
Citation: Ahmed, K.R. DSTEELNet:

A Real-Time Parallel Dilated CNN

with Atrous Spatial Pyramid Pooling

for Detecting and Classifying Defects

in Surface Steel Strips. Sensors 2023,

23, 544. https://doi.org/10.3390/

s23010544

Academic Editor: Haitao Yu

Received: 8 November 2022

Revised: 15 December 2022

Accepted: 26 December 2022

Published: 3 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

DSTEELNet: A Real-Time Parallel Dilated CNN with Atrous
Spatial Pyramid Pooling for Detecting and Classifying Defects
in Surface Steel Strips
Khaled R. Ahmed

School of Computing, Southern Illinois University, Carbondale, IL 62901, USA; khaled.ahmed@siu.edu

Abstract: Automatic defects inspection and classification demonstrate significant importance in
improving quality in the steel industry. This paper proposed and developed DSTEELNet convolution
neural network (CNN) architecture to improve detection accuracy and the required time to detect
defects in surface steel strips. DSTEELNet includes three parallel stacks of convolution blocks with
atrous spatial pyramid pooling. Each convolution block used a different dilation rate that expands
the receptive fields, increases the feature resolutions and covers square regions of input 2D image
without any holes or missing edges and without increases in computations. This work illustrates the
performance of DSTEELNet with a different number of parallel stacks and a different order of dilation
rates. The experimental results indicate significant improvements in accuracy and illustrate that the
DSTEELNet achieves of 97% mAP in detecting defects in surface steel strips on the augmented dataset
GNEU and Severstal datasets and is able to detect defects in a single image in 23ms.

Keywords: computer vision; defect detection; defect classification; parallel processing; convolution
neural network

1. Introduction

Quality control is the key success aspect of steel industrial production [1–3]. Surface
defect detection is an essential part of the steel production process and has significant
impacts upon the quality of products. Manual defect detection methods are time-consuming
and subject to hazards and human errors. Therefore, several traditional automatic surface
defect detection methods have been proposed to overcome the limitations of manual
inspection. These include eddy current testing, infrared detection, magnetic flux leakage
detection, and laser detection. These methods failed to detect all the faults, especially the
tiny ones [4]. This motivated researchers [5–8] to develop computer vision systems that
are able to detect and classify defects in ceramic tiles [5], textile fabrics [9,10] and steel
industries [7–9,11,12]. Structure-based methods extract image structure features such as
texture, skeleton and edge, while other methods succeed to extract statistical features, such
as mean, difference and variance [13], from the defect surface and then apply machine
learning algorithms to train these features to recognize defected surfaces [14,15]. The
combination of statistical features and machine learning achieves higher accuracy and
robustness than structure-based methods [16]. Using machine learning, such as Support
Vector Machine (SVM) classifier to classify different types of surface defects may take
approximately 0.239 s to extract features from a single defect image during testing [14].
Therefore, it fails to meet the real-time surface defect detection requirements. However,
convolutional networks (CNN) provide automated feature extraction techniques that take
raw defect images and predict surface defects in a short time and lessen the requirements
to manually extract suitable features [17–19]. The deep learning models for surface defects
classification are more accurate than traditional image processing-based and machine
learning methods. Defects in the surface steel strips have multiple of challenges, such
as (1) low contrast due to change of light intensity, (2) defects are similar to background,

Sensors 2023, 23, 544. https://doi.org/10.3390/s23010544 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23010544
https://doi.org/10.3390/s23010544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3707-4316
https://doi.org/10.3390/s23010544
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23010544?type=check_update&version=1

Sensors 2023, 23, 544 2 of 18

(3) irregular shape of defects, (4) multiple scales of defects of the same kind, and (5) there
are insufficient training samples. These challenges degrade the accuracy of the deep
learning model. Therefore, to detect and classify defects of different sizes, other research
efforts integrated multi-scale features with image classification CNN networks throughout
successive pooling and subsampling layers [20–23]. The use of multi-scale features reduces
resolution until obtaining a global prediction. To recover the lost resolutions different
approaches have been designed, such as using repeated up-convolutions, atrous spatial
pyramid pooling (ASPP) module and using multiple rescaled versions of the image as input
to the network while combining the predictions obtained for these multiple inputs [24–27].

The main objective of this research is to enhance steel strips surface defects detection
accuracy and produce a significant prediction model. Therefore, in response to the above
challenges, we proposed a CNN, called DSTEELNet for detecting and classifying defects
in surface steel strips that aggregates different feature maps in parallel without losing
resolution or analyzing rescaled images [28]. The proposed module is based on parallel
stacks of different dilated convolutions that support exponential expansion of the receptive
field without loss of coverage or resolution. The dilated convolution can capture more
distinctive features by shifting the receptive field [29], and able to gather multi-scale features.
This paper investigates the performance of the proposed DSTEELNet with different number
of parallel stacks and different dilation rates per stack. In addition, the author employs
a specific order of dilated convolutions in DSTEELNet to cover square regions of input
2D image without any holes or missing edges. The main contributions of this paper are
as follows: (1) We proposed and developed a novel framework called DSTEELNet that
includes three parallel stacks of dilated convolution blocks with different dilation rates,
which significantly enhance the inference speed and the detection accuracy of defects
for surface steel strips. They are able to capture, propagate different features in parallel
and cover square regions of input 2D image without any holes or missing edges; (2) We
evaluated the proposed DSTEELNet architecture and the traditional CNN architectures
on NEU [3] and Severstal [30] datasets to highlight the effectiveness of DSTEELNet in
detecting and classifying defects in surface steel strips; (3) We proposed and developed
the DSTEELNet-ASPP that adopts the atrous spatial pyramid pooling (ASPP) module [27]
to enlarge the receptive field and incorporate multi-scale contextual information without
sacrificing spatial resolution; and (4) We used a deep convolution generative adversarial
network DCGAN to extend the size of the NEU dataset and consequently improve the
performance of the generated models.

The rest of this paper is organized as follows. Section 2 reviews the related works.
Section 3 illustrates the training datasets, augmentation techniques, the proposed DSTEEL-
Net CNN framework, and demonstrates the experiments setup and performance metrics.
Section 4 discusses the experimental results. Section 5 concludes this paper and provides
the future research direction.

2. Related Work

There are several research efforts that have developed machine vision techniques for
surface defect detection. They are mainly divided into two categories, namely: the tradi-
tional image processing method, and the machine learning methods. The traditional image
processing methods, detect and segment defects by using the primitive attributes reflected
by local anomalies. They detect various defects by feature extraction techniques that are
categorized into four different approaches [31–33]: structural method [34,35], threshold
method [36–38], spectral method [39–41], and model-based [42,43] method. In traditional
image processing methods, multiple thresholds to detect various defects are needed and
are very sensitive to background colors and lighting conditions. These thresholds need to
be adjusted to handle different defects. The traditional algorithms require plenty of labor
to extract handcrafted features manually [13]. Machine learning-based methods typically
include two stages of feature extraction and pattern classification. The first stage analyzes
the characteristics of the input image and produces the feature vector describing the defect

Sensors 2023, 23, 544 3 of 18

information. These features include grayscale statistical features [44], local binary patterns
(LBP) feature [45], histogram of oriented gradient (HOG) features [46], and gray level
co-occurrence matrix (GLCM) [44]. Some research efforts have been developed to speed
up the features extraction process in parallel using GPU as our previous research work
in [47]. The second stage feeds the feature vector into a classifier model that trained in
advance to detect whether the input image has a defect or not [16]. In a complex condition,
handcrafted features or shallow learning techniques are not sufficiently discriminative.
Therefore, these machine learning-based methods are typically dedicated for a specific
scenario, lacking adaptability, and robustness.

