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Abstract: The inertial measurement unit (IMU) has become more prevalent in gait analysis. However,
it can only measure the kinematics of the body segment it is attached to. Muscle behaviour is an
important part of gait analysis and provides a more comprehensive overview of gait quality. Muscle
behaviour can be estimated using musculoskeletal modelling or measured using an electromyogram
(EMG). However, both methods can be tasking and resource intensive. A combination of IMU and
neural networks (NN) has the potential to overcome this limitation. Therefore, this study proposes
using NN and IMU data to estimate nine lower extremity muscle activities. Two NN were developed
and investigated, namely feedforward neural network (FNN) and long short-term memory neural
network (LSTM). The results show that, although both networks were able to predict muscle activities
well, LSTM outperformed the conventional FNN. This study confirms the feasibility of estimating
muscle activity using IMU data and NN. It also indicates the possibility of this method enabling the
gait analysis to be performed outside the laboratory environment with a limited number of devices.

Keywords: inertial sensor; muscle activity; EMG; neural network; long short-term memory

1. Introduction

Inertial measurement unit or IMU has been widely viewed as an economical and
practical alternative to the optical motion capture system. A typical optical motion capture
involves the placement of numerous reflective markers on anatomical landmarks to mea-
sure the movements of lower extremity segments—pelvis, foot, shank and thigh. With the
use of IMU, the movement of these segments can be collected by using a limited number of
wearable sensors. These can be placed and aligned on the lateral or anterior side of the leg
to obtain the kinematics of foot, shank and thigh during walking. The sensors are small
and light and can capture human motion outside a laboratory environment. Several studies
have demonstrated the accuracy and reliability of the IMU for gait analysis [1,2].

The IMU can be used to derive other valuable information, such as the spatial and
temporal gait parameters [3,4]. It can also be used to evaluate and diagnose abnormal
gait [5,6] and to identify ageing-related physiological changes [6,7]. Other studies show
that IMU alone can be used to perform inverse dynamics analysis to estimate joint moment
and ground reaction force in gait [8,9].

A more comprehensive gait analysis involves the use of electromyograms (EMG).
Measuring muscle activity using EMG is not a trivial task. Two to three electrodes per
muscle must be accurately placed around the muscle to characterize its behaviour. This
means that a total of 10 to 15 electrodes have to be placed around the thigh to record the
dynamics of the thigh muscle. Surface EMG (SEMG) is a widely adopted measurement
technique, but it has several drawbacks. Among them is crosstalk, which happens when
SEMG detects the myoelectrical activity of the neighbouring muscle. Moreover, patients
often have muscle deformities, which makes it more challenging to obtain accurate readings.
Regardless of whether a wireless or wired EMG, a large number of electrodes must be
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placed on the body. This may hinder the subject from walking naturally, consequently
creating gait data that do not represent the actual walking pattern.

Few studies have attempted to use kinematics and kinetic data to estimate muscle activity
in gait. In [10], musculoskeletal modelling and a simulation tool was used to estimate muscle
activity. In [11], a feedforward nonlinear autoregressive model with exogenous (NARX)
and joint kinetics and kinematics data were proposed to estimate gastrocnemius and tibialis
anterior muscle activities. Both studies demonstrated the feasibility of using joint kinematics
and kinetics to estimate muscle behaviour. However, they used an optical motion capture
system and force place to capture gait data, which can be laborious and time-consuming.
Moreover, the gait can only be quantified in a well-controlled environment.

The rapid growth of artificial intelligence, particularly neural network (NN) and its
broader adoption in gait analysis can potentially offer means to overcome these limitations.
One common use of NN in this field is to identify gait events and gait phases. In [12], IMU
was coupled with Long Short-Term Memory (LSTM) to identify the timings of toe-off, heel-
strike and mid-swing. In other studies, Deep Convolutional Neural Network (DCNN) was
used to detect and classify gait phases in stroke patients [13] and on different terrains [14].
Another widespread use of NN is estimating kinematics or kinetics characteristics of the
lower extremity during walking. For instance, Feedforward Neural Network (FNN) to-
gether with IMU was used to estimate knee flexion and adduction moment with correlation
coefficient (r) above 0.69 for walking [15]; Convolutional Neural Network (CNN) and LSTM
with lower body joint kinematics were used to estimate muscle forces with r greater than
0.83 and joint reaction forces with r greater than 0.93 [16]; and CNN, LSTM and CNN-LSTM
with EMG were used to estimate joint angles during walking with RMSE below 5% [17].

