, for each time instant, whether the signal components are
present or not. Because the proposed estimation algorithm assumes that information is
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present at each time instant for each signal component, its output needs to be processed
to perform an efficient reconstruction of the MCS. In comparison to existing methods,
such as [18,19], our approach uses specific mathematical derivations which lead to a
lower computation cost while remaining robust in the presence of strong noise. The third
contribution of this work is related to the mode reconstruction. In the presence of noise,
classical methods tend to denoise the signal in the time-frequency plane by performing
reconstruction from the frequency bands associated with the estimated ridges. Here, we
propose a reconstruction strategy, reducing the noise-related energy used to synthesize the
MCS. The main contributions of the paper can thus be summarized as follows.

• A novel pseudo-Bayesian estimation algorithm for ridge extraction based on an
alternative variational objective allowing for efficient regularization is discussed.

• A new fast and reliable detection algorithm for determining the time support of each
of the MCS frequency component is discussed.

• A new denoising strategy for signal reconstruction, mitigating the noise content
present in frequency bands used for signal synthesis is discussed.

The remainder of the paper is organized as follows. Section 2 introduces the problem
addressed in this work. An extended Pseudo-Bayesian (PB) estimation method is presented
by using a new AB variational objective in Section 3. In Section 4, we introduce the
detection algorithm used to postprocess the ridge estimation, and the denoising strategy
for improving the signal reconstruction performance is detailed in Section 5. Results
of experiments conducted with both synthetic and real-world signals are presented in
Section 6 before the conclusion is reported in Section 7.

2. Problem Statement

In the remainder of this paper, we assume a signal x defined as a mixture of K
superimposed AM-FM components expressed as:

x(t) =
K

∑
k=1

xk(t), with xk(t) = ak(t) ejφk(t), (1)

where ak(t) (resp. φk(t)) denotes the time-varying amplitude (resp. phase) of the k-th
component. Each signal component can be characterized by its ridge located at the IF.
By using the STFT synthesis formula given by Equation (A8) or Equation (A11) for its
synchrosqueezed version, an accurate approximation of the reconstructed component can
be obtained through band-pass filtering on x, in order to only preserve the energy at the IF
vicinity. Indeed, when the frequency is slowly varying, or when the spread of the window
is sufficiently small, the STFT of the k-th component can be approximated according to
Equtaion (A7) as

Fh
k (t, ω) ≈ xk(t)Fh(

dφk
dt

(t)−ω) e−jωt, (2)

where the IF of each component is by definition the derivative of the phase with respect
to time dφk

dt (t). A good approximate of the IF of each component can be obtained by
considering the position of the local maxima in the TFR.

In this study, we assume that the ridges associated with the MCS are separable and
do not overlap in the time-frequency plane. From such an assumption, it can be stated
that the MCS can be approximated by using both Equations (A8) and (2) by restricting the
integrating region to the vicinity of the components IF [23] when t0 = 0, as

xk(t) ≈
1

h(0)∗

∫
|ω− dφk

dt (t)|<ε
Fh

x (t, ω) ejωt dω

2π
, (3)

where ε is an arbitrary small threshold depending on the spread of the analysis window.
Note that Equation (A11) should be considered when using the synchrosqueezed STFT.
In practice, only a noisy version y of x is observed, such that y = x + e, with e standing
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for an arbitrary additive noise. The aim of this work is to provide a fast and robust
estimation framework for estimating the ridges and extracting the modes of x from the noisy
observations y. The main challenge imposed by this problem comes from the distribution
of the noise that spreads along the time-frequency plane [24,25]. In the remainder of this
study, we consider that the signal has been discretized by using a sampling period Ts. The
previously defined transforms are computed by using the rectangle approximation method.
We consider the STFT Fh

y [n, m] ≈ Fh
y (nTs, 2π m

MTs
) at time index n ∈ {0, 1, . . . , N−1} and

frequency bin m ∈ {0, 1, . . . , M− 1}, with M (resp. N) being the number of frequency bins

(resp. time indices). We use a Gaussian analysis window h(t) = 1√
2πT

e−
t2

2T2 for which the
Fourier transform can be expressed as

Fh(ω) = e−
ω2T2

2 . (4)

The time-spread parameter of h considered after the discretization process is defined
as L = T

Ts
.

3. Pseudo-Bayesian Analysis

In this section, we present the basis of our proposed Pseudo-Bayesian (PB) algorithm
for estimating the IFs of the MCS modes through the ridges positions in the 2D time-
frequency plane.

3.1. Observation Model

Let S be the M× N spectrogram Sh
y = |Fh

y |2, such that sn = [S]n,: = [sn,0, . . . , sn,M−1]
>.

The observations y are modeled through the columns sn of S as follows, assuming the
presence of only one component and neglecting other external sources. We define our
observation model as

sn,m|m̄n ∼ g(m− m̄n), (5)

where g(m) = 2
√

πL
M e−(

2πmL
M )

2

is the normalized and discretized squared modulus of the
Fourier transform of h, and m̄n is the position of the ridge associated with the signal IF at
time n. Although the analysis window width involves correlation between consecutive
spectrogram frames, we assume independence between the successive sn. Because the
method proposed in this paper aims to sequentially perform estimation of the IF at each
time instant, the spatial correlation along the time axis is left to the prior distribution model.
The joint likelihood function can thus be computed as

p(sn|m̄n) =
M−1

∏
m=0

p(sn,m|m̄n). (6)

3.2. Variational Objective

Even though the observation model in Equation (5) allows a fast and simple estimation
process, its lack of accuracy avoids achieving a satisfying estimation performance in the
presence of either multiple components or of external spurious noise. The presence of
outliers will involve a model mismatch, avoiding approaches based on Maximum Like-
lihood Estimation (MLE) to perform in a satisfactory manner. To circumvent the lack of
generality imposed by the model, alternative divergences have been used to infer estimates
with modified variational objectives. More precisely, performing MLE is equivalent to
minimizing the Kullback-Leibler Divergence (KLD) between the data distribution and
the postulated model. Note that in practice, the empirical data distribution is used to
approximate the unknown true distribution of the data. By replacing the KLD by another
divergence, the final objective is correspondingly updated to account for the properties
of the new functional. In Bayesian inference, the random variable m̄n is assigned a prior
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distribution p(m̄n), and the posterior distribution p(m̄n|sn) is derived by using Bayes’
theorem as

p(m̄n|sn) =
p(sn|m̄n)p(m̄n)

p(sn)
. (7)