Recently, neural network methods have achieved excellent results in many computer
vision applications. Convolutional neural networks (CNN) have been used to develop
several defect detection methods. Some of the CNN research efforts have been developed
to classify the defects in steel images as in [11], authors employed a sequential structured
CNN for feature extraction to improve the classification accuracy for defect inspection.
They did not consider the effects of noise and the size of the training dataset. Authors in [48]
developed a multi-scale pyramidal pooling network for the classification of steel defects.
Authors in [49] developed a flexible multi-layered deep feature extraction framework. Both
research work succeeded in classifying defects, however they failed to localize the location
of the defects. Therefore, researchers convert the surface defect detection task into an
object detection problem in computer vision to localize defects as in [50]. In [51] authors
developed a cascaded autoencoder (CASAE) that first locates defect and then classifies
it. In the first stage, it localized and extracted the features of the defect from the input
image. In the second stage, it used compact CNN to accurately classify defects. The authors
in [50] developed a defect detection network (DDN) that integrates the baseline ResNet34,
ResNet50 [52] networks and Region proposal network (RPN) for precise defect detection
and localization. In addition, they proposed the multilevel-feature fusion network that
combined lower and high-level features. In other words, the inspection task classifies
regions of defects instead of a whole defect image. The authors claimed that ResNet34 and
ReNet50 achieved of 74.8%, 82.3% mAP, respectively, at 20 FPS (frames per second) [50].
The research work in [53] employed traditional CNN with a sliding window to localize
the defect. In [54] authors developed a structural defect detection method based on Faster
R-CNN [55] that is succeeded to detect five types of surface defects: concrete, cracks, steel
corrosion, steel delamination, and bolt corrosion. Recently, authors in [56] reconstructed
the network structure of two-stage object detection (Faster R-CNN) for small features of the
target, replaced part of the CNN with a deformable convolution network [57] and trained
the network with multiscale feature fusion on NEU dataset [3]. This work achieved low
mAP of 75.2% and long inference speed. These models able to achieve high defect detection
accuracy but low detection efficiency that cannot meet the real-time detection requirements
of the steel industry. In addition, researchers in [58] developed single-stage object-detection
module named Improved-YOLOv5 that precisely positioning of the defect area, crop the
suspected defect areas on the steel surface and then used the Optimized-Inception-ResnetV2
module for defect classification. This works achieved the best performance of 83.3% mAP
at 24 FPS.

In summary, the limitations of the stated research efforts are that they detect defects
through one or multiple close bounding boxes but cannot identify the boundary of the
defect precisely in real-time. They have shown acceptable levels of precision, but fail
to achieve real-time defect detection requirements in the steel industry. The main aim
of this paper is to (1) develop a real-time deep learning framework that accelerates the
defect detection speed and improves the detection and classification precision to facilitate
quality assurance of surface steel manufacturing; (2) enlarge the training dataset to avoid
overfitting. Annotating the data collected from the manufacturing lines is a time-consuming
task. To address this issue, there has been recent interest in the research community to
mitigate it. The next section illustrates the (1) data augmentation techniques used to enlarge
the NEU dataset and (2) proposed deep CNN architecture.

Sensors 2023, 23, 544 4 of 18

3. Materials and Methods

This section illustrates the training datasets, augmentation techniques, and the pro-
posed DSTEELNet CNN framework to classify and detect surface defects in real-time.
Finally, it demonstrates the experiments setup and performance metrics.

3.1. Datasets

For training and experiments, we used two steel surface NEU [3] and Severstal [30]
datasets. This section introduces the NEU dataset and the expansion techniques in detail to
facilitate the training of the proposed model. In our experiment, we used NEU dataset [3].
Originally, the NEU dataset has 1800 grayscale steel images and includes six types of
defects as shown in Figure 1. The defect types are crazing, inclusion, patches, pitted surface,
scratches, and rolled-in scale, 300 samples for each type. To annotate the dataset, each
defect that appears in the defected images is marked by a bounding red box (groundtruth
box) as shown in Figure 1. Approximately 5000 groundtruth boxes have been created.
These bounding boxes were used only to localize defects. They were not used to represent
either defect’s borders or describe their shape. In addition, we trained the proposed model
using Severstal dataset that includes 12,568 training steel plate images, 71,884 pixel-wise
annotation masks among four different types of steel defects. The defect types are defect
1 (Pitted surface), defects 2 (Inclusion), defects 3 (Scratches), and defects 4 (Patches) as
classified in NEU.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 18

task. To address this issue, there has been recent interest in the research community to

mitigate it. The next section illustrates the (1) data augmentation techniques used to en-

large the NEU dataset and (2) proposed deep CNN architecture.

3. Materials and Methods

This section illustrates the training datasets, augmentation techniques, and the pro-

posed DSTEELNet CNN framework to classify and detect surface defects in real-time. Fi-

nally, it demonstrates the experiments setup and performance metrics.

3.1. Datasets

For training and experiments, we used two steel surface NEU [3] and Severstal [30]

datasets. This section introduces the NEU dataset and the expansion techniques in detail

to facilitate the training of the proposed model. In our experiment, we used NEU dataset

[3]. Originally, the NEU dataset has 1800 grayscale steel images and includes six types of

defects as shown in Figure 1. The defect types are crazing, inclusion, patches, pitted sur-

face, scratches, and rolled-in scale, 300 samples for each type. To annotate the dataset, each

defect that appears in the defected images is marked by a bounding red box (groundtruth

box) as shown in Figure 1. Approximately 5000 groundtruth boxes have been created.

These bounding boxes were used only to localize defects. They were not used to represent

either defect’s borders or describe their shape. In addition, we trained the proposed model

using Severstal dataset that includes 12,568 training steel plate images, 71,884 pixel-wise

annotation masks among four different types of steel defects. The defect types are defect

1 (Pitted surface), defects 2 (Inclusion), defects 3 (Scratches), and defects 4 (Patches) as

classified in NEU.

Figure 1. Six types of surface steel strips defect.

3.1.1. NEU Dataset Augmentation

The NEU dataset includes a small quantity of training samples and image-level an-

notation labels that are not adequate to provide sufficient information for industry appli-

cations. To expand the dataset with new samples, a naive solution to oversampling with

data augmentation would be a simple random oversampling with small geometric trans-

formations such as 8° rotation, shifting image horizontally or vertically, etc. There are

other simple image manipulations such as mixing images, color augmentations, kernel

filters, and random erasing can also be extended to oversample data as geometric aug-

mentations. This can be useful for ease of implementation and quick experimentation with

different class ratios. In this paper, we used data augmentation to manually increase the

size of the NEU dataset by artificially creating different versions of the images from the

original training dataset. Table 1 shows the images augmentation setting parameters used

to generate augmented images such as flip mode, zoom range, width shift, etc. For exam-

ple, width shift was used to shift the pixels horizontally either to the left or to the right

randomly and generate transformed images. The generated images have been combined

Figure 1. Six types of surface steel strips defect.

3.1.1. NEU Dataset Augmentation

The NEU dataset includes a small quantity of training samples and image-level annota-
tion labels that are not adequate to provide sufficient information for industry applications.
To expand the dataset with new samples, a naive solution to oversampling with data aug-
mentation would be a simple random oversampling with small geometric transformations
such as 8◦ rotation, shifting image horizontally or vertically, etc. There are other simple im-
age manipulations such as mixing images, color augmentations, kernel filters, and random
erasing can also be extended to oversample data as geometric augmentations. This can be
useful for ease of implementation and quick experimentation with different class ratios. In
this paper, we used data augmentation to manually increase the size of the NEU dataset
by artificially creating different versions of the images from the original training dataset.
Table 1 shows the images augmentation setting parameters used to generate augmented
images such as flip mode, zoom range, width shift, etc. For example, width shift was
used to shift the pixels horizontally either to the left or to the right randomly and generate
transformed images. The generated images have been combined with the original NEU
dataset. However, oversampling with basic image transformations may cause overfitting
on the minority class which is being oversampled.

Sensors 2023, 23, 544 5 of 18

Table 1. Image augmentation setting parameters applied to original NEU dataset.