Despite the extensive use of NN and IMU to characterize human gait, current literature
search suggests that there has not been any attempt made to estimate lower extremity
muscle activity using these approaches. Therefore, this study aims to leverage the positive
attributes of NN and IMU to estimate muscle activity in human gait. It has two objectives:
(1) To create two neural network models i.e., FNN and LSTM to estimate muscle activity
using IMU data; (2) To evaluate and compare the performance of the models using standard
measures such as normalized Root Mean Square Error (nRMSE), correlation of coefficient
(r) and peak muscle contraction. The outcome of this work can deliver several benefits and
overcome the limitations of existing methods. It can reduce the number of modality/device
and electrodes attached to the lower extremity and their associated costs, making it more
convenient and affordable. It can provide a more extensive overview of gait quality with
minimal information. It also enables the gait analysis to be conducted anywhere outside
the conventional laboratory environment. Lastly, the use of a small number of compact and
light measuring devices will not disrupt the natural gait, thus allowing for a more accurate
and reliable gait representation to be recorded and analyzed.

2. Methods
2.1. Gait Dataset

This study used an online dataset reported in [18]. It contains walking data collected
from 13 healthy male individuals and 9 healthy female individuals (Age: 18–35 years old,
height: 1.5–1.8 m, weight: 52–96 kg) walking at three different speeds for ten trials in four
different conditions: level ground, ramp, stairs and treadmill. It has two types of data: IMU
data and EMG data. The IMU data contain the 3D angular velocity and acceleration of the
foot, shank, thigh and trunk. The EMG data contain the muscle activity of gluteus medius,
right external oblique, semitendinosus, biceps femoris, rectus femoris, vastus lateralis,
vastus medialis, soleus, tibialis anterior and gastrocnemius. The right external oblique
muscle is excluded from this study because it is part of the abdominal muscle. This work
only focuses on level ground walking regardless of the walking speed; thus, the other data
were ignored. The data from 3 subjects were excluded because they contain more than
4 inconsistent muscle activities, possibly due to crosstalk errors during data collection.
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2.2. Data Processing

The EMG data were pre-processed following the International Society of Electrophysi-
ology and Kinesiology (ISEK) standards [19]. First, Fast Fourier transform (FFT) was used
to obtain the EMG power spectrum. It was found that the primary signals lie between
20 Hz and 400 Hz. Therefore, a Butterworth bandpass filter was applied to reduce the noise.
Second, the filtered data were rectified. Third, another FFT was performed on the rectified
data to obtain the appropriate cut-off frequency to smoothen the signal. A Butterworth
low-pass filter with a cut-off frequency of 8 Hz was selected and applied to the rectified
data. Next, an EMG envelope was created to obtain the muscle activation profile.

In the subsequent step, the EMG data were segmented on a stride-to-stride basis.
The timing of the heel strike given in the dataset was used to define the start and end
of one stride (one complete gait cycle). The segmented data were then time-normalized
to 101 data points, representing the percentage of the gait cycle. The median filter and
min-max normalization were then applied sequentially. The median filter is a nonlinear
digital filter and is good at removing impulsive noise [20]. The min-max normalization, as
defined in (1), creates an array of 101 data points with values ranging between 0 and 1.

ynorm(i) =
y(i)− ymin
ymax − ymin

(1)

where ynorm is the normalized data, y is the original data, ymin is the minimum of the data,
ymax is the maximum of the data and i is the number of data points, i = 0, 1, 2, . . . 100.
A sample of processed EMG data is shown in (Figure 1a). The amplitude and timing of
the peak muscle contraction (Figure 1b) were identified in every gait cycle to evaluate the
performance of the NN in estimating the muscle behaviour.
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Figure 1. (a) The normalized EMG data of glutes medius in several gait cycles; (b)The peak muscle 
contraction of actual and predicted EMG of gastrocnemius in one gait cycle. 