Nonetheless, the computation of the posterior probability is generally intractable due
to the evidence p(sn), because it requires integration over all configurations of the hidden
variables. It is, however, possible to approximate this distribution by resorting to variational
methods without having to compute the probability of the observation. Variational methods
aim to compute the closest approximate distribution to the true posterior distribution.
In practice, this is performed by maximizing the Evidence Lower-Bound (ELBO), which is
a lower bound of the posterior distribution [26]. Equivalently, it remains to solve

arg min
q(m̄n)∈P

Eq(m̄n)[DKL( p̂(sn)||p(sn|m̄n))]

+
1
M

DKL(q(m̄n)||p(m̄n))

, (8)

with P the set of all probability distributions, chosen to be analytically tractable in practice,
Eq(m̄n)[·] the expectation with respect to q(m̄n) and with the KLD defined as

DKL( p̂(s)||p(s|m̄n)) =
∫

p̂(s) log
(

p̂(s)
p(s|m̄n)

)
ds. (9)

Although the first term in Equtaion (8) is the expectation of the Kullback–Leibler Cross
Entropy (CE) corresponding to the expected likelihood, the second term constrains the
solution to be close to the prior distribution. The variational objective can be modified to
account for the lack of accuracy of the postulated model by replacing the KLD used in the
first term of Equtaion (8) by another divergence. In [20], both the α-Divergence (α-D) and
the β-Divergence (β-D) were proposed, providing, respectively, robustness of the estimates
and a control over the mass-covering behavior of the variational approximation.

3.3. Estimation Strategy

We use an iterative estimation strategy in the PB algorithm, where each array sn is
processed sequentially. At each time instant n, a point estimate for the IF is computed
through Minimum Mean Squared Error (MMSE) from the posterior distribution. The prior
model used to compute the posterior distribution is chosen to constrain the IFs estimates
to slowly evolve along the time axis. For that purpose, a Gaussian Random Walk (GRW)
prior model is used to propagate the information as

p(m̄n+1) ∝ N (m̂n, σ2
rw)N̂n, (10)

where the Gaussian random walk N (m̂n, σ2
rw) models the allowed variation of the IF be-

tween successive time instants through σ2
rw. The Gaussian density N̂n is an approximation

of the posterior distribution at time n, obtained by selecting the Gaussian distribution mini-
mizing the KLD. This approximation allows us to bound the complexity of the estimation
process, which becomes independent of N. In the presence of multiple modes to estimate,
the process is repeated until the K components have been detected (K is assumed to be
known). After estimation of a ridge (the estimation of the IF associated with a component),
the corresponding spectrogram vicinity values are set to zero before applying again the
ridge extraction algorithm. This update of the TFR avoids multiple estimation of the same
component. The overall procedure is detailed in Algorithm 1, where a backward correction
is performed at line 9 after a first forward sequential estimation. This step has been added
to avoid loss of performance in the first iterations due to possible slow convergence rate of
the prior model.
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Algorithm 1: Overall ridge extraction procedure using backward correction.

Input: TFR S0, GRW mean m0 and variance σ2
0 , Number of components K, g.

Ouput: [m̂0, · · · , m̂N−1] for each component.
for k = 1, . . . , K do

for n = 0, . . . , N − 1 do
Compute p(mn) by matching moments from Equtaion (10).
Compute the pseudo-posterior p(mn|sn) from Equtaion (8).
Perform MMSE estimation of m̂n.

end for
Repeat steps 5 to 7 iterating from n = N − 1, . . . , 0
Update the TFR by subtracting the kth ridge (TFR support set to 0).

end for

3.4. Alpha–Beta Divergence

The alternative choices to the KLD, namely the α-D and the β-D, for performing
estimation of the IF are well adapted for regularizing the inferred solution. Although the
α-D modifies the spread of the pseudoposterior distribution by controlling the cover of
the empirical data mass function [21,27], the β-D allows it to compute a pseudoposterior
distribution that is robust to outliers [21,28]. Here, outliers correspond to points unlikely
to come from the data distribution due to strong noise contamination. Each divergence is
associated with a hyperparameter, α or β, which controls the behavior of the variational
objectives. Particular equivalences between objectives are obtained depending on the
choice of α and β. For instance, both the α-D and the β-D are equivalent for considering the
KLD when α→ 1 or β→ 0. Other equivalences are discussed in [21,28]. These two choices
are motivated by the expected distribution of a noisy signal spectrogram. The distribution
of sn can be modeled as a mixture of K Gaussian functions (because the STFT analysis
window is a Gaussian function) whose means are the IFs of each component and weights
are the relative amplitudes, plus a residual related to the noise. The postulated model in
Equtaion (5) assumes the observation of a single sinusoidal component without any other
additional source. Nonetheless, the presence of multiple components will precisely break
the symmetry of the signal observations, resulting in skewed data distributions. Because
the skewed Gaussian distributions are more affected on their tails, this motivates the use
of the α-D in order to reduce the mass covering of the observation and to seek the mode
associated with the distribution of each component. Moreover, such objective is desired
when observing a signal with multiple components because the proposed algorithm aims to
extract each ridge sequentially. In this work, we propose a new variational objective, based
on the work in [21], aiming to enforce both the robustness of the estimate and the mode-
seeking character of the approximated likelihood function. We consider the Alpha-Beta
Divergence (ABD) [21,22], ∀α, β, such that α + β 6= 0, α 6= 0, β 6= 0 is expressed as

Dα,β
AB( p̂(s)||p(s|m̄n)) =

1
α(α + β)

∫
p(s|m̄n)

α+βds

+
1

β(α + β)

∫
p̂(s)α+βds

− 1
αβ

∫
p̂(s)α p(s|m̄n)

βds.

(11)

Note that the divergence in Equation (11) combines the objective of the α-, β- and γ-
divergence as discussed in [22]. The γ-divergence [29] is another type of robust divergence
that allows us, similar to the β-D, to reduce the influence of outliers during the approxima-
tion process. Both parameters in Equation (11) control the influence of the logarithm ratio
in the likelihood term (see Equation (9)), through a weighting factor (resp. by deforming
the logarithm factor) for α + β (resp. α) [22], as illustrated in Figure 1. The two parameters
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α, β involved in the divergence in Equation (11) give control on the resulting variational
objective. Even though the robustness of the approximation is impacted by the value of
α + β, modes can be highlighted through α. More precisely, the objective becomes robust
to outliers and model mismatch when α + β > 1, and it favors mode seeking when α < 1.
Nonetheless, α + β has to be chosen slightly above the threshold α + β = 1 to ensure an
efficient objective.