Parameters Value

Height Shift 0.08
Width Shift 0.08

Rotation Range 8
Fill mode Nearest

Zoom Range 0.08
Shear Range 0.3

The biases present in the minority class are more prevalent post-sampling with these
techniques. Therefore, this paper also used neural augmentation networks such as Genera-
tive Adversarial Network (GAN) [59] to generate a new dataset called GNEU. The GAN
can generate synthetic defect images that are nearly identical to their ground-truth original
ones. Similar to [60], we developed a deep convolution GAN named DCGAN that includes
two CNNs: generator G (reversed CNN) and discriminator D. Generator G takes random
input and generates an image as output from up-sampling the input with transposed
convolutions. However, D takes the generated images and original images and tries to
predict whether a given generated image is (fake) or original (real). The GAN network
performs min-max two players game with value function V(D, G) [59]:

minG maxD V(D, G), (1)

V(D, G) = Eω∼Sdata(ω)[loG D(ω)] +Eτ∼Sτ(ωτ)[loG(1− D(G(τ)))] (2)

where D(ω) is the probability of ω is a real image, Sdata is the distribution of the original
data, τ is random noise used by the generator G to generate image G(τ) and Sτ is the
distribution of the noise. During training, the aim of the discriminator D is to maximize the
probability D(ω) assigned to fake and real images. Since it is a binary classification problem,
this model is fit seeking to minimize the average binary cross entropy. Minimax Gan loss is
defined as minimax simultaneous optimization of the disseminator and generator models
as shown in Equation (1). The discriminator pursues to maximize the average of the log
probability for real images and the LoG of the inverted probabilities of fake images. In other
word, it maximizes the LoG D(ω) + LoG(1−D(G(τ))). The generator pursues to minimize
the LoG of the inverse probability predicted by the discriminator for fake images. In other
word, it minimizes the LoG(1−D(G(τ))).

GAN Architecture

In this paper, we used the similar GAN architecture developed in [60] as follows.
Authors in [60] designed a generator G that includes first a dense layer with a ReLU
activation function followed by batch normalization to stabilize GAN as in [59]. To prepare
the number of nodes and reshaped into 3D volume, they added another dense layer with
the ReLU activation function followed by batch normalization. Then, they added a Reshape
layer to generate 3D volume from the input shape. To increase the spatial resolution during
training they added a transposed convolution (Conv2DTranspose) with stride 2, 32 filters,
each of which is 5 × 5, ReLU activation function and followed by batch normalization and
dropout of size 0.3 to avoid overfitting. Finally, they added five up-sample and transposed
convolutions (Conv2DTranspose), each of which uses stride 2 and tanh activation function.
These convolutions increased the spatial dimension resolution from 14 × 14 to 224 × 224,
which is the exact of the input images. Afterward, they developed the discriminator D as
follows. It includes two convolution layers (Conv2D) with stride 2, 32 filters, each of which
is 5 × 5 and Leaky ReLU activation function to stabilize training. As well, they added flatten
and dense layers with sigmod activation function to capture the probability of whether the
image is synthetic or real.

Sensors 2023, 23, 544 6 of 18

Generating GNEU

We trained the GAN to generate the synthetic images as follows. A noise vector
randomly generated using Gaussian distribution and passed to G to generate an actual
image. Then, authentic images from the training dataset (NEU) and the generated synthetic
images were mixed. Subsequently, discriminator D trained using the mixed dataset with
aiming to correctly label each image either fake or real. Again, a random noise generated
and labeled each noise vector as real image. Finally, GAN trained using these noise vectors
and real image labels even if they are not actual real images. In summary, at each iteration
of the GAN algorithm, firstly it generates random images and then trains the discriminator
to distinguish fake and real images, secondly it tries to fool the discriminator by generating
more synthetic images, finally it updates the weights of the generator based of the received
feedback from the discriminator which enable us to generate more authentic images. We
stop training GAN after 600 iterations, where the mean of discriminator loss and adversarial
loss converge to 0.031 and 1.617, respectively. We mixed the synthetic images with the
original NEU images to generate the GNEU dataset. Figure 2 shows examples of the results
of the generated images from the NEU dataset.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 18

filters, each of which is 5 × 5 and Leaky ReLU activation function to stabilize training. As

well, they added flatten and dense layers with sigmod activation function to capture the

probability of whether the image is synthetic or real.

Generating GNEU

We trained the GAN to generate the synthetic images as follows. A noise vector ran-

domly generated using Gaussian distribution and passed to G to generate an actual image.

Then, authentic images from the training dataset (NEU) and the generated synthetic im-

ages were mixed. Subsequently, discriminator D trained using the mixed dataset with

aiming to correctly label each image either fake or real. Again, a random noise generated

and labeled each noise vector as real image. Finally, GAN trained using these noise vec-

tors and real image labels even if they are not actual real images. In summary, at each

iteration of the GAN algorithm, firstly it generates random images and then trains the

discriminator to distinguish fake and real images, secondly it tries to fool the discrimina-

tor by generating more synthetic images, finally it updates the weights of the generator

based of the received feedback from the discriminator which enable us to generate more

authentic images. We stop training GAN after 600 iterations, where the mean of discrim-

inator loss and adversarial loss converge to 0.031 and 1.617, respectively. We mixed the

synthetic images with the original NEU images to generate the GNEU dataset. Figure 2

shows examples of the results of the generated images from the NEU dataset.

Figure 2. Examples of NEU Synthetic images generated by DCGAN.

This paper feeds approximately 1800 images of the NEU dataset to the DCGAN

framework, which generates 540 synthetic images added to the original NEU dataset and

creates a new dataset called GNEU. We divide GNEU dataset into training, validation and

testing sets. The training set includes 1260 real and synthetic images, the validation set

includes 540 real and synthetic images. The test set includes 540 real images.

3.1.2. Severstal Dataset

The Severstal dataset [30] includes approximately 12,568 steel plate training images

and 71,884 pixel-wise annotation masks among four different types of steel defects. Figure

3 shows the types of steel defects and the frequency of occurrence of each defect class in

the training images. Each steel plate, high resolution image is 256 × 1600 pixels. The train-

ing data has 5902 images without defect and 6666 images has defects. Furthermore, the

number of images with one label is 6293, with two labels is 425 and 2 images with three

labels. Images captured by using high frequency cameras mounted on the production line.

The shape of each annotation mask is also 256 ×1600 pixels. Severstal dataset includes four

types of surface defects. To annotate defects with small mask file size, the dataset uses

run-length encoding (RLE) on the pixel values. The RLE represents the pairs of values that

have a start position and a run length. For example, ‘10 5’ means starting at pixel 10 and

running a total of 5 pixels (10,11,12,13,14) where the pixels are numbered from top to bot-

tom, then left to right: 1 is pixel (1,1), 2 is pixel (2,1), etc. The evaluation metric required

by Severstal is the mean Dice coefficient as shown in equation 3 that is used to compare the

Figure 2. Examples of NEU Synthetic images generated by DCGAN.

This paper feeds approximately 1800 images of the NEU dataset to the DCGAN
framework, which generates 540 synthetic images added to the original NEU dataset and
creates a new dataset called GNEU. We divide GNEU dataset into training, validation and
testing sets. The training set includes 1260 real and synthetic images, the validation set
includes 540 real and synthetic images. The test set includes 540 real images.

3.1.2. Severstal Dataset

The Severstal dataset [30] includes approximately 12,568 steel plate training images
and 71,884 pixel-wise annotation masks among four different types of steel defects. Figure 3
shows the types of steel defects and the frequency of occurrence of each defect class in
the training images. Each steel plate, high resolution image is 256 × 1600 pixels. The
training data has 5902 images without defect and 6666 images has defects. Furthermore,
the number of images with one label is 6293, with two labels is 425 and 2 images with
three labels. Images captured by using high frequency cameras mounted on the production
line. The shape of each annotation mask is also 256 ×1600 pixels. Severstal dataset includes
four types of surface defects. To annotate defects with small mask file size, the dataset
uses run-length encoding (RLE) on the pixel values. The RLE represents the pairs of values
that have a start position and a run length. For example, ‘10 5’ means starting at pixel 10
and running a total of 5 pixels (10,11,12,13,14) where the pixels are numbered from top
to bottom, then left to right: 1 is pixel (1,1), 2 is pixel (2,1), etc. The evaluation metric
required by Severstal is the mean Dice coefficient as shown in equation 3 that is used to
compare the pixel-wise agreement between a predicted segmentation and its corresponding
ground truth.

