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Abstract: Inverting seismic data to build 3D geological structures is a challenging task due to the
overwhelming amount of acquired seismic data, and the very-high computational load due to
iterative numerical solutions of the wave equation, as required by industry-standard tools such as
Full Waveform Inversion (FWI). For example, in an area with surface dimensions of 4.5 km × 4.5 km,
hundreds of seismic shot-gather cubes are required for 3D model reconstruction, leading to Terabytes
of recorded data. This paper presents a deep learning solution for the reconstruction of realistic
3D models in the presence of field noise recorded in seismic surveys. We implement and analyze a
convolutional encoder–decoder architecture that efficiently processes the entire collection of hundreds
of seismic shot-gather cubes. The proposed solution demonstrates that realistic 3D models can be
reconstructed with a structural similarity index measure (SSIM) of 0.9143 (out of 1.0) in the presence
of field noise at 10 dB signal-to-noise ratio.

Keywords: 3D reconstruction; seismic inversion; seismic velocity; inverse problems; deep learning;
transfer learning; encoder–decoder

1. Introduction

A key step into understanding the subsurface by remote sensing, is the acquisition of
seismic data, which consists of the recorded response of the subsurface when mechanical
perturbations are introduced. After data has been collected, several disciplines of geo-
science are involved towards the common objective of producing a reliable subsurface
model(s). Earth models can be used for many purposes, such as: seismology studies,
hydrocarbon exploration and CO2 sequestration. When used for the later purpose, models
are critical inputs to drilling decisions. The problem at hand is daunting, involving too
many variables and huge datasets. An example of great societal importance is injecting
CO2 from industrial processes into specially reconditioned reservoirs. To that end, having
high quality subsurface models is crucial. The solution of 3D seismic inverse problems
using deep learning (DL) [1,2] is an emerging field of research, motivated by state-of-the-
art results obtained by DL for the 2D case [3,4]. In particular, DL has been applied for
velocity inversion [5–13], impedance inversion [14–16], reflectivity inversion [17–19] and
low-frequency extrapolation [20–24]. In this study, we address the problem of 3D velocity
inversion in large scale areas with hundreds of seismic shot-gather cubes, as required in
realistic seismic surveys. The proposed solution is demonstrated in an area with surface
dimensions of 4.5 km × 4.5 km, which requires over 500 seismic shot-gather cubes for
3D model reconstruction. Nevertheless, our solution is scalable to larger area dimensions
and higher numbers of shot-gather cubes, facilitated by the utilization of a dimensionality
reduction approach. The contributions of this paper are threefold: (1) A convolutional
encoder–decoder network is proposed with an efficient input data dimensionality reduction
and time boosting of all seismic traces, to reconstruct complex 3D models at an average in-
ference time of 0.165 s (on one NVIDIA A100 GPU), which is a fraction of the time required
by any iterative global optimization solver. (2) The proposed approach is demonstrated to
provide inherent robustness against noise in the recorded seismic data. (3) The proposed
approach is successfully evaluated with realistic 3D geological models and field noise.
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2. Problem Formulation

Direct reconstruction of models of solid earth is not possible, this renders the following
forward model:

d = F(m) + ε, (1)

only practical when synthetic seismic data (d) is to be generated from a forward operator
F acting on a artificial model m, under ambient noise ε. F approximates the behavior of
seismic waves propagating through the mechanical medium (m), and it is represented by
the following expression:

∂2u
∂t2 −VP

2∇(∇ · u) + VS
2∇× (∇× u) = f, (2)

where u = u(x, y, z, t) is the seismic wave displacement, VP is P-wave velocity (compres-
sion/rarefaction), VS is S-wave velocity (shear stress), and f is the source function. While
the elastic (in the presence of P-wave and S-wave attenuation the viscoelastic wave equation
is utilized instead of the elastic equation) wave equation describes faithfully seismic waves
propagation, it is often preferred (as in this work) to approximate it by the acoustic wave
equation [25], which assumes only P-waves and requires less computational resources and
parameters, as compared to solving the elastic equation. The acoustic wave equation for a
medium without density variations is given by:

∂2u
∂t2 −V2∇2u = f, (3)

where u is the wave displacement, V is the P-wave velocity model and f is the perturbation
source (i.e., shot) function.

Since the direct formulation is not tractable, it is common to use the inverse approach.
Seismic velocity inversion computes a complete 3D velocity model (m̂) of a certain target
area, from recorded seismic data dr, and it can be summarized as:

m̂ = F−1(dr), (4)

where F−1 is the inversion operator. Seismic inversion problems [26] are ill-posed, e.g., the
solution is non-unique and unstable in the sense that small noise variations may alter the
solution significantly. The DL formulation for solving inverse problems is detailed in the
next section.