β

α

Mode seeking

1

1

Outlier highlighting

Robustness

Mass covering

Figure 1. Character of the variational objective obtained by varying the ABD hyperparameters α and β.

Although the estimation of the optimal divergence hyperparameters is out of the scope
of this paper, we are interested by the property of the resulting estimators according to
the hyperparameters choice. As discussed in [28], alternative objectives can be obtained
by replacing the first term in Equation (8) by the CE of another divergence. As usually
performed in variational inference, we drop the evidence term in order to construct the
objective function. The resulting CE does not correspond anymore to the divergence, but to
the ELBO to maximize for approximating the posterior distribution. The CE associated
with the ABD in Equation (11) is

CEα,β
AB(m̄n) =

1
αβ

∫
p̂(s)α p(s|m̄n)

βds

− 1
α(α + β)

∫
p(s|m̄n)

α+βds.
(12)

This CE can then be incorporated into Equation (7) by using Equation (8). The pseu-
doposterior distribution used to infer estimates m̂n gives [28]

p(m̄n|sn) ∝ e−MCEα,β
AB(m̄n)p(m̄n). (13)

3.5. Amplitude and Noise Estimation

Although the IFs associated with the mode of the MCS provides a useful knowledge for
applications related to denoising, source separation or superresolution, it is not sufficient
for reconstructing the signal components. Following the formulation in Equation (1),
the amplitude associated with each component completes the information describing the
MCS. In this section, we propose a simple method for estimating the amplitudes associated
with each component in the presence of additive white Gaussian noise, assuming they have
been previously estimated by using, for instance, the proposed PB strategy. In Algorithm 1,
the amplitude associated with each component at each time index is estimated by using
|Fh

y [n, m̂n]|. This is performed during the ridge-removal step (line 9 in Algorithm 1) to
ensure that the whole energy of the frequency component is removed. Although such a step
allows us to iterate over the K signal components through energy removal, the presence
of spurious frequency content induced by noise avoids accurate amplitude modeling.
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Here, we propose an additional estimation step after the extraction of the ridge position to
infer amplitude estimates from the spectrogram. More precisely, the method presented in
Section 3.1 allows us to construct a mask, indicating the regions where the main energy
associated with the informative content (the MCS) behaves. Hence, it also indicates the time-
frequency points where the observation corresponds to noise. It has been shown [30] that
the first statistical moments of the spectrogram of a white Gaussian noise are approximately
constant. From this assumption, the noise statistics can be derived from the time-frequency
points corresponding only to noise. The second statistical moment of a white circular
Gaussian noise STFT rewrites

Var(Fh
ε ) = E[(Fh

ε −E[Fh
ε ])(Fh

ε −E[Fh
ε ])
∗]

= E[|Fh
ε |2] = E[Sh

ε ]
, (14)

giving an equivalence between variance of the STFT and the mean of the associated spec-
trogram, with Sh

ε = |Fh
ε |2 the spectrogram of the white Gaussian noise signal. We propose to

estimate Var(Fh
ε ) by computing E[S] from regions mainly containing noise-related energy.

The amplitude can then be estimated by using the spectrogram at the IFs after removal of
the noise expected energy E[S].

4. Detection Algorithm

The simple observation model postulated in Equation (5) limits by its incompleteness
the estimation performance of the amplitude and noise statistics, because both parameters
are not involved in the observation model. Moreover, the proposed method is not adapted
for signals whose components’ amplitude reach zero values in some time instants, because
for each component the PB algorithm provides an IF estimate at each time instant. As a
second part of this work, we thus propose a detection algorithm providing a more general
estimation scheme in the presence of signal components behaving on a reduced subset of
the time axis, or when IF estimation cannot be performed correctly due to the presence of
important noise content [18,19]. Our new detection algorithm is based on a hypothesis test
whose decision rule is formulated by using the marginal posterior distribution derived
from an alternative observation model. More precisely, we develop in this section a test
accounting for the presence (or absence) of a signal component at each time instant. The
proposed detection algorithm requires the knowledge of m̄n, the amplitude a, and the
expected noise level b. Hence, it is applied in the proposed framework after the estimation
of these parameters.

4.1. Alternative Model

Let us consider a more general alternative observation model than the one proposed
in Equation (5):

sn,m|(w, m̄n, u) ∼ u(1− w)g(m− m̄n) + w, (15)

where w = b
a+b ∈ [0, 1] being the ratio of noise energy over the whole energy content,

with a the positive amplitude and b the expected noise level, and where u is a boolean
parameter indicating for the presence (u = 1) or absence (u = 0) of a ridge. If the
observed signal corresponds only to noise (w = 1), the observation model remains to be
p(s|a, b, m̄n, u = 0) ∝ b. Conversely, we have p(s|a, b, m̄n, u = 1) ∝ ag(s− m̄n) + b when a
signal is present.

4.2. Prior Models

Prior distribution models are introduced here to account for the available prior knowl-
edge on a and b. Indeed, a mixture prior distribution [31] is assigned to the amplitude
parameter to model the presence or absence of a target

p(a|u) = uλae−λaa + (1− u)δ(a) (16)



Sensors 2023, 23, 85 9 of 24

and an exponential prior distribution is associated with the noise expectation

p(b) = λbe−λbb. (17)

Moreover, we assume independence between a and b, such that p(a, b) = p(a)p(b),
giving the following joint prior distribution

p(a, b|u, Θ) = uλaλbe−λaa−λbb + (1− u)δ(a)λbe−λbb (18)

with Θ = (λa, λb). Equation (18) can then be formulated as a function of w and b by using
a change of variable a = b

(
1
w − 1

)
, such that

p(w, b|u, Θ) = uλaλbe−b(λb+λa( 1
w−1))

+ (1− u)δ(1− w)λbe−λbb.
(19)

Finally, we assign a Bernoulli prior model to the binary variable u, such that p(u = 1) = ρ
and p(u = 0) = 1− ρ.