Dice = 2
|A∩ B|
|A|+ |B| (3)

Sensors 2023, 23, 544 7 of 18

where A is the ground truth and B is the predicted set of pixels. |A| is the total number
of pixels in A, the ground truth set of pixels. |B| is the total number of pixels in B, the
predicted set of pixels. |A∩B| is the total counts of pixels in both A and B. When both
A and B are empty then the Dice coefficient equals 1. Since Severstal dataset provides
adequate number of images in this paper we did not use any augmentation technique to
oversample the dataset.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 18

pixel-wise agreement between a predicted segmentation and its corresponding ground

truth.

𝐷𝑖𝑐𝑒 = 2
|A ∩ B|

|A| + |B|
 (3)

where A is the ground truth and B is the predicted set of pixels. |A| is the total number of

pixels in A, the ground truth set of pixels. |B| is the total number of pixels in B, the pre-

dicted set of pixels. |A∩B| is the total counts of pixels in both A and B. When both A and

B are empty then the Dice coefficient equals 1. Since Severstal dataset provides adequate

number of images in this paper we did not use any augmentation technique to oversample

the dataset.

Figure 3. Severstal types of defects.

3.2. Proposed DSTEELNet Architecture

This section describes the proposed DSTEELNet CNN framework to detect and clas-

sify defects in surface steel strips. The proposed DSTEELNet aims to generate high quality

training results through achieving fine details of the input 2D images by increasing feature

resolutions. Expanding the receptive field ℛℱincreases the feature resolution, whilst ℛℱ

is the portion of the input image where the filter extracts feature and defined by the filter

size of the layer in the CNN [61,62]. To expand the ℛℱ, this paper used dilated convolu-

tion [29] with a dilation rate larger than 1, where, the dilation rate is the spacing between

each pixel in the convolution filter. Adding the dilation rate to the conv2D kernel de-

creases the computational costs and expands ℛℱ. Equation (4) shows the form to calculate

the receptive field ℛℱ where k is the size of the kernel and d is the dilation rate.

ℛℱ = 𝑑 (𝑘 − 1) + 1 (4)

For example, using dilation rate of 1 and 3 × 3 kernel generates receptive field with

size 3 × 3 which is equivalent to the standard convolution as shown in Figure 4b. The size

of the output can be calculated using Equation (5) as follows:

𝜎 = ⌊
𝑔 + 2𝑝 − ℛℱ

𝑠
⌋ + 1 (5)

where g×g input with a dilation factor, padding and stride of d, p and s, respectively. If

dilation rate of 2 is used, then each input skips a pixel. Figure 4c. shows 3 × 3 kernel with

dilation rate of 2 has the same field of view as 5 × 5 kernel with a gap of d−1 between. For

example, only 9 pixels out of 25 will be only computed around a pixel x when d = 2, and k

= 3. As a result, the receptive field ℛℱ increased and enabled the filter to capture sparse

and large contextual information [63].

Figure 3. Severstal types of defects.

3.2. Proposed DSTEELNet Architecture

This section describes the proposed DSTEELNet CNN framework to detect and classify
defects in surface steel strips. The proposed DSTEELNet aims to generate high quality
training results through achieving fine details of the input 2D images by increasing feature
resolutions. Expanding the receptive fieldRF increases the feature resolution, whilstRF is
the portion of the input image where the filter extracts feature and defined by the filter size
of the layer in the CNN [61,62]. To expand theRF , this paper used dilated convolution [29]
with a dilation rate larger than 1, where, the dilation rate is the spacing between each
pixel in the convolution filter. Adding the dilation rate to the conv2D kernel decreases
the computational costs and expands RF . Equation (4) shows the form to calculate the
receptive fieldRF where k is the size of the kernel and d is the dilation rate.

RF = d (k− 1) + 1 (4)

For example, using dilation rate of 1 and 3 × 3 kernel generates receptive field with
size 3 × 3 which is equivalent to the standard convolution as shown in Figure 4b. The size
of the output can be calculated using Equation (5) as follows:

σ =

[
g + 2p−RF

s

]
+ 1 (5)

where g × g input with a dilation factor, padding and stride of d, p and s, respectively. If
dilation rate of 2 is used, then each input skips a pixel. Figure 4c. shows 3 × 3 kernel with
dilation rate of 2 has the same field of view as 5 × 5 kernel with a gap of d−1 between. For
example, only 9 pixels out of 25 will be only computed around a pixel x when d = 2, and
k = 3. As a result, the receptive fieldRF increased and enabled the filter to capture sparse
and large contextual information [63].

Sensors 2023, 23, 544 8 of 18Sensors 2023, 23, x FOR PEER REVIEW 8 of 18

Figure 4. Dilated Convolution in DSTEELNet.

The use of systematic dilation expands receptive field ℛℱ exponentially without loss

of coverage. In other words, the receptive field ℛℱ grows exponentially while the number

of parameters grows linearly. However, employing a series of dilated convolutional layers

with same dilation rate introduced gridding effect problem in which the computations of

a pixel in bottom layer are based on sparse/ non-local information. To overcome the grid-

ding effect, the authors in [64] proposed hybrid dilated convolution (HDC) that makes the

final size of the ℛℱ of a series of convolutional operations fully covers a square region

without any holes or missing edges. The HDC developed CNN that includes groups of

dilated convolutional layers. Each group has a series of dilated convolutional layers with

different dilation rates 1,2,3, respectively. The authors noted that using dilation rate hav-

ing a common factor relationship (e.g., 2, 4, 8, etc.) in same group of layers may raise the

gridding problem. This is contrary to atrous spatial pyramid pooling (ASPP) module [27]

where dilation rates have common factors relationships.

In this paper, we developed DSTEELNet that includes parallel stacks of dilated con-

volution with different dilation rates, activation and Max-Pooling layers as shown in Fig-

ure 5. At the feature level, we added parallel layers and then performed convolution with

activation on the resulting feature maps. We added flatten layer to unstack all the tensor

values into a 1-D tensor. The flattened features are used as inputs to two dense layers

(Multi-layer perception). To reduce/avoid overfitting, we applied dropout. For classifica-

tion task, we added dense layer with softmax activation function. Finally, the architecture

generates a class activation map. Figure 5 shows the proposed DSTEELNet architecture. It

includes four dilated convolution blocks in three parallel stacks. Assume each stack in-

cludes m convolution blocks CB(i) where 𝑖 ∈ {1,2, … 𝑚} and the corresponding output of

each CB(i) is denoted by βi. The input features and output features are denoted as fin and

fout, respectively, and fout can be obtained as follows:

 𝑓𝑜𝑢𝑡 = 𝑓𝑖𝑛 + ∑ 𝛽𝑖
𝑚
𝑖=1 (6)

 𝛽𝑖 = {
𝐶𝐵(𝑖)(𝑓𝑖𝑛) 𝑖 = 1

𝐶𝐵(𝑖)(𝑓𝑖𝑛 + ∑ 𝛽𝑖−1
𝑖−1
𝑘=1) 1 < 𝑖 ≤ 𝑚

 (7)

Each convolution block CBt=j = conv(n = F) followed by Max-pooled block to reduce the

feature size and the computational complexity for the next layer. For efficient pooling, we

used pool_size = (2,2) and strides = (2,2) [65]. Each convolution block CBt=j = conv(n = F)

includes two Conv2D layers followed with ReLU activation function where F is total num-

ber of filters and j is the dilation rate. We have used 3 × 3 filters in all convolution blocks.