3. The Deep Learning Approach
3.1. Encoder–Decoder Architecture

Deep Learning (DL) is a powerful class of data-driven machine learning algorithms,
built using Deep Neural Networks (DNNs), which are formed by a hierarchical composition
of non-linear functions (layers). The main reason for the success of DL is the ability to train
very high capacity networks using very large datasets, often leading to good generalization
capabilities in numerous problem domains. Generalization is defined as the ability of an
algorithm to perform well on unseen examples. In statistical learning terms an algorithm
A : X → Y is learned using a training dataset S = {(x1, y1), ..., (xN , yN)} of size N, where
xi ∈ X is a data sample (in this work, a seismic shot-gather) and yi ∈ Y is the corresponding
label (in this work, a 3D velocity model). Let P(X ,Y) be the true distribution of the data,
then the expected risk is defined by: R(A) = Ex,y∼P(X ,Y)[L(A(x), y)], where L is a
loss function that measures the misfit between the algorithm output and the data label.
The goal of DL is to find an algorithm A within a given capacity (i.e., function space)
that minimizes the expected risk; however, the expected risk cannot be computed since
the true distribution is unavailable. Therefore, the empirical risk is minimized instead:
RE (A) = 1

N ∑N
i=1 L(A(xi), yi), which approximates the statistical expectation with an

empirical mean computed using the training dataset.



Sensors 2023, 23, 61 3 of 12

In this work we implemented and trained a 3D convolutional encoder–decoder, in-
spired by the 2D U-Net architecture [27], to learn the mapping from seismic data space to
3D models space (i.e., inversion). The complete network architecture is depicted in Figure 1,
and the details of each block are provided in Table 1, with a total of 99M parameters.

Figure 1. The proposed 3D Encode-Decoder architecture, based on the U-Net architecture. The skip
connections perform a replication of the encoder feature maps, which are further concatenated with
the corresponding decoder feature maps. Additional details are provided in Table 1.

Table 1. Proposed encoder–decoder architecture.

Block Layer Unit Comments

Input 0 Seismic Cube 96× 96× 224 grid points

Enc1
1 Conv3D(32, (5× 5× 5), ReLU) + InstanceNormalization
2 Conv3D(32, (5× 5× 5), ReLU) + InstanceNormalization
3 MaxPool3D + Dropout(0.2)

Enc2 4–6 Enc1(64)

Enc3 7–9 Enc1(128)

Enc4 10–12 Enc1(256)

Enc5 13–14 Enc1(512) without MaxPool3D

Dec1
15 ConvTrans3D(256, (2× 2× 2), ReLU) + InstanceNormalization
16 Conv3D(256, (5× 5× 5), ReLU) + InstanceNormalization
17 Conv3D(256, (5× 5× 5), ReLU) + InstanceNormalization

Dec2 18–20 Dec1(128)

Dec3 21–23 Dec1(64)

Dec4 24–26 Dec1(32)

27 Conv3D(1, (1× 1× 1), ReLU) final reconstruction layer

Output 28 Velocity Model 96× 96× 224 grid points

3.2. Computational Considerations

The main challenge in training such a deep convolutional neural network (DCNN)
for real-life inversion tasks lies in the demanding GPU RAM size and external storage
access requirements due to the large number of input channels and large size of each input
channel: each sample in our training data was composed of Nx × Ny = 529 seismic data
cubes (i.e., DCNN input channels), where Nx, Ny are the total numbers of shots in the lateral
and longitudinal axes, respectively. Therefore, a total storage size of 42GB per sample
(after decimation to dimensions 96× 96× 224). A modest training dataset of 800 samples
occupies ≈ 4TB storage size, which requires very high-speed storage access to facilitate
DCNN training in reasonable duration. Thus, the problem belongs to a High-performance
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Computing class [28]. To overcome these challenging requirements, we propose a simple
yet highly-effective dimensionality reduction scheme: let d(Sx, Sy, Rx, Ry, t) denote the
5D tensor that represents a single data sample, i.e., the collection of seismic data cubes
(shot-gathers), where Sx, Sy are the indices of the shot position, Rx, Ry are the indices of the
receiver position, and t is time. We define the time-boosted and dimensionality-reduced
data cube d̄ by spatial averaging along the shots dimensions:

d̄(Rx, Ry, t) =
b(t)

Nx × Ny

Nx

∑
Sx=1

Ny

∑
Sy=1

d(Sx, Sy, Rx, Ry, t), (5)

where b(t) is a monotonically-increasing time-boosting function that compensates the
attenuation of wave reflections from the lowest geological layers, by amplifying late-
arrival time samples. Therefore, d̄ forms a single 3D input channel, thus significantly
mitigating the memory and computational requirements for training and inference of the
proposed DCNN.

In the next section, we describe the performance of the proposed architecture for
noiseless seismic data, as well as data contaminated by synthetic and field noise.