4.3. Hypothesis Test

Similar to [32], the marginal posterior distribution is used to decide weather a target is
present or not, such that

p(u = 1|s)
H0
≶
H1

p(u = 0|s), (20)

where the marginal posterior is defined such that

p(u|s) =
∫ ∞

0

∫ ∞

0
p(w, b, m̂n, u|s)dbdw, (21)

where the parameter m̄n is replaced by an estimate m̂n of the IF allowing us to avoid an
integration over the ridge position. The marginal posterior p(u|s) can be computed by
using the Bayes rule, such that

p(u|s) ∝
∫ ∞

0

∫ ∞

0
p(s|w, b, m̂n, u)p(w, b|u, Θ)p(u)dbdw. (22)

4.4. Derivation

In this section, we derive p(u = 0|s) and p(u = 1|s) to decide if a ridge is present by
using Equation (20). We begin with the simplest one:

p(u = 0|s) ∝
∫ ∞

0
bλbe−λbb(1− ρ)db

∝
(1− ρ)

λb
.

(23)

Similarly, the signal presence joint posterior probability writes (details available in
Appendix C):

p(u = 1, w|s) ∝
g1(w)ρλaλb[(

λb + λa

(
1
w − 1

))]2 , (24)

with

g1(w) =
M

∏
m=1

[(
1
w
− 1
)

g(m− m̂n) + 1
]

. (25)

Note that no close form can be obtained for p(u = 1|s), so we propose to numer-
ically approximate it because the integral on w is not tractable. Once p(u = 0|s) and
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p(u = 1|s) have been computed by using, respectively, Equations (23) and (24), they are
finally compared to make a decision following Equation (20).

4.5. Application to Multicomponent Signals

As previously discussed, the proposed detection step aims to enhance the time location
of the reconstruction by truncating the components before synthesizing the TFR. Note
that this approach can be plugged inside the PB algorithm to improve the efficiency of the
GRW prior model. However, we restrict its use in this work to a postprocessing step for
correcting the frequency band used for reconstruction. Because the PB algorithm estimates
K frequency bands with a length of N, then each signal component is defined over the whole
time axis. The wrong estimates are thus necessarily performed in time regions where all the
components are not defined. The proposed estimation scheme cannot be extended directly
to the study of MCS because the proposed models in both Equations (5) and (15) assume
for the presence of only one component to describe the signal. Instead of reformulating
the detection scheme developed in Section 4.1, we perform decision after the IF estimation
by using Algorithm 1, where amplitude and noise first moments are estimated by using
the method proposed in Section 3.5. These last two estimates provide useful knowledge
for tuning λa and λb because good choices for these hyperparameters are λa = â−1 and
λb = b̂−1, with â (resp. b̂) standing for the estimated amplitude (resp. noise first moment),
ensuring the mean of the exponential prior distributions to fit the expected parameters
values. The detection is performed componentwise. More precisely, the knowledge of the
IF allows us to separate the different components of the signal in the time-frequency plane
in order to apply the detection step separately on each ridges. Temporary spectrograms are
then generated (by applying for instance a thresholding mask on the original spectrogram)
and used for the detection step. Once the detection arrays have been computed (one
array per component) the related masks can be truncated to select, for each ridge, only the
time-frequency instants containing signal information.

5. Robust Reconstruction

In this section, an alternative reconstruction methods is presented, where a new Non-
Binary (NB) mask for band-pass reconstruction is introduced to circumvent the lack of
reconstruction performance due to the presence of outliers in the vicinity of the estimated
ridges. Indeed, MCS reconstruction is generally achieved through band-pass reconstruction,
where only the associated informative time-frequency content is selected from the observed
TFR [33]. This remains to restrict the integration region of Equation (A8) to the vicinity of
the IFs associated with the signal components. Such an approach improves the SNR of the
signal in the presence of noise. Although this can significantly denoise the signal depending
on the IF estimation performance, no particular attention is given to the remaining spurious
noise in the vicinity of the signal component IF. When considering low SNR, an accurate
estimation of the ridge positions indicating the signal frequency component does not
allow for an efficient signal recovery due to the additional noise energy integrated in
Equation (A8). Here, we aim to replace the classical binary mask by another weighting filter
to mitigate the noise content in the vicinity of the estimated IF. For this purpose, a truncated
Gaussian function is used instead of a binary mask. More precisely, the reconstruction is
performed by using the synthesis formula in Equation (A8), by integrating a weighted TFR
where the time-frequency points far from the components’ IF neighborhood are discarded.

First of all, we perform a preliminary analysis to motivate the use of such Gaussian
filtering. For this purpose, we consider a single sinusoidal component signal whose IF is
assumed to be known, merged with an additive white Gaussian noise. We then compare
the performance of the Gaussian band-pass reconstruction filter with the classical binary

one in terms of Reconstruction Quality Factor (RQF): 10 log10

(
||x||2
||x−x̂||2

)
, where x (resp. x̂)

stands for the reference (resp. estimated) signal. While the spread of the Gaussian filter is
controlled through its standard deviation (std), we use the three sigma rule of thumb to
derive a binary filter with approximate width. Thus, for a given Gaussian std, we assign a
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binary filter with width equals to 6× std+ 1. After computing the RQFs obtained with both
approaches for various SNR and filter spread, we compare their performance in Figure 2.
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Figure 2. RQF difference between the Gaussian and binary filter. Each pixel is associated with
a distinct SNR and reconstruction filter bandwidth. A positive values informs on the denoising
performance of the Gaussian filter over that of the binary one. Conversely, a negative value means the
binary filter reaches higher RQF. The results are averaged over 100 realizations of noise. The black
line delimits the positive and negative regions.

From Figure 2, we observe the difference between the RQFs computed with the
Gaussian filter and the binary one. A positive value in Figure 2 thus indicates how much
the RQF obtained by using a Gaussian reconstruction filter is better when compared to a
binary filter for a given SNR and filter width. The black line delimits the transition between
the two regions, where the Gaussian (resp. binary) performs better (resp. worse) than
the other one. It can be observed from Figure 2 that the Gaussian filter provides better
performance than the binary one. Indeed, performing classical band-pass filtering through
a binary filter seems to be more efficient only for small width values.

This preliminary result is performed on a single component without frequency mod-
ulation rate [4,34] and aims to motivate the use of NB filtering reconstruction. We then
compare the reconstruction performance of a sinusoidal component by using the pro-
posed NB mask for various std and SNR. An experiment similar to the previous one is
performed where the IF of the component is known. We thus construct a mask of width
2× 10 + 1 frequency components centered around the ridge to filter the TFR. The results
are displayed in Figure 3 from which two regions can be distinguished: above and below
SNR ∼−7dB. For large SNRs, higher RQFs are obtained by considering broader Gaussian
functions because the energy content is mainly informative. Conversely, an improvement
can be observed in low SNR scenarios when highlighting the frequency values that are
close to the estimated IF when performing the reconstruction.
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Figure 3. RQFs obtained by using the Gaussian filter approach for various SNR and std for L = 20.
The results are averaged over 100 realizations of noise.