The total number of filters in the first convolution block is 64, and the rest are 128, 256, 512

in order. The three parallel stacks (branches) are similar except they have different dilation

rates j = 1,2 and 3, respectively as shown in Figure 5. We used different dilation rates that

have no common factor.

Figure 4. Dilated Convolution in DSTEELNet.

The use of systematic dilation expands receptive fieldRF exponentially without loss
of coverage. In other words, the receptive fieldRF grows exponentially while the number
of parameters grows linearly. However, employing a series of dilated convolutional layers
with same dilation rate introduced gridding effect problem in which the computations
of a pixel in bottom layer are based on sparse/ non-local information. To overcome the
gridding effect, the authors in [64] proposed hybrid dilated convolution (HDC) that makes
the final size of theRF of a series of convolutional operations fully covers a square region
without any holes or missing edges. The HDC developed CNN that includes groups of
dilated convolutional layers. Each group has a series of dilated convolutional layers with
different dilation rates 1,2,3, respectively. The authors noted that using dilation rate having
a common factor relationship (e.g., 2, 4, 8, etc.) in same group of layers may raise the
gridding problem. This is contrary to atrous spatial pyramid pooling (ASPP) module [27]
where dilation rates have common factors relationships.

In this paper, we developed DSTEELNet that includes parallel stacks of dilated convo-
lution with different dilation rates, activation and Max-Pooling layers as shown in Figure 5.
At the feature level, we added parallel layers and then performed convolution with activa-
tion on the resulting feature maps. We added flatten layer to unstack all the tensor values
into a 1-D tensor. The flattened features are used as inputs to two dense layers (Multi-layer
perception). To reduce/avoid overfitting, we applied dropout. For classification task, we
added dense layer with softmax activation function. Finally, the architecture generates a
class activation map. Figure 5 shows the proposed DSTEELNet architecture. It includes
four dilated convolution blocks in three parallel stacks. Assume each stack includes m
convolution blocks CB(i) where i ∈ {1, 2, . . . m} and the corresponding output of each
CB(i) is denoted by βi. The input features and output features are denoted as fin and fout,
respectively, and fout can be obtained as follows:

fout = fin + ∑m
i=1 βi (6)

βi =

{
CB(i)(fin) i = 1

CB(i)
(

fin + ∑i−1
k=1 βi−1

)
1 < i ≤ m

(7)

Each convolution block CBt=j = conv(n = F) followed by Max-pooled block to reduce the
feature size and the computational complexity for the next layer. For efficient pooling, we
used pool_size = (2,2) and strides = (2,2) [65]. Each convolution block CBt=j = conv(n = F)
includes two Conv2D layers followed with ReLU activation function where F is total
number of filters and j is the dilation rate. We have used 3 × 3 filters in all convolution
blocks. The total number of filters in the first convolution block is 64, and the rest are 128,
256, 512 in order. The three parallel stacks (branches) are similar except they have different
dilation rates j = 1, 2 and 3, respectively as shown in Figure 5. We used different dilation
rates that have no common factor.

Sensors 2023, 23, 544 9 of 18

Each parallel branch/stack generates features from images at different CNN layers
and then produces different context information as shown in Figure 6. We captured features
from the input 2D image using different dilation rates that increases the receptive fields.
Figure 6 visualizes 64 output features of three parallel convolutional stacks in Figure 5 with
dilation rate 1, 2 and 3 at layers max_pooling2d_4, max_polling2d_9 and max_polling2d_14,
respectively. Figure 6a–c shows the features of the input image of size 200×200 in a
200 × (200 × 64) matrix. The use of parallel stacks with different (i.e., no common factor)
dilation rates succeed to cover a square region in the input 2D image without any holes or
missing edges. Then, we concatenated the generated features from these parallel branches
and handed the resulted features to the next convolution layer to produce the final low-level
features. This convolution layer has 512 filters with a filter size 3 × 3, dilation rate 1, stride
of 1 and followed by ReLU activation function. To convert the square feature map into one
dimensional feature vector, flatten layer has been added. Two perception (fully connected)
layers with size 1024 were used to feed the results of the flatten layer through dense layer
that will perform classification. The last dense layer uses softmax activation function to
determine class scores. To avoid/reduce overfitting during training, a dropout layer has
been added to discard some weights produced from two fully connected layers. In this
paper, we used dropout of size 0.3.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 18

Figure 5. DSTEELNet architecture.

Each parallel branch/stack generates features from images at different CNN layers

and then produces different context information as shown in Figure 6. We captured fea-

tures from the input 2D image using different dilation rates that increases the receptive

fields. Figure 6 visualizes 64 output features of three parallel convolutional stacks in Fig-

ure 5 with dilation rate 1, 2 and 3 at layers max_pooling2d_4, max_polling2d_9 and max_poll-

ing2d_14, respectively. Figure 6a–c shows the features of the input image of size 200×200

in a 200 × (200 × 64) matrix. The use of parallel stacks with different (i.e., no common

factor) dilation rates succeed to cover a square region in the input 2D image without any

holes or missing edges. Then, we concatenated the generated features from these parallel

branches and handed the resulted features to the next convolution layer to produce the

final low-level features. This convolution layer has 512 filters with a filter size 3 × 3, dila-

tion rate 1, stride of 1 and followed by ReLU activation function. To convert the square

feature map into one dimensional feature vector, flatten layer has been added. Two per-

ception (fully connected) layers with size 1024 were used to feed the results of the flatten

layer through dense layer that will perform classification. The last dense layer uses softmax

activation function to determine class scores. To avoid/reduce overfitting during training,

a dropout layer has been added to discard some weights produced from two fully con-

nected layers. In this paper, we used dropout of size 0.3.

Figure 6. Feature map for three parallel stacks ended with Max_polling layer.

For better multi-scale learning and to improve the DSTEELNet architecture, we pro-

posed an updated architecture called (DSTEELNet-ASPP). It replaced the Conv2D layer

after concatenating the features from the parallel stacks in DSTEELNet in Figure 5 by an

atrous spatial pyramid pooling (ASPP) module [27]. This module includes four Conv2D

layers with different dilation rates 4, 10, 16, 22, respectively to capture defects of distinct

size as shown in Figure 7. Then, we concatenated the generated features from these

Conv2D layers and handed the resulted features to the flatten layer in Figure 5 to unstack

Figure 5. DSTEELNet architecture.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 18

Figure 5. DSTEELNet architecture.

Each parallel branch/stack generates features from images at different CNN layers

and then produces different context information as shown in Figure 6. We captured fea-

tures from the input 2D image using different dilation rates that increases the receptive

fields. Figure 6 visualizes 64 output features of three parallel convolutional stacks in Fig-

ure 5 with dilation rate 1, 2 and 3 at layers max_pooling2d_4, max_polling2d_9 and max_poll-

ing2d_14, respectively. Figure 6a–c shows the features of the input image of size 200×200

in a 200 × (200 × 64) matrix. The use of parallel stacks with different (i.e., no common

factor) dilation rates succeed to cover a square region in the input 2D image without any

holes or missing edges. Then, we concatenated the generated features from these parallel

branches and handed the resulted features to the next convolution layer to produce the

final low-level features. This convolution layer has 512 filters with a filter size 3 × 3, dila-

tion rate 1, stride of 1 and followed by ReLU activation function. To convert the square

feature map into one dimensional feature vector, flatten layer has been added. Two per-

ception (fully connected) layers with size 1024 were used to feed the results of the flatten

layer through dense layer that will perform classification. The last dense layer uses softmax

activation function to determine class scores. To avoid/reduce overfitting during training,

a dropout layer has been added to discard some weights produced from two fully con-

nected layers. In this paper, we used dropout of size 0.3.

Figure 6. Feature map for three parallel stacks ended with Max_polling layer.