The IMU data were processed in the same way as the EMG data, segmented on a 
stride-to-stride basis and time normalized to 101 data points. The data were then filtered 

Figure 1. (a) The normalized EMG data of glutes medius in several gait cycles; (b)The peak muscle
contraction of actual and predicted EMG of gastrocnemius in one gait cycle.

The IMU data were processed in the same way as the EMG data, segmented on a
stride-to-stride basis and time normalized to 101 data points. The data were then filtered
using a median filter and min-max normalized. A sample of the processed IMU data is
shown in Figure 2.
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Figure 2. A sample of IMU data. (a) Foot x-axis acceleration (b) Trunk y-axis angular velocity
(c) Shank z-axis Acceleration (d) Thigh x-axis angular velocity.

2.3. Neural Network

Two NN models were developed here. The first model is an FNN with 1 input layer,
1 output layer, 4 hidden (dense fully connected) layers with 256 neurons each and a drop-
out layer between each layer. The input features are arranged in a 2D array that cascades
the normalized 3D acceleration and 3D angular velocity of the trunk, thigh, shank and foot
in one gait cycle. The target output is 1D normalized EMG data for each individual muscle.
The layout of this model is shown in Figure 3a.

The LSTM has similar architecture as the FNN. The only difference between them is
that instead of having the dense hidden layer, it has a LSTM hidden layer, as illustrated
in Figure 3b. In traditional FNN, the information only flows in one direction—from input
to output without any feedback [21]. This means that FNN is only capable of learning
linearly separable problems. On the other hand, LSTM can transmit the output backward
as the input, therefore LSTM can learn from experience of the process, classify and predict
time-series data and remember values for a long time [22]. Both models were developed
using TensorFlow. The proposed methodology is summarized in Figure 3.

FNN and LSTM use the same ‘tanh’ as the activation function in the hidden layers.
They use the same ‘sigmoid’ as the output layer activation function. Both models used
Mean Square Error (MSE) as the loss function and were optimized using Adam optimizer.

The input features and target outputs were split, as shown in Table 1. One random
subject data was excluded to be used as an unseen subject test data. The remaining
data which has 5440 gait cycles were randomized and divided into 3 groups—training,
validation and testing with a ratio of 80:15:5, respectively.
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Table 1. Summary of dataset division.

Group Number of Trials Number of Gaits

Training 440 4318
Validation 80 818

Testing 30 304
Unseen subject 30 303

2.4. Validation

A series of measures was used to determine the differences between the predicted and
actual muscle activities. Among them are nRMSE and r, as defined in (2) and (3), respectively.

nRMSE =
1

Xmax − Xmin

√
1
n ∑n

i=1(Xi − Yi)
2 (2)

rXY =
con(X, Y)

σX .σY
=

∑n
i=1
(
Xi − X

)
.
(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2.
√

∑n
i=1
(
Yi − Y

)2
(3)

where Xi are actual EMG at position i, Yi are predicted EMG at position i, Xmax is maximum
value from actual EMG, Xmin is the minimum value from actual EMG, X is the mean of
actual EMG and Y is the mean of predicted EMG.

Next, the difference in time and amplitude between the actual and predicted peak
muscle contractions were evaluated, as indicated in (4) and (5), respectively.

∆Tp (%) = Tx,p − Ty,p (4)

∆Ep (%) =

∣∣Xp − Yp
∣∣

Xp
(5)

where ∆Tp is the time difference between actual and predicted peak muscle contraction
in % of gait cycle, Tx,p and Ty,p are the times of the actual and predicted peak muscle
contractions, respectively, ∆Ep is the percentage difference in amplitude between the actual
and predicted peak muscle contraction, Xp is the actual peak contraction and Yp is the
predicted peak contraction.

Lastly, both predicted and actual muscle activity were plotted together to compare
them qualitatively. This involves denormalising and reconstructing the predicted EMG
signal back to its original time domain using the heel strike. This is intended to give a more
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comprehensive outlook of the results, particularly the differences between the predicted
and actual muscle behaviours in continuous gait cycles.