6. Numerical Experiments

In this section, we assess (Matlab codes are freely available at https://codeocean.com/
capsule/8693890/tree/v1, accessed on 5 November 2022) the methods proposed in this
work for estimating the IF of signal components from their spectrogram, for detecting the
temporal regions where the signal belongs and for improving the signal reconstruction
performance when performing band-pass reconstruction in the presence of additional
noise sources.

6.1. Synthetic Data Analysis

We aim to compare the performance of our algorithm to several state-of-the-art meth-
ods [11,20,33] on synthetic data for a first time. For this purpose, we consider a signal
made of three components corresponding to a sinusoidal (C1), a linear chirp (C2) and a
sinusoidally-FM component (C3) depicted in Figure 4 (from bottom to top).
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Figure 4. Spectrogram of the analyzed multicomponent signal.

https://codeocean.com/capsule/8693890/tree/v1
https://codeocean.com/capsule/8693890/tree/v1
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In all the experiments conducted in this section, the STFTs are computed using
M = 500 and L = 20. The temporal GRW prior model was initialized with m0 = M/2,
σ2

0 = (M/2)2/12 and σ2
rw = 2. Moreover, an additive white Gaussian noise was used in all

our simulations to model the presence of spurious content. In the remainder of this paper,
we use the SNR to model the quality of the observations.

We first validate the use of the ABD by comparing its estimation performance to
those of the α-D and β-D. Moreover, we also assess our method through a comparison
with a recent Ridge Detector (RD) method [11]. First, we only consider the case of the
component C1, and compare the IF estimation performance of the PB algorithm with
different divergences by using the relative mean squared error

RMSE =
1

NM2 ‖m̄n − m̂n‖2
2, (26)

where m̄n (resp. m̂n) is the actual (resp. estimated) IF at the nth time instant. The esti-
mation performance associated with the objective regions discussed in [21] are compared
by using four different parameter pairs. More precisely, we consider the following set of
parameters providing different objective characters when using the ABD: [α = 0.4, β = 0.4]
(outliers focusing and mode seeking behavior), [α = 0.2, β = 1.5] (robustness and mode
seeking behavior), [α = 1.2, β = −0.4] (outliers focusing and mass-covering behavior),
and [α = 1.1, β = 1.1] (robustness and mass-covering behavior). The estimation perfor-
mance of the different methods according to the character of the variational approximations
controlled by the divergence hyperparameters is assessed in Figure 5.
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Figure 5. RMSE (in dB) of the IF (averaged over 100 realizations of noise) obtained with the different
competing methods for the component C1 [23,24].

Although the performance of all the considered methods have a similar trend, their
resilience to model mismatch can be assessed by comparing the SNR at which the RMSE
increases. Note that the RMSE remains stable at high SNR for all the methods, and a
loss of performance can be observed for SNRs in the range [−5,−10] dB. The less effi-
cient estimations are obtained at high SNR by using the ABD with [α = 1.2, β = −0.4],
[α = 1.1, β = 1.1] and with the RD method. Those results show the inefficiency of improv-
ing the mass-covering character of the variational objective because even in the high SNR
scenario it produces a flat approximate posterior distribution. Using [α = 0.4, β = 0.4]
provides the best accuracy at high SNR by using the compared variational objectives of the
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proposed method while at low SNR we obtain estimation performance similar to the α-D
and the β-D. Finally, the robust approach using [α = 0.2, β = 1.5] is mainly efficient at low
SNR where it provides the best performances among the competing methods. It can be
remarked that our most robust approach, [α = 0.2, β = 1.5], reaches better performance
than when using the β-D with β ∼ 1 [20].

In order to better understand the behavior of the different methods, we consider a
single component signal made of a decreasing linear chirp (whose TFR is displayed in
Figure 6 (top left)). In Figure 6 are displayed the estimation obtained by using the Brevdo
method [33], the RD [11], and the proposed ABD approach. The two left-hand side columns
correspond to results obtained when the signal is merged with an additive white Gaussian
noise with a SNR of −5 dB, whereas the two right-hand side columns correspond to a SNR
of −10 dB.

From Figure 6, it can be observed that in the presence of a moderate noise level (two
left-hand side columns), the three compared methods manage to efficiently estimate the
position of the ridge, even though the proposed approach provides a smoother estimate
and more efficient tracking of the ridge. In the right-hand side case, the signal is more
challenging to retrieve due to the important noise destroying the signal ridge . However,
the proposed method achieves satisfactory estimation by enforcing the regularization in
regions associated with important signal loss .

For a second time, we validate our method by comparing its reconstruction per-
formance for the MCS depicted in Figure 4 with the Brevdo method [33] and the RD
method [11]. For each method, we reconstruct a signal for each of the K = 3 components
C1, C2, and C3, by filtering the TFR by using a binary filter of width 2× 10 + 1, centered
around the IF of each component. The synthesis formula in Equation (A8) is then applied
on each band separately to extract the components. The use of the binary filter here is
motivated by the difference in terms of performance of the Gaussian filter observed in
Figure 3 according to the level of noise. It aims to ensure a fair comparison of the methods,
without introducing an external bias due to to the prior lack of knowledge associated
with the amount of noise in the observed signal. For a further comparison, we discard
the approach working in the region enforcing the mass covering character of the varia-
tional approximation (α > 1) because this objective does not provide satisfying results (see
Figure 5).
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Figure 6. Estimation example of a single component signal in the time-frequency plane using the
competing methods respectively at SNR = −5 dB (a) and SNR = −10 dB (b).

The RQF obtained with the different approaches for a SNR of 10 dB with (resp. with-
out) amplitude modulation are displayed in Table 1 (resp. in Table 2). More precisely, each
component in Table 2 is assigned a distinct amplitude function. We respectively associate
the components C1, C2, and C3 with the three amplitudes functions depicted in Figure 7.
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Figure 7. Amplitudes associated with components C1 (left), C2 (middle), and C3 (right).

Table 1. RQF of each reconstructed components (averaged over 100 realizations of noise) for the
different competing approaches for a SNR = 10 dB without AM. In second rows are displayed,
for each case, the std of the estimators.