4. Performance Evaluation
4.1. Data Preparation

We created 800 3D velocity models using the Gempy (https://www.gempy.org/,
accessed on 1 October 2020) tool that creates 3D geologically-feasible models with realistic
combinations of features. The selection of Gempy as subsurface modeler is not arbitrary, and
obeys to the intention of solving a more realistic problem than just flat layer-cake models.
A subset of 300 models were augmented with random 3D geometries that resemble salt
structures, as illustrated in Figure 2. The physical dimensions of each model were 4.5 km ×
4.5 km× 4.0 km (lateral× longitudinal× depth), represented by a 3D tensor of dimensions
300× 300× 800 grid points, which was down-sampled for DCNN training to dimensions
of 96× 96× 224. To generate the synthetic seismic data, through forward modeling, we
use an acoustic isotropic wave equation propagator with a 15 Hz peak frequency Ricker
wavelet as a source. Shots and receivers are evenly spaced on the top surface of the 3D
model (200 m between shots and 25 m between receivers). To avoid reflections from the
boundaries and free surface multiples, convolutional perfectly matched layer (CPML) [29]
boundaries are imposed all around the model. Each generated seismic data cube was
computed on a grid of dimensions 180× 180× 500 (lateral × longitudinal × time) points,
which was down-sampled for DCNN training to dimensions of 96× 96× 224.

The 800 3D models were split to disjoint training and testing sets by a 90%/10% ratio,
respectively. The proportions of models without and with salt structures were identical
in the training and testing sets, namely, 450 models without salt and 270 with salt in the
training set, and 50 models without salt and 30 with salt in the testing set. The proposed
DCNN was implemented in PyTorch and trained using the NVIDIA A100 Tensor Core
GPU card (40 GB RAM). Training was performed using the ADAM optimizer with early
stopping regularization, by minimizing the Mean Absolute Error (MAE) loss function,
defined by:

https://www.gempy.org/
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Figure 2. 3D inversion results of four velocity models with salt geometry, from the held-out testing set.
Each row presents one model: the two left columns display the ground-truth and the corresponding
inverted model. In the two right columns, the shallow layers (slow velocity) are removed to enable
the visualization of the embedded salt bodies.
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MAE(X, Y) =
1
N

N

∑
i=1
|xi − yi|, (6)

where xi, yi are the grid point entries of the ground truth 3D model X and inverted 3D
model Y, respectively (each model with N grid points). Training was initially performed for
the noiseless data case, and subsequently using transfer learning, for the six noisy cases. For
each type of noise training started from the learned weights of the noiseless case (we found
this approach to provide a significant advantage as compared to training from random
weights, for each noisy data case). This process resulted in seven different trained DCNNs:
noiseless data, data contaminated with white Gaussian noise at signal-to-noise (SNR) levels
of 20 dB, 10 dB and 0 dB, and data contaminated with noise extracted from field data (from
recordings of an onshore field) at SNR levels of 20 dB, 10 dB and 0 dB. Figure 2 presents
3D inversion results from noiseless data of four velocity models with salt geometry, from
the held-out testing set. The results clearly indicate high-quality 3D reconstruction of the
geological layers and salt bodies. Examples of the clean and noisy data are provided in
Figure 3, demonstrating the highly correlated patterns in space- and time-domains of the
field noise.

Figure 3. A 2D slice of a 3D shot-gather: (a) noiseless. (b) distorted by additive white Gaussian noise
(SNR = 10 dB). (c) distorted by additive colored field noise (SNR = 10 dB).
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4.2. Evaluation Metrics

SSIM [30] results were computed per 3D model by first averaging SSIM values along
the three 2D planes: 96 along the XZ plane, 96 along the YZ plane, and 224 along the XY
plane. Finally, the three results were averaged to obtain the single SSIM(3D) result. The
distribution of SSIM values, as computed along the three 2D planes (XY, YZ, XZ), for the
entire testing set is presented in Figure 4, demonstrating accurate reconstruction along the
three 2D planes, with slightly lower SSIM values for the vertical planes (YZ, XZ), which can
be explained by the difficulty to reconstruct the deepest layers. Table 2, details SSIM and
MAE results, averaged on the testing set, clearly demonstrating that the proposed DCNN
is capable to reconstruct 3D velocity models from noiseless data (Figure 5e–h), as well as
with additive white noise (Figure 5i–p) or field noise (Figure 5q–x). Importantly, results
for seismic data contaminated by field noise, indicate close similarity to the ground truth
models at a SNR of 20 dB, but the SSIM metric slightly deteriorated at SNR of 10 dB.