For better multi-scale learning and to improve the DSTEELNet architecture, we pro-

posed an updated architecture called (DSTEELNet-ASPP). It replaced the Conv2D layer

after concatenating the features from the parallel stacks in DSTEELNet in Figure 5 by an

atrous spatial pyramid pooling (ASPP) module [27]. This module includes four Conv2D

layers with different dilation rates 4, 10, 16, 22, respectively to capture defects of distinct

size as shown in Figure 7. Then, we concatenated the generated features from these

Conv2D layers and handed the resulted features to the flatten layer in Figure 5 to unstack

Figure 6. Feature map for three parallel stacks ended with Max_polling layer.

For better multi-scale learning and to improve the DSTEELNet architecture, we pro-
posed an updated architecture called (DSTEELNet-ASPP). It replaced the Conv2D layer
after concatenating the features from the parallel stacks in DSTEELNet in Figure 5 by an
atrous spatial pyramid pooling (ASPP) module [27]. This module includes four Conv2D
layers with different dilation rates 4, 10, 16, 22, respectively to capture defects of distinct
size as shown in Figure 7. Then, we concatenated the generated features from these Conv2D
layers and handed the resulted features to the flatten layer in Figure 5 to unstack all the ten-
sor values into a 1-D tensor. DSTEELNet-ASPP enlarges the receptive field and incorporates

Sensors 2023, 23, 544 10 of 18

multi-scale contextual information without sacrificing spatial resolution. This contributes
to improving the overall performance of the DSTEELNet architecture.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 18

all the tensor values into a 1-D tensor. DSTEELNet-ASPP enlarges the receptive field and

incorporates multi-scale contextual information without sacrificing spatial resolution.

This contributes to improving the overall performance of the DSTEELNet architecture.

Figure 7. Atrous spatial pyramid pooling module (ASPP) replaced the Conv2D layer after concate-

nating the features in Figure 5. It includes four Conv2D with different dilation rates 4, 10, 16, 22,

respectively, and associated feature maps.

3.3. Experiments

The performance of the DSTEELNet is evaluated on the NEU, generated dataset

(GNEU) and Severstal dataset. We demonstrate that DSTEELNet achieves a reasonable

design and significant results. Therefore, we compare the proposed DSTEELNet with

state-of-the-art deep leaning detection and classification techniques such as Yolov5,

VGG16, ResnNt50, and MobileNet.

3.3.1. Experiment Metrics

For the performance evaluation, this paper uses the following performance metrics:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (8)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (9)

𝐴𝑃 =
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

2
 (10)

 𝐹1 =
2𝑇𝑃

(2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)
 (11)

 𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1 (12)

where, N is the number of classes, TP is the number of true Positives, FN is the number of

false Negative, and FP is the number of false Positive. True positive TP refers to a defective

steel image identified as defective. False positive is referred to defect-free steel image iden-

tified as defective. False negative is referred to defective steel image identifies as defect-

free. Average Precision AP is calculated as the sum of recall and precision divided by two

as seen in Equation (10). The F1 score is measured to seek a balance between Recall and

Precision. In addition, the mean average precision (mAP) is calculated as the average of

AP of each class that is used to evaluate the overall performance.

3.3.2. Experiment Setup

The experiment platform in this work is Intel(R) Core™ i7-9700L with a clock rate of

3.6 GHz, working with 16 GB DDR4 RAM and a graphics card that is NVIDIA GeForce

RTX 2080 SUPER. All experiments in this project were conducted in Microsoft Windows

10 Enterprise 64-bit operating system, using Keras 2.2.4 with TensorFlow 1.14.0 backend.

We trained the DSTEELNet, DSTEELNet-ASPP, VGG16 [66], VGG19, ResNet50 [52], Mo-

bileNet [67] and Yolov5 [68] and modified Yolov5-SE [69] for approximately 150 epochs on

Figure 7. Atrous spatial pyramid pooling module (ASPP) replaced the Conv2D layer after concate-
nating the features in Figure 5. It includes four Conv2D with different dilation rates 4, 10, 16, 22,
respectively, and associated feature maps.

3.3. Experiments

The performance of the DSTEELNet is evaluated on the NEU, generated dataset
(GNEU) and Severstal dataset. We demonstrate that DSTEELNet achieves a reasonable
design and significant results. Therefore, we compare the proposed DSTEELNet with
state-of-the-art deep leaning detection and classification techniques such as Yolov5, VGG16,
ResnNt50, and MobileNet.

3.3.1. Experiment Metrics

For the performance evaluation, this paper uses the following performance metrics:

Recall =
TP

(TP + FN)
(8)

Precision =
TP

(TP + FP)
(9)

AP =
Recall + Precision

2
(10)

F1 =
2TP

(2TP + FN + FP)
(11)

mAP =
1
N ∑N

i=1 APi (12)

where, N is the number of classes, TP is the number of true Positives, FN is the number of
false Negative, and FP is the number of false Positive. True positive TP refers to a defective
steel image identified as defective. False positive is referred to defect-free steel image
identified as defective. False negative is referred to defective steel image identifies as
defect-free. Average Precision AP is calculated as the sum of recall and precision divided
by two as seen in Equation (10). The F1 score is measured to seek a balance between Recall
and Precision. In addition, the mean average precision (mAP) is calculated as the average
of AP of each class that is used to evaluate the overall performance.

3.3.2. Experiment Setup

The experiment platform in this work is Intel(R) Core™ i7-9700L with a clock rate of
3.6 GHz, working with 16 GB DDR4 RAM and a graphics card that is NVIDIA GeForce
RTX 2080 SUPER. All experiments in this project were conducted in Microsoft Windows
10 Enterprise 64-bit operating system, using Keras 2.2.4 with TensorFlow 1.14.0 backend.
We trained the DSTEELNet, DSTEELNet-ASPP, VGG16 [66], VGG19, ResNet50 [52], Mo-
bileNet [67] and Yolov5 [68] and modified Yolov5-SE [69] for approximately 150 epochs on
both NEU and GNEU training and validation datasets with batch size of 32 and image
input size 200 × 200. Similarly, we trained DSTEELNet, VGG16, VGG19, ResNet50, and

Sensors 2023, 23, 544 11 of 18

MobileNet on Severstal dataset where, the image input size is 120 × 120. We applied the
Adam optimizer [70] with learning rate 1 × 10−4. In addition, we applied the categorical
cross entropy loss function in the training. The loss is measured between the probability of
the class predicted from softmax activation function and the true probability of the category.
We did not use any pretrained weights such ImageNet because ImageNet has no steel
surface images. We used Equations (8)–(12) to calculate the AP per class and the mAP for
the tested models.

4. Results and Discussion

This section illustrates gradually the results of the proposed CNN architecture to
detect defects in surface steel strips. Table 2 demonstrates the weighted average results.
It illustrates that DSTEELNet performs the highest precision, recall and F1 scores when
trained on both NEU and GNEU datasets as shown in bold values in Table 2. Addition-
ally, it shows that the use of DCGN improved the precision, recall and F-Score of the
DSTEELNet model by approximately 1%, 1.3% and 1.4%, respectively. Moreover, it shows
that DSTEELNet outperforms recent CNNs for detecting single defect such as Yolov5 and
modified Yolov5-SE [69] by 13.5% and 8.8%, respectively. The Yolov5-SE employs attention
mechanism through adding squeeze-and-excitation (SE) block between CSP2_1 and CBL
layers to dynamically adjust the characteristics of each channel according to the input. In
addition, DSTEELNet outperforms the traditional CNNs such as Vgg16, Vgg19, ResNet50,
and MobileNet.

Table 2. Weighted average results on NEU and GNEU datasets.