C1 C2 C3 Average

Brevdo [33] 15.86± 0.84 16.60± 0.84 6.52± 2.12 12.70± 1.4

RD [11] 16.22± 7.26 12.28± 7.14 5.05± 7.92 11.18± 7.45

ABD, α = 0.4, β = 0.4 17.12± 1.81 16.63± 0.81 11.04± 0.81 14.31± 0.63

ABD, α = 0.2, β = 0.4 17.07± 0.79 16.64± 0.78 10.89± 0.62 14.26± 0.74

ABD, α = 0.4, β = 0.2 16.93± 0.89 16.52± 0.76 10.90± 0.57 14.28± 0.75

ABD, α = 0.2, β = 1.2 14.96± 6.74 16.78± 0.80 9.33± 0.64 13.35± 3.93

ABD, α = 0.7, β = 1.2 11.62± 4.84 16.37± 0.72 9.51± 0.33 12.20± 8.03

ABD, α = 0.2, β = 1.5 5.52± 8.90 16.28± 2.43 8.64± 0.24 9.85± 2.83

Table 2. RQF of each reconstructed components (averaged over 100 realizations of noise) for the
different competing approaches for a SNR = 10 dB with AM. In second rows are displayed, for each
case, the std of the estimators.

C1 C2 C3 Average

Brevdo [33] 15.86± 0.84 16.60± 0.84 6.52± 2.12 12.70± 1.4

RD [11] 16.22± 7.26 12.28± 7.14 5.05± 7.92 11.18± 7.45

ABD, α = 0.4, β = 0.4 17.12± 1.81 16.63± 0.81 11.04± 0.81 14.31± 0.63

ABD, α = 0.2, β = 0.4 17.07± 0.79 16.64± 0.78 10.89± 0.62 14.26± 0.74

ABD, α = 0.4, β = 0.2 16.93± 0.89 16.52± 0.76 10.90± 0.57 14.28± 0.75

ABD, α = 0.2, β = 1.2 14.96± 6.74 16.78± 0.80 9.33± 0.64 13.35± 3.93

ABD, α = 0.7, β = 1.2 11.62± 4.84 16.37± 0.72 9.51± 0.33 12.20± 8.03

ABD, α = 0.2, β = 1.5 5.52± 8.90 16.28± 2.43 8.64± 0.24 9.85± 2.83

In Table 1 (without amplitude modulation), it can be observed that the best perfor-
mance is obtained by using parameter values satisfying α + β < 1. Even though those
values enforce the weights given to outliers, satisfying performance are still obtained due
to the experimental conditions (moderate SNR). The proposed ABD methods perform
better than the RD for all components, although the IF estimations associated with the
sinusoidal component are similar when using both methods. Nonetheless, the robust
methods (α + β > 1) provide satisfying performance, except when both the robustness of
the estimator is enforced and the mass of the observation is not well covered, avoiding
efficiency of the variational approximation [22]. According to parameters choice, higher
RQFs are obtained with our method in that particular case.

In Table 2 (with amplitude modulation), it can be observed that the proposed method
is robust to variable amplitude. The performance of the proposed method does not signif-
icantly vary when compared to those in Table 1. Indeed, the method providing the best
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RQF for all components in average is the proposed ABD using α = 0.4, β = 0.4. Although
the RD method collapses for the estimation of the third AM-FM component, it achieves
slightly better reconstruction performance of C2. Even though the approaches enforcing the
robustness of the estimator provides a satisfying performance for the linear chirp C2 and
the FM component C3, they perform less efficiently to recover the IF associated with the
sinusoid. This can be explained by the choice of the amplitude function of this component
that should be the last component estimated by our algorithm due to its lower amplitude
at the first time instants (see Figure 7). Considering α + β < 1 allows us to achieve accurate
estimation of the IF for the three considered components.

The computational time associated with the competing methods applied on the MCS
depicted in Figure 4 is reported in Table 3 for different frequency resolutions. All the
experiments have been computed by using Matlab R2021b with an Intel(R) Xeon(R) W-2123
CPU @ 3.60 GHz. Although the computational gain is implementation-dependent and
could be improved via parallel programming, we notice that the proposed method as well
as the RD [11] are more time consuming than the Brevdo method [33] when performing IF
estimation for all frequency resolutions. Nonetheless, we remark that the complexity of
the proposed method is similar but faster than [11]. The most computationally expensive
step of the proposed algorithm is the computation of the pseudolikelihood, which has to
be performed for each time instant. Nonetheless, this can be done as a preprocessing step
because the pseudolikelihoods can be stored before running the Algorithm 1.

Table 3. Computational cost of the competing approaches for synthetic data analysis. The results
have been obtained by averaging over 50 realizations.

M = 500 M = 1000 M = 2000 M = 5000

Brevdo [33] 0.05s 0.07s 0.13s 0.36 s

RD [11] 1.52 s 2.54 s 4.47 s 12.29 s

ABD 0.28 s 0.49 s 1.20 s 7.15 s

Now, we numerically assess the performance of the proposed detection approach.
For that purpose, we first consider a truncated version of the component C1, displayed in
Figure 8 (left), such that it is assigned a binary amplitude taking values in [0, 1]. The spec-
trogram of this signal is displayed in Figure 8 (right).
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Figure 8. Left: Spectrogram of a noiseless monocomponent signal whose frequency is not null in
time indices [200, 400]. Right: Ground truth binary detection indicating where the signal amplitude
is non-null.
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We assess the performance of the detection method through a comparison with [20,33]
using the following Mean Absolute Error (MAE) defined as

MAE =
1
N

N−1

∑
n=0
|d̄n − d̂n|, (27)

where d̄n (resp. d̂n) is the actual (resp. estimated) presence array at the n-th time instant.
Our evaluation also considers an Oracle estimator, which provides a binary mask computed
by using the threshold ground truth isolated component signal. This estimator aims to show
the influence of the parameter λa because the knowledge of the ridge position allows us to
estimate the signal amplitude more efficiently. This comparison highlights the influence of
the IF estimation performance during the detection process. Moreover, it is preferable to
significantly increase the GRW parameter σrw when performing detection, because ridges
are not necessarily observed in the first time instants. Thus, the PB algorithm will estimate a
ridge position around local maxima corresponding to noise and propagate this information
to the following time instants. By increasing σrw, we ensure that wrong prior models,
due to the absence of observed signal, will not avoid efficiently estimating the IF as long
as the pseudolikelihood is sufficiently informative. For that reason we set σrw = 10 for
the experiments conduced in this section. The resulting MAE obtained with the different
competing methods are displayed in Figure 9.
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Figure 9. MAE between estimated detection array and ground truth for a linear chirp (truncated
middle component in Figure 4) by using L = 20 (obtained with 100 realizations of noise).