3. Results

The average nRMSE, r, ∆Tp and ∆Ep of the test data are presented in Table 2. Both FNN
and LSTM performed well in estimating muscle activities. For example, the average ∆Tp of
tibialis anterior muscle is 0.71% and 0.72% of the gait cycle for FNN and LSTM, respectively.
The largest ∆Tp was found on the gastrocnemius muscle with an average difference of
2.59% for FNN and 2.40% of the gait cycle for LSTM. FNN and LSTM performed differently
when estimating the amplitude of the peak contraction. LSTM can better estimate the
peak contraction with an average ∆Ep of less than 20% than FNN with ∆Ep as high as 22%.
Despite the discrepancies in peak contraction, both models can estimate muscle activities
reasonably well. The estimated EMG waveforms were similar to the actual ones (Figure 4).
These results are further corroborated by the small nRMSE values and large r values. The
FNN has nRMSE less than 15% and r greater than 75%, while LSTM has nRMSE less than
10% and r greater than 85%.

Table 2. Comparison between actual and predicted muscle activities on test data.

Muscles
FNN LSTM

nRMSE (%) r (%) ∆Tp (%) ∆Ep (%) nRMSE (%) r (%) ∆Tp (%) ∆Ep (%)

Gastrocnemius 10.84 91.51 2.59 ± 2.91 12.96 ± 7.08 7.70 95.76 2.40 ± 2.60 9.21 ± 5.88
Tibialis Anterior 10.63 88.78 0.71 ± 2.14 17.47 ± 10.16 8.48 93.04 0.72 ± 2.16 13.73 ± 10.58

Soleus 10.29 91.94 2.13 ± 1.79 9.08 ± 6.61 7.49 95.78 2.11 ± 1.81 10.54 ± 5.58
Vastus Medialis 8.90 91.67 0.93 ± 0.83 12.30 ± 10.56 7.26 94.80 0.86 ± 0.88 9.60 ± 10.23
Vastus Lateralis 9.24 92.41 0.94 ± 0.80 9.18 ± 7.22 7.39 95.19 0.87 ± 0.84 9.02 ± 6.16
Rectus Femoris 10.45 89.32 1.60 ± 1.65 12.88 ± 9.37 8.78 92.51 1.56 ± 1.74 12.37 ± 15.29
Biceps Femoris 10.92 84.61 1.82 ± 1.59 22.33 ± 15.07 8.93 89.95 1.71 ± 1.43 20.35 ± 14.52
Semitendinosus 11.31 83.54 2.43 ± 2.57 20.95 ± 14.87 9.24 89.31 2.31 ± 2.58 18.16 ± 14.30
Gluteus Medius 9.62 88.85 1.31 ± 2.29 18.11 ± 52.10 7.49 93.29 1.20 ± 2.31 15.48 ± 47.72
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Muscle 
FNN LSTM Other Studies 
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r  
(%) 

∆Tp  
(%) 

∆Ep  
(%) 

nRMSE  
(%) 

r  
(%) 

∆Tp  
(%) 

∆Ep  
(%) 

nRMSE 
(%) [11] 

r (%)  
[10] 

Gastrocnemius 15.55 81.86 1.57 ± 1.80 19.36 ± 9.77 7.09 96.20 1.47 ± 1.08 
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Figure 4. A sample of the actual and predicted muscle activities of the test data of (a) gastrocnemius,
(b) tibialis anterior, (c) soleus, (d) vastus medialis, (e) vastus lateralis, (f) rectus femoris, (g) biceps
femoris, (h) semitendinosus, (i) gluteus medius.

Next, unseen subject data were used to estimate muscle activity to ensure that the
model can predict the gait data of a person outside the training and test data. The results
are shown in Table 3. Although the average ∆Tp is within an acceptable range, the average
∆Ep are larger than 10%. This is deemed reasonable considering that they are unseen data.
Nevertheless, looking into the muscle behaviour in continuous gait cycles (Figure 5), these
results are comparable with the literature [23,24]. Both FNN and LSTM can estimate six
muscles with nRMSE less than 20% and r greater than 70%. Breaking down the LSTM
results, it can be observed that there are three muscles (gastrocnemius, soleus and vastus
lateralis) with nRMSE less than 10% and r greater than 90%, three muscles (vastus medialis,
tibialis anterior and gluteus medius) with nRMSE less 15% and r greater than 80% and
1 muscle (rectus femoris) with nRMSE less than 20% and r greater than 75%. The two
remaining hamstring muscles (biceps femoris and semitendinosus) performed the worst
(nRMSE greater than 20% and r less 50%). On the other hand, FNN has four muscles with
nRMSE less than 15% and r greater than 80% and two muscles with nRMSE less than 20%
and r greater than 70%. Other similar results can be found in Appendix A.