Model Precision Recall F1-score

NEU GNEU NEU GNEU NEU GNEU
DSTEELNet 0.961 0.97 0.957 0.97 0.956 0.97
Vgg16 0.91 0.92 0.882 0.89 0.884 0.89
Vg19 0.912 0.92 0.891 0.90 0.894 0.90
ResNet50 0.943 0.95 0.921 0.93 0.92 0.93
MobileNet 0.93 0.94 0.92 0.93 0.92 0.93
Yolov5 0.821 0.835 0.836 0.84 0.836 0.84
Yolov5-SE [69] 0.879 0.882 0.887 0.89 0.886 0.89

Tables 3 and 4 show the class-wise classification performance metrics listed in
Equations (8)–(12). It illustrates the comparison between DSTEELNet and the state-of-
the-art CNN architectures. Table 3 shows that almost all models tend to enhance the
classification of most categories (such as crazing, patches, rolled-in_scale and scratches).
The state-of-the-arts models show poor performance to detect defects such as inclusion and
pitted_surface due to some similarities in their defect’s structures. However, the DSTEEL-
Net succeeded in detecting all the class categories with high accuracy. Table 3 shows that
DSTEELNet achieves 97.2% mAP which outperforms the other models, e.g., VGG16 (91.2%,
6% higher mAP), VGG19 (90.0%, 7.2% higher mAP), ResNet50 (93%, 4.2% higher mAP) and
MobileNet (94%, 3.2% higher mAP).

Table 3. Detection Results on GNEU dataset.

DSTEELNet VGG16 VGG19 Resnet50 MobileNet
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Crazing 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.97 0.99 1.00 0.99 0.98 1.00 0.99
Inclusion 0.97 0.86 0.91 1.00 0.51 0.68 0.94 0.54 0.69 1.00 0.66 0.79 1.00 0.82 0.82
Patches 1.00 1.00 1.00 0.89 1.00 0.94 1.00 0.98 0.99 1.00 0.99 0.99 1.00 0.99 0.99
Pitted_surface 0.87 0.97 0.92 0.66 0.97 0.79 0.67 0.89 0.76 0.74 0.98 0.84 0.73 0.98 0.84
Rolled-
in_Scale 0.99 1.00 0.99 0.96 1.00 0.98 0.94 1.00 0.97 0.96 1.00 0.98 0.98 0.90 0.94

Scratches 1.00 1.00 1.00 1.00 0.87 0.93 1.00 0.99 0.99 1.00 0.98 0.99 0.96 1.00 0.98

mAP 0.972 0.912 0.90 0.93 0.94

Sensors 2023, 23, 544 12 of 18

In addition, Table 3 shows that DSTEELNet delivers consistent results for the precision,
recall and F1 for crazing, patches, pitted_surface, rolled-in_scale and scratches defects. The
DSTEELNet succeeds in detecting inclusion defect with highest F1 score (0.91) followed
by MobileNet (0.82), ResNet50 (0.79), VGG19 (0.69) and VGG16 (0.68), respectively, in
order. Similarly, the DSTEENet succeeds in detecting pitted_surface defect with highest F1
score (0.92) followed by MobileNet (0.84), ResNet50 (0.84), VGG16 (0.79) and VGG19 (0.76),
respectively, in order. The examples of DSTEELNet detection results are shown in Figure 8.
It shows that DSTEELNet succeeds in detecting defects with significant confidence scores.

Table 4. Comparative results of single defect accuracy.

Defect DSTEELNet Yolov5 Yolov5-SE

Crazing 1.00 0.84 0.90
Inclusion 0.97 0.86 0.88
Patches 1.00 0.92 0.94

Pitted surface 0.87 0.89 0.99
Rolled-in scale 1.00 0.52 0.64

Scratches 0.99 0.98 1.00

Sensors 2023, 23, x FOR PEER REVIEW 13 of 18

Figure 8. Examples of detection results using DSTEENet on GNEU dataset, green box indicating

defect location with confidence score.

Figure 9. Training and validation accuracy of DSTEELNet on GNEU.

Figure 10. Confusion matrices for DSTEELNet, and ResNet50 on test GNEU dataset.

Figure 10a shows that DSTEELNet detects all the steel surface defects perfectly except

the inclusion defects. It misclassified 13 inclusion defects out of 90 as pitted_surface.

Furthermore, as shown in Figure 10b ResNet50 misclassified 31 inclusion defects out

of 90 as pitted_surface. In summary, DSTEELNet fails to detect 2.9% of defects in 540 im-

ages however, ResNet50, MobileNet, VGG19, and VGG16 fail to detect defects in 6.6%,

Figure 8. Examples of detection results using DSTEENet on GNEU dataset, green box indicating
defect location with confidence score.

Table 4 depicts a comparative results of single defect classification accuracy with
Yolov5 and Yolov5-SE. The low accuracies achieved by Yolov5 and Yolov5-SE to detect
small rolled-in-scale defects are badly lowers the average accuracy value. Therefore,
DSTEELNet outperforms Yolov5 and Yolov5-SE in classifying the six defect types. Figure 9
shows the training and validation accuracy for DSTEELNet. It shows that both training and
validation accuracy started to improve from epoch 25 and then converged to the highest
accuracy values. Figure 10 shows the confusion matrices for DSTEELNet and ResNet50
evaluated models where the test dataset includes 90 images of each surface defect class.

Figure 10a shows that DSTEELNet detects all the steel surface defects perfectly except
the inclusion defects. It misclassified 13 inclusion defects out of 90 as pitted_surface.

Furthermore, as shown in Figure 10b ResNet50 misclassified 31 inclusion defects out
of 90 as pitted_surface. In summary, DSTEELNet fails to detect 2.9% of defects in 540 images
however, ResNet50, MobileNet, VGG19, and VGG16 fail to detect defects in 6.6%, 7.4%, 10%
and 11% of 540 images, respectively. Similarly, to demonstrate that DSTEELNet achieves a
reasonable design and remarkable results on Severstal dataset, we compare the proposed
DSTEELNet with VGG16, VGG19, ResnNt50, and MobileNet. Table 5 shows that DSTEELNet
produces 96% mAP which outperforms the other models, e.g., VGG16 (91.2%, 7% higher
mAP), VGG19 (91.0%, 7% higher mAP), ResNet50 (93%, 5% higher mAP) and MobileNet
(94%, 4% higher mAP).

Sensors 2023, 23, 544 13 of 18

Sensors 2023, 23, x FOR PEER REVIEW 13 of 18

Figure 8. Examples of detection results using DSTEENet on GNEU dataset, green box indicating

defect location with confidence score.

Figure 9. Training and validation accuracy of DSTEELNet on GNEU.

Figure 10. Confusion matrices for DSTEELNet, and ResNet50 on test GNEU dataset.

Figure 10a shows that DSTEELNet detects all the steel surface defects perfectly except

the inclusion defects. It misclassified 13 inclusion defects out of 90 as pitted_surface.

Furthermore, as shown in Figure 10b ResNet50 misclassified 31 inclusion defects out

of 90 as pitted_surface. In summary, DSTEELNet fails to detect 2.9% of defects in 540 im-

ages however, ResNet50, MobileNet, VGG19, and VGG16 fail to detect defects in 6.6%,

Figure 9. Training and validation accuracy of DSTEELNet on GNEU.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 18

Figure 8. Examples of detection results using DSTEENet on GNEU dataset, green box indicating

defect location with confidence score.

Figure 9. Training and validation accuracy of DSTEELNet on GNEU.

Figure 10. Confusion matrices for DSTEELNet, and ResNet50 on test GNEU dataset.

Figure 10a shows that DSTEELNet detects all the steel surface defects perfectly except

the inclusion defects. It misclassified 13 inclusion defects out of 90 as pitted_surface.

Furthermore, as shown in Figure 10b ResNet50 misclassified 31 inclusion defects out

of 90 as pitted_surface. In summary, DSTEELNet fails to detect 2.9% of defects in 540 im-

ages however, ResNet50, MobileNet, VGG19, and VGG16 fail to detect defects in 6.6%,

Figure 10. Confusion matrices for DSTEELNet, and ResNet50 on test GNEU dataset.

Table 5. Weighted average results on Severstal dataset.