It can be observed from the results in Figure 9 that the Oracle accurately detects the
signal for SNR > −15 dB, showing the importance of the estimation performance of the
parameters required to achieve the detection. The IF estimation performance enhances
the detector accuracy through p(u = 1, w|s) in Equation (24), and improves the estimation
performance of the amplitude and noise used in the decision rule. The other approaches
perform satisfactorily for a SNR ≥ −5 dB. The estimation performance of the variational
objectives is similar to previous results, because the robust methods provide better results
at low SNR. It can be remarked that when α+ β > 1, increasing the value of α+ β improves
the performance of the detection algorithm. Moreover, reducing the mode-seeking character
provides better performance than enforcing the robustness of the objective (better results
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are obtained by using [α = 0.7, β = 1.2] than with [α = 0.2, β = 1.5]). When selecting
α + β > 1, a better detection is performed by using slight mode seeking objective. When
highlighting the importance of outliers in the IF estimation, focusing on the distribution
mode can avoid proper ridge following, corrupting the detection process.

We finally assess the signal reconstruction performance of the alternative method
based on the SST and reconstruction by using the NB mask discussed in Section 5. For
the latter case, we compare the reconstruction performance obtained with different masks
associated with distinct std. Even though the following experiments present the perfor-
mance obtained by using [α = 0.4, β = 0.4], we have empirically observed during our
experiments that similar results are obtained when working in the regions given by α < 1
and α + β < 1. For comparison purposes, we also assess the alternative reconstruction
performance on synchrosqueezed signals. We are thus interested by the efficiency of the
SST-based approaches [10,35] that allow us to highlight the information related to the signal
by improving its time-frequency localization. There is no restriction to apply the proposed
PB method on such a modified TFR as long as the distribution associated with the data in
Equation (13) is updated accordingly. Because no analytic formulation of the data distribu-
tion can be derived from such a representation, we empirically estimate the parameters
of the Gaussian analysis window. The resulting distribution is proportional to a Gaussian
function with std = 0.5. The RQF of each component of the MCS in Figure 4 are respectively
displayed for components C1, C2, and C3 in Figure 10 (top left,top right,bottom).
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Figure 10. RQF obtained for each component in Figure 4 using compared methods for various SNRs
with L = 20. The results are averaged over 100 realizations of noise [5].
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We observed from Figure 10 (top left, top right, and bottom), that although our
method provides performance similar to the Brevdo approach, the proposed alternative
reconstruction methods improves the reconstruction of each component for low SNRs.
Indeed, applying our algorithm on the SST instead of the STFT enhances the reconstruction
through a higher RQF for SNR < −7 dB. For SNR < −5 dB, the best reconstruction in term
of RQF among the compared method is given by the proposed NB with low std. However,
such a choice reduces the quality of the reconstruction for high SNRs because it tends
to reduce the amount of information used to reconstruct the signal components. Similar
to what is observed in Figure 3, considering smaller std has a denoising effect and thus
improves the quality of the reconstructed signal at low SNRs. Conversely, considering
broader Gaussian provides results that are close to the original method and thus increases
the sensitivity of the reconstruction to the presence of noise. The proposed approach
improves the RQF by reducing the energy used to synthesize the signal producing a slight
loss of information.

6.2. Real-World Data

We consider first a signal corresponding to sounds emitted by a piping queen bee
investigated in [36] which has been downsampled to 16 kHz and truncated to obtain the
result depicted in Figure 11, where the estimated IF of each mode is superimposed with
different colors. Despite the exact IF ground truth is not available, the ridges corresponding
to the piping signal components are quite visible and match with our estimation.
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Figure 11. Estimation of the first K = 5 signal components of the piping data using the proposed
ABD method.

The K = 5 estimated modes are obtained by using a STFT analysis window spread
L = 20 and with our proposed ABD using α = 0.2 and β = 0.6 (postprocessed by using
our detection algorithm) are shown in Figure 11. This figure illustrates the performance of
our method, where the modes are well-retrieved on each side of the TFR. Moreover, this
clearly shows the interest of the detector for avoiding the detection of spurious components
in the [0.13,0.26]s range. Secondly, we apply our proposed approach on a 2.5-ms-long
echolocation pulse signal emitted by a Eptesicus Fuscus bat (https://www.ece.rice.edu/
dsp/software/bat.shtml, accessed on 5 November 2022), sampled at Ts = 7 µs.

The estimated K = 3 signal modes obtained with our PB algorithm using α = 0.4 and
β = 0.7 are shown in Figure 12, with (right) and without (left) application of the detection
method. From Figure 12, we can distinguish the ability of the method to retrieve the modes

https://www.ece.rice.edu/dsp/software/bat.shtml
https://www.ece.rice.edu/dsp/software/bat.shtml
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of the signal when the amplitude and frequency of each components significantly vary
over time. The result obtained after application of the detection algorithm is depicted in
Figure 12. In Figure 12 (right), we observe the ability of the method to efficiently decide
for the presence or absence of the ridges even when the observed data distribution is
strongly modulated.
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Figure 12. Estimation of K = 3 signal components of the bat record signal by using the proposed
ABD method with α = 0.4, β = 0.7 with (right) and without (left) performing the detection.

7. Conclusions

In this paper, we have proposed a new pseudo-Bayesian method designed for ridge
detection, mode disentangling, and reconstruction in the presence of noise. The proposed
approach combines three distinct problems which are often separately addressed in the
literature.

1. A new, robust, instantaneous frequency estimator has been proposed to perform
estimation of the ridge position in the time-frequency plane accounting for the pres-
ence of spurious additional noise. The simple postulated observation model allows
us to quickly infer estimates by sequentially extracting the instantaneous frequency
associated with each component of the signal. The new variational objective that is
proposed in this work controls together the balance robustness/efficiency and mode
seeking/mass covering of the estimator.

2. An algorithm to perform signal detection in order to postprocess the instantaneous
frequency estimation is based on a hypothesis test requiring amplitude and frequency
noise-expectation estimates. We showed the ability of the proposed detection method
to efficiently estimate the time instants when the signal is active, as well as the
importance of the amplitude estimation performance for achieving a satisfying signal
reconstruction.

3. We alleviate issues encountered when performing signal reconstruction from noisy
frequency bands of the STFT. We finally present in this work two different denoising
reconstruction approaches, involving, respectively, a simple extension of the proposed
algorithm to apply on the signal SST, and the use of a nonbinary mask.