(a)

(b)

(c)

Figure 4. SSIM values histograms of all testing set samples, computed separately along the three
2D planes: (a) noiseless data. (b) data contaminated by white noise at SNR = 20 dB; and (c) data
contaminated by field noise at SNR = 20 dB. The histograms clearly indicate that most SSIM values
are distributed between 0.80 and 0.99. The average 3D SSIM values are 0.9335 for the noiseless case,
0.9316 with white noise (SNR = 20 dB) and 0.9271 with field noise (SNR = 20 dB).
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Figure 5. 2D cross-sections of reconstructed 3D models from unseen data: (a–d) ground truth. (e–h) re-
construction from noiseless data. (i–l) reconstruction from noisy data: white noise, SNR = 20 dB; and
(m–p) white noise, SNR = 10 dB. (q–t) reconstruction from noisy data: field noise, SNR = 20 dB; and
(u–x) field noise, SNR = 10 dB.

The results in the noiseless data case are surprising, indicating that the dimensionality-
reduced data cube (5) contains sufficient information for practical reconstruction given
the measured metric, achieving an average SSIM(3D) of 0.9003 by the DCNN. In addition,
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examples of the structure of the prediction error are presented in Figure 6. We next discuss
the noisy data case.

Figure 6. Three testing samples were selected and a 2D (central inline) cut is shown, a comparison
between ground-truth and prediction is presented in terms of error. As expected, the greater error
(right most bar, in percentage) occurs around the salt geometry and mostly over estimating the model
velocity, nevertheless the background velocity is overall correct.



Sensors 2023, 23, 61 10 of 12

Table 2. 3D velocity model building quality comparison. All values are reported as: Mean(Std), MAE
results are in [Km/s]. Results with salt geometry augmented models are included in this table.

Metric Noiseless White Noise White Noise White Noise Field Noise Field Noise Field Noise
Data (SNR = 20 dB) (SNR = 10 dB) (SNR = 0 dB) (SNR = 20 dB) (SNR = 10 dB) (SNR = 0 dB)

SSIM(3D) 0.9335 (0.0449) 0.9316 (0.0440) 0.9192 (0.0465) 0.8621 (0.0528) 0.9271 (0.0461) 0.9143 (0.0493) 0.8605 (0.0488)
SSIM(XZ) 0.9294 (0.0458) 0.9272 (0.0446) 0.9135 (0.0467) 0.8475 (0.0484) 0.9222 (0.0470) 0.9078 (0.0495) 0.8455 (0.0425)
SSIM(XY) 0.9433 (0.0388) 0.9417 (0.0394) 0.9329 (0.0409) 0.8960 (0.0425) 0.9385 (0.0407) 0.9296 (0.0427) 0.8953 (0.0401)
SSIM(YZ) 0.9280 (0.0471) 0.9257 (0.0460) 0.9113 (0.0484) 0.8426 (0.0497) 0.9207 (0.0481) 0.9054 (0.0515) 0.8407 (0.0438)
MAE(3D) 0.0380 (0.0349) 0.0394 (0.0343) 0.0490 (0.0428) 0.1214 (0.0716) 0.0426 (0.0375) 0.0550 (0.0510) 0.1206 (0.0667)

4.3. Noisy Data Analysis

In the presence of additive white noise that is spatially (and temporally) independent
and identically distributed (iid), the spatial averaging along the shots dimensions results
in a reduction of the noise variance, as explained in the following analysis. Denoting by
n(Rx, Ry, t) the noise random variable resulting from the spatial averaging of noise samples,
corresponding to receiver coordinates (Rx, Ry) and time t:

n̄(Rx, Ry, t) =
1

Nx × Ny

Nx

∑
Sx=1

Ny

∑
Sy=1

n(Sx, Sy, Rx, Ry, t), (7)

where n(Sx, Sy, Rx, Ry, t) are iid random variables with zero mean and variance σ2
n. By

using the iid property, the variance of n̄(Rx, Ry, t) is independent of Rx, Ry, t and given
by σ2

n̄(Rx, Ry, t) = σ2
n̄ = 1

Nx×Ny
σ2

n (in our study Nx × Ny = 529). The time-boosting
function b(t) is omitted from (7), since in the presence of additive noise, both the signal
and noise components are multiplied by b(t), according to (5), thus the contribution of
b(t) is cancelled in a SNR analysis. Therefore, the variance of the noise component in the
dimensionality-reduced data cube is effectively reduced by Nx × Ny, for iid white noise.
However, the field noise is clearly not iid, therefore a smaller reduction in the noise variance
is achieved.

5. Conclusions

Seismic inversion based on DL effectively reconstruct 3D subsurface models from
synthetic seismic data and synthetic seismic data contaminated by either white or field
noise. Once training is settled, the inference step is fast—a fraction of a second—to a
point that allows many different experiments to be carried out with marginal cost. To
allow feasible training time a dimensionality reduction technique is deployed. Also, the
robustness to noise was demonstrated for practical SNR levels. The next steps for this
approach are: training and testing with more complex and larger scale structures, and to
estimate the sensitivity with respect to acquisition towards direct use of field data.
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