Model Precision Accuracy F1-score

DSTEELNet 0.96 0.96 0.96
Vgg16 0.91 0.90 0.89
Vgg19 0.91 0.91 0.90

ResNet50 0.93 0.93 0.932
MobileNet 0.94 0.926 0.93

Table 5 demonstrates the weighted average results on Severstal dataset. It illustrates
that for steel surface defect detection DSTEELNet performs the highest precision, accuracy
and F1 scores as shown in bold values in Table 5.

4.1. Dilation Rates Experiments

The proposed DSTEELNet architecture includes four dilated convolution blocks CBt=j
in three parallel stacks. Each stack has a different dilated rate j = 1,2,3. In this section we
examined different DSTEELNet architectures through variant dilation rate per stack and
number of parallel stacks. We trained the DSTEELNet with (1) one stack includes groups of
Conv2D layers having different order of dilation rates and (2) three parallel stacks with
different dilation rates per stack. Table 6 depicts the weighted average results of different
DSTEELNet architectures. In Table 6, the use of one stack of Conv2D layers with dilation
rates 1,1,2,2,3 achieved better results than one stack with dilation rates 1,2,3,4,5. Table 6 and
Figure 11 show that using three parallel stacks with dilation rates 1,2,3 achieved the highest
F1-score and precision, respectively. Table 6 shows that the DSTEELNet-ASSP improved

Sensors 2023, 23, 544 14 of 18

the precision, recall and F1-score by 2%, 2.2% and 2.1%, respectively, since it enlarges the
receptive field and incorporates multi-scale contextual information without sacrificing
spatial resolution.

Table 6. Weighted average results for different DSTEELNet architectures with different dilated rates.

DSTEELNet Precision Recall F1-score

One Stack
dilation 1,1,2,2,3 0.93 0.93 0.93
dilation 1,2,3,4,5 0.89 0.90 0.90

3-parallel stacks

J = 1,2,3 0.96 0.958 0.957
J = 2,3,4 0.92 0.91 0.91
J = 1,2,5 093 0.92 0.92

J = 1,2,3+ ASPP(4,10,16,22) DSTEELNet-ASPP

0.98 0.98 0.98
Sensors 2023, 23, x FOR PEER REVIEW 15 of 18

Figure 11. Comparative results of different three parallel stacks with different dilation rates.

4.2. Computational Time

Table 7 shows the average inference time to detect defects in single image by the proposed

technique DSTEELNet, and other deep learning and traditional techniques. It reveals that

the traditional methods generally are not able to meet the steel industry requirements in

real-time. In addition, Table 7 shows that the proposed DSTEELNet is the fastest one to

detect defects and can meet the real-time requirements. DSTEELNet speeds the defect de-

tection time of the traditional techniques by approximately 20 times and outperforms the

deep learning techniques. The accuracy of the MobileNet and Resnet50 are higher than

VGG16 and VGG19, but they take a longer time to detect defects.

Table 7. Comparison of Computational time (ms) for traditional and deep learning techniques on

GNEU dataset.

Traditional Techniques Deep Learning Techniques

H
O

G
-S

V
M

L
B

P
-S

V
M

G
L

C
M

-

S
V

M

V
g

g
16

V
g

g
19

R
es

N
et

50

M
o

b
il

eN
et

D
S

T
E

E
L

N
et

Y
o

lo
v

5

443.5 382.3 454.57 29 31 36 30 23 24

In summary, the DSTEELNet achieves the highest accuracy and shortest detection

time due to the reduction of its computation complexity. It also outperforms the recent

technique called end-to-end defect detection (EDDN) [71] that added to Vgg16 extra ar-

chitectures including multi-scale feature maps and predictors for detection. The authors

reported that EDDN achieved 0.724 mAP and can detect defects in a single image in 27ms.

The DSTEELNet outperforms EDDN and can detect defects in single image with 0.972

mAP at 23ms. In addition, Yolov5-SE [66] succeeded in detecting defects in a single image

with 0.88 mAP at 24ms. The DSTEELNet succeeds in detecting and classifying defects at

23ms with a higher precision than Yolov5-SE as shown in tables 2 and 7.

5. Conclusions

This paper designed and developed a CNN architecture that is suitable for real-time

surface steel strips defect detection task. It proposed a DSTEELNet that employs sparse

receptive fields and parallel convolution stacks to generate more robust and discrimina-

tive features for defect detection. The experiment results show that the proposed

DSTEELNet with three parallel stacks with different rates 1,2,3 achieved 97% mAP and

outperformed state-of-the-art CNN architectures, such as Yolov5, VGG16, VGG19, Resent50

and MobileNet with 8.8%, 6%, 7.2%, 4.2% and 3.2% higher mAP, respectively. In addition,

we developed DSTEELNet-ASSP that improved the precision, recall and F1-score. As

Figure 11. Comparative results of different three parallel stacks with different dilation rates.

4.2. Computational Time

Table 7 shows the average inference time to detect defects in single image by the
proposed technique DSTEELNet, and other deep learning and traditional techniques. It
reveals that the traditional methods generally are not able to meet the steel industry
requirements in real-time. In addition, Table 7 shows that the proposed DSTEELNet is the
fastest one to detect defects and can meet the real-time requirements. DSTEELNet speeds
the defect detection time of the traditional techniques by approximately 20 times and
outperforms the deep learning techniques. The accuracy of the MobileNet and Resnet50
are higher than VGG16 and VGG19, but they take a longer time to detect defects.

Table 7. Comparison of Computational time (ms) for traditional and deep learning techniques on
GNEU dataset.

Traditional Techniques Deep Learning Techniques

HOG-SVM LBP-SVM GLCM- SVM Vgg16 Vgg19 ResNet50 MobileNet DSTEELNet Yolov5

443.5 382.3 454.57 29 31 36 30 23 24

In summary, the DSTEELNet achieves the highest accuracy and shortest detection time
due to the reduction of its computation complexity. It also outperforms the recent technique
called end-to-end defect detection (EDDN) [71] that added to Vgg16 extra architectures
including multi-scale feature maps and predictors for detection. The authors reported
that EDDN achieved 0.724 mAP and can detect defects in a single image in 27ms. The
DSTEELNet outperforms EDDN and can detect defects in single image with 0.972 mAP at
23ms. In addition, Yolov5-SE [66] succeeded in detecting defects in a single image with 0.88
mAP at 24ms. The DSTEELNet succeeds in detecting and classifying defects at 23ms with a
higher precision than Yolov5-SE as shown in Tables 2 and 7.

Sensors 2023, 23, 544 15 of 18

5. Conclusions

This paper designed and developed a CNN architecture that is suitable for real-time
surface steel strips defect detection task. It proposed a DSTEELNet that employs sparse
receptive fields and parallel convolution stacks to generate more robust and discriminative
features for defect detection. The experiment results show that the proposed DSTEELNet
with three parallel stacks with different rates 1,2,3 achieved 97% mAP and outperformed
state-of-the-art CNN architectures, such as Yolov5, VGG16, VGG19, Resent50 and MobileNet
with 8.8%, 6%, 7.2%, 4.2% and 3.2% higher mAP, respectively. In addition, we developed
DSTEELNet-ASSP that improved the precision, recall and F1-score. As future research, we
will explore methods to achieve more precise defect boundaries, such as performing defect
segmentation based on deep learning techniques.

Funding: This work was supported by the Vice Provost for Research at Southern Illinois University
Carbondale as a startup package for the author.

Data Availability Statement: Two publicly available datasets NEU and Serverstal to illustrate and
evaluate the proposed architecture were used.

Acknowledgments: The author would like to thank the anonymous reviewers for useful and con-
structive comments that helped to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

DL: Deep learning; CNN: Convolutional neural network; DSTEELNet: deep steel CNN-based
architecture; mAP: mean average precision; GNEU: Generated NEU dataset, and Severstal dataset.

References
1. Czimmermann, T.; Ciuti, G.; Milazzo, M.; Chiurazzi, M.; Roccella, S.; Oddo, C.M.; Dario, P. Visual-