The experiments conducted in this work show that the proposed variational objective
can provide better estimation results than the compared state-of-the-art methods, in par-
ticular the RD method, which was recently introduced in [11]. Future work includes the
optimization of the divergence hyperparameters selection and their application in new
real-world sensor-based applications. Moreover, a further investigation of other nonbinary
masks for signal reconstruction could also be full of interest in specific denoising scenarios.
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The following abbreviations are used in this manuscript:

AB Alpha-Beta
ABD Alpha-Beta Divergence
AM-FM Amplitude-and Frequency-Modulated
CE Cross Entropy
CWT Continuous Wavelet Transform
ELBO Evidence Lower-Bound
EMD Empirical Mode Decomposition
FFT Fast Fourier Transform
GRW Gaussian Random Walk
IF Instantaneous Frequency
KLD Kullback-Leibler Divergence
MAE Mean Absolute Error
MCS MultiComponent Signal
MLE Maximum Likelihood Estimation
MMSE Minimum Mean Squared Error
NB Non-Binary
PB Pseudo-Bayesian
RD Ridge Detector
RE Rényi Entropy
RQF Reconstruction Quality Factor
SNR Signal-to-Noise Ratio
std standard deviation
SSA Singular Spectrum Analysis
SST Synchrosqueezing transform
STFT Short-Time Fourier Transform
TFR Time-Frequency Representation
β-D β-Divergence
α-D α-Divergence

Appendix A. Short-Time Fourier Transform

The STFT of signal x using a differentiable analysis window h, can be defined at each
time instant t and each angular frequency ω, as:

Fh
x (t, ω) =

∫
R

x(u) h(t− u)∗ e−jωu du (A1)

https://codeocean.com/capsule/8693890/tree/v1


Sensors 2023, 23, 85 22 of 24

with j2 = −1 and z∗ the complex conjugate of z. A TFR so-called spectrogram is simply com-
puted as |Fh

x (t, ω)|2. Using the definition of the Fourier transform of x ∈ L1(R) expressed
as: Fx(ω) =

∫
R x(t) e−jωtdt (resp. Fh), and its inverse formula x(t) = 1

2π

∫
R Fx(ω) ejωtdω,

Equtaion (A1) can be reformulated in the frequency domain as:

Fh
x (t, ω) =

∫
R

∫
R

Fx(ω1) ejω1u dω1

2π

∫
R

Fh(ω2)
∗ ejω2(t−u) dω2

2π
e−jωudu (A2)

=
∫∫∫

R3
Fx(ω1)Fh(ω2)

∗ ejω2t ej(ω1−ω−ω2)u dω1

2π

dω2

2π
du (A3)

=
∫∫
R2

Fx(ω1)Fh(ω2)
∗ ejω2tδ(ω1 −ω−ω2)

dω1

2π
dω2 (A4)

= e−jωt
∫
R

Fx(ω1)Fh(ω1 −ω)∗ ejω1t dω1

2π
(A5)

=
∫
R

Fx(Ω + ω)Fh(Ω)∗ ejΩt dΩ
2π

. (A6)

Thus, if the considered signal is a pure sinusoid expressed x0(t) = A ejω0t, we have
Fx0(ω) = A2πδ(ω0 −ω) (δ being the Dirac distribution) which leads to:

Fh
x0(t, ω) = AFh(ω0 −ω)∗ ej(ω0−ω)t

= x0(t)Fh(ω0 −ω)∗ e−jωt. (A7)

When h(t0) 6= 0, the STFT admits a synthesis formula allowing to recover the signal x
with a delay t0 ≥ 0, as:

x(t− t0) =
1

h(t0)∗

∫ +∞

−∞
Fh

x (t, ω) ejω(t−t0)
dω

2π
(A8)

where the integration region can be restricted to the frequency support of the signal x.

Appendix B. Synchrosqueezing Transform

To improve the readability of a TFR, the synchrosqueezing method was introduced by
Daubechies and Maes in [14] as an efficient alternative to the reassignment [35] method
which admits a reconstruction formula and enables mode retrieval. The synchrosqueezed
STFT can thus be derived from the simplified synthesis formula given by Equtaion (A8) for
any t0 ≥ 0 such that h(t0) 6= 0, as:

SFh
x(t, ω) =

∫
R

Fh
x (t, ω′) ejω′(t−t0)δ(ω− ω̂(t,ω′))dω′ (A9)

where ω̂ is an IF estimator which can be computed for instance as in [37]:

ω̂(t, ω) = ω + Im

(
FDh

x (t,ω)

Fh
x (t,ω)

)
(A10)

with Dh(t) = dh
dt (t). One can also replace the IF estimator in Equtaion (A10) with an

arbitrary one (more robust or more accurate). Hence, |SFh
x(t,ω)|2 provides a sharpened

TFR. The signal x and its modes can be retrieved from its synchrosqueezed STFT using the
following expression:

x̂(t− t0) =
1

h(t0)∗

∫
R

SFh
x(t, ω)

dω

2π
, (A11)

where the integration region can also be restricted to the frequency support of the sig-
nal components.
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Appendix C. Derivation of the Presence Joint Posterior Probability

We aims to derive p(u = 1, w|s). From Equtaions (19) and (22) we get p(u = 1, w|s) ∝

∫ M−1

∏
m=0

p(sm|w, m̂n, b, u = 1)p(w, b|u = 1)p(u = 1)db

∝
∫ M−1

∏
m=0

[(1− w)g(m− m̂n) + w]λaλbe−b(λb+λa( 1
w−1))ρdb.

(A12)

From the definitions of w = b
a+b and a = b

(
1
w − 1

)
we obtain

p(sm|w, m̂n, b, u = 1)∝ b
M−1

∏
m=0

[(
1
w
− 1
)

g(m− m̂n) + 1
]

for which we use the shortcut g1(w) (see Equtaion (25)) Thus, we can remove most of this
term from the integral in Equtaion (A12) such as:

p(u = 1, w|s) ∝ ρλaλbg1(w)
∫

be−b(λb+λa( 1
w−1))db.

Finally, we remark that the integral is proportional to the first statistical moment of
the exponential distribution with parameter

(
λb + λa

(
1
w − 1

))
. We then normalize this

term to replace it by the known analytic expectation to obtain

p(u = 1, w|s) ∝
ρλaλbg1(w)[

λb + λa

(
1
w − 1

)]2 .
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