Table 3. Comparison between the actual and predicted EMG for unseen subject data and with
other studies.

Muscle
FNN LSTM Other Studies

nRMSE
(%) r (%) ∆Tp (%) ∆Ep (%) nRMSE

(%) r (%) ∆Tp (%) ∆Ep (%) nRMSE
(%) [11]

r (%)
[10]

Gastrocnemius 15.55 81.86 1.57 ± 1.80 19.36 ± 9.77 7.09 96.20 1.47 ± 1.08 10.84 ± 12.73 11.0 93
Tibialis

Anterior 16.18 71.05 3.89 ± 10.20 31.41 ± 32.21 13.25 80.39 1.75 ± 5.50 18.30 ± 43.19 12.6 66

Soleus 14.30 85.13 1.91 ± 1.65 18.32 ± 9.45 7.65 95.84 1.90 ± 1.42 8.24 ± 2.81 - 96
Vastus

Medialis 13.08 82.60 0.78 ± 0.62 12.84 ± 22.10 11.01 88.26 1.44 ± 0.65 14.34 ± 24.80 - 60

Vastus
Lateralis 12.42 85.80 0.91 ± 0.82 12.13 ± 24.22 9.21 92.46 1.27 ± 0.80 17.53 ± 23.29 - 61

Rectus
Femoris 15.51 70.77 1.49 ± 3.21 20.20 ± 35.08 14.13 76.53 1.70 ± 3.52 21.79 ± 39.68 - 54

Biceps
Femoris 22.29 42.29 4.17 ± 2.91 24.00 ± 19.82 22.68 47.39 2.43 ± 1.99 36.44 ± 33.66 - -

Semitendinosus 22.47 50.42 2.62 ± 2.09 23.88 ± 17.96 26.08 38.79 4.52 ± 2.39 24.73 ± 26.10 - 54
Gluteus
Medius 14.40 73.17 0.82 ± 2.59 11.64 ± 12.84 11.28 84.24 1.70 ± 2.14 10.59 ± 13.91 - -



Sensors 2023, 23, 556 9 of 19

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

Semitendi-
nosus 

22.47 50.42 2.62 ± 2.09 23.88 ± 17.96 26.08 38.79 4.52 ± 2.39 24.73 ± 
26.10 

- 54 

Gluteus 
Medius 

14.40 73.17 0.82 ± 2.59 11.64 ± 12.84 11.28 84.24 1.70 ± 2.14 10.59 ± 
13.91 

- - 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20 
 

 

  
(g) (h) 

 
(i) 

Figure 5. A sample plot of actual vs. predicted muscle activities of the unseen data of (a) gastrocnem-
ius, (b) tibialis anterior, (c) soleus, (d) vastus medialis, (e) vastus lateralis, (f) rectus femoris, (g) 
biceps femoris, (h) semitendinosus, (i) gluteus medius. 

4. Discussion 
This study establishes the possibility of using NN and IMU data to estimate muscle 

activity. The positive outcome of this work suggests that the number of sensing devices 
can be reduced, which further implies that the time and effort required for gait analysis 
can be minimized. Instead of the bulky camera systems and EMG, small and light weara-
ble IMUs can be placed on the trunk and limbs to quantify the kinematics of the gait, 
thereby making out-of-lab gait analysis a reality. This also indicates that future potential 
research could lead to home-based, inexpensive gait detection and monitoring of people 
with gait abnormalities, gait deterioration and injuries. The widespread use of IMU in 
smartphones and wearable devices, such as fitness trackers, means that potentially more 
health data, such as gait patterns and muscle activities, can be provided to the users. 

The application of NN is promising, particularly the LSTM. It produced a nRMSE 
value less than 15% with r greater than 75% for seven muscles. The estimation results also 
align well with the literature [23,24]. This could be attributed to the main characteristic of 
the LSTM in retaining information for a long period of time, hence it was able to avoid 
long-term dependency and generate an output response that closely resembles the actual 
dynamic behaviour of the muscle. However, it requires greater computational effort than 
FNN. FNN does not need to remember a lot of information, therefore it uses less compu-
tational resources and is generally faster than LSTM. 

Trinler et al. used a musculoskeletal model with Static Optimization (SO) and Com-
puter Muscle Control (CMC) to estimate muscle activation of gastrocnemius, tibialis an-
terior, vastus medialis, vastus lateralis and rectus femoris [10]. Although their results are 
promising, the current study still performs better with r as high as 95% on both test data 

Figure 5. A sample plot of actual vs. predicted muscle activities of the unseen data of (a) gastroc-
nemius, (b) tibialis anterior, (c) soleus, (d) vastus medialis, (e) vastus lateralis, (f) rectus femoris,
(g) biceps femoris, (h) semitendinosus, (i) gluteus medius.



Sensors 2023, 23, 556 10 of 19

4. Discussion

This study establishes the possibility of using NN and IMU data to estimate muscle
activity. The positive outcome of this work suggests that the number of sensing devices can
be reduced, which further implies that the time and effort required for gait analysis can
be minimized. Instead of the bulky camera systems and EMG, small and light wearable
IMUs can be placed on the trunk and limbs to quantify the kinematics of the gait, thereby
making out-of-lab gait analysis a reality. This also indicates that future potential research
could lead to home-based, inexpensive gait detection and monitoring of people with gait
abnormalities, gait deterioration and injuries. The widespread use of IMU in smartphones
and wearable devices, such as fitness trackers, means that potentially more health data,
such as gait patterns and muscle activities, can be provided to the users.

The application of NN is promising, particularly the LSTM. It produced a nRMSE
value less than 15% with r greater than 75% for seven muscles. The estimation results also
align well with the literature [23,24]. This could be attributed to the main characteristic
of the LSTM in retaining information for a long period of time, hence it was able to avoid
long-term dependency and generate an output response that closely resembles the actual
dynamic behaviour of the muscle. However, it requires greater computational effort
than FNN. FNN does not need to remember a lot of information, therefore it uses less
computational resources and is generally faster than LSTM.

Trinler et al. used a musculoskeletal model with Static Optimization (SO) and Com-
puter Muscle Control (CMC) to estimate muscle activation of gastrocnemius, tibialis an-
terior, vastus medialis, vastus lateralis and rectus femoris [10]. Although their results are
promising, the current study still performs better with r as high as 95% on both test data
and unseen subject data. One of the main differences between these two studies is that
their study used the conventional optical motion capture system, whereas the current study
used IMU data. The other difference is that NN relies on the data to learn and estimate
muscle activities. A well-represented data is required for NN to produce an accurate
and reliable outcome. On the other hand, SO and CMC rely on the anatomical consid-
erations and assumptions made in the musculoskeletal model. SO calculates the muscle
activity by considering the muscle tendons to be rigid and ignoring the passive muscle
forces [25]. CMC computes muscle activities from joint coordinates using a combination of
proportional-derivative (PD) control and SO [26].

The current findings are also in agreement with the study reported by Zabre-
Gonzalez et al. [11]. Their study proposed using a NARX neural network and kinematics
data derived from the motion capture system to estimate the muscle activity of two muscles.
While the NN in the current study focuses on using one generalized model to estimate
unseen data, their study focuses on personalized models, therefore two models (one model
per muscle) have to be created to estimate the muscle activities.

The actual and predicted muscle activities of gastrocnemius, soleus, vastus lateralis
and vastus medialis were similar to those in the literature [23,24], as depicted in Figure 5
and Appendix B. However, for some muscles, minor differences were observed. These
were expected, particularly when the unseen data were used. For instance, a typical tibialis
anterior muscle (Figure 5b) has two main contractions: one occurs between the pre-swing
and mid-swing (between 60–80% gait cycle) and another between terminal swing and
opposite toe-off (between 90% of the current gait and 10% of the subsequent gait). In some
gaits, the EMG captured small muscle contractions during the stance phase. The NN could
not predict these accurately, thus negatively affecting the quantitative results. A similar
trend was found in gluteus medius (Figure 5i).

Several muscles, such as rectus femoris (Figure 5f), biceps femoris (Figure 5g) and
semitendinosus (Figure 5h), were reported to have speed-dependent features [27–30]. For
instance, the hamstring muscles (biceps femoris and semitendinosus) activate at the end of
the gait cycle (peak around 90% gait cycle) [23,24]. However, in some gaits, an additional
contraction was found at the stance phase (around 30% gait cycle). This contraction is
more significant in slow walks and the amplitude of this peak can sometimes be greater
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than the actual contraction. Although this component has been described in previous
literature [27,28], it has not been thoroughly explored. Despite its occasional prominence,
the NN gave less precedence to this feature and was able to predict the actual contraction
accurately. Rectus femoris (Figure 5f) muscle activity occurs during the pre- and initial
swing phase (around 50% of the gait) [23,24]. At slow walks, this activity can be minimal
(almost zero) and its amplitude increases with speed [29,30]. Due to its high dependence on
speed, the NN could not reliably predict this feature. By providing speed or time difference
as the inputs in future work, the accuracy of the NN could be improved. On the other
hand, the NN could accurately predict the peak muscle contraction at the start of the gait
(around 0–20% gait cycle). Although this peak is the most prominent and consistent in all
gait data, it is considered to be the crosstalk from vastus lateralis [29,30]. Crosstalk is a
known limitation of the SEMG and is widely reported in the literature [31]. Since NN relies
on the data to produce correct output responses, this crosstalk will always be present in the
predicted results.

The main difficulty faced in this study is inter-subject gait variance. Although the EMG
data is normalized to mitigate this issue, secondary or minor peak contractions can have
different amplitudes. These peaks are hard to predict and the source of error is difficult to
identify. In addition, these secondary peaks can be higher than the actual peak, especially
in slow walks, where muscles behave differently. As these peaks are inconsistent and vary
from subject to subject, NN cannot accurately estimate muscle behaviour. This can be
observed in the results of the unseen test data (Table 2).

Another limitation of this study is that although the total number of gait cycles is
large, these data come from a population with a narrow age group between 18 and 35 years
old. This could limit the performance when predicting the muscle activities of the elderly
and children. The elderly have different gait characteristics, different gait kinematics and
kinetics [32,33] and muscle activity [34] compared to healthy young adults. Likewise,
children also have distinct walking behaviors as they have altered body mass distribution
and proportion [35], gait features [36] and muscle activities [37].

Since this is the first attempt to incorporate IMU and NN to estimate muscle activity,
several potential improvements can be explored and investigated in the future. Among
them is the use of a larger dataset that includes different types of gaits. Feature extraction
in time and frequency domains can be proposed too, such as in [17]. Lastly, different neural
network models such as Convolutional Neural Network (CNN) and CNN-LSTM [38] can
be developed, trained and compared.

5. Conclusions

This study demonstrates the potential of using IMU data and NN to estimate muscle
activity. LSTM performed better than FNN. It was able to estimate three muscles with r
greater than 90% and nRMSE less than 10% and seven muscles with r greater than 70% and
nRMSE less than 20% using IMU data as input. This study also shows that minimal number
of modalities/sensors can be used to estimate muscle activity: four IMUs that are attached
to the foot, shank, thigh and trunk can estimate nine lower extremity muscle activities
during walking. IMU offers several advantages over its conventional counterpart. They
are portable and inexpensive, thus allowing the gait analysis to be performed anywhere,
outside the laboratory. Studies also show that IMU can produce measurements equivalent
to the gold standard. With the wide availability of IMU, gait analysis can be performed
remotely for diagnosis and patient monitoring, as well as to provide additional health
data. The use of NN here also demonstrates the ability of machine learning to handle gait
variation, regardless of its inter-subject variation or inter-stride variation. However, the
success of NN heavily relies on the data. Therefore, the first stage of future study will be
the collection of gait data that involves a wide range of populations, such as the elderly
and patients with gait abnormalities, subsequently exploring different feature extraction
methods and neural network models.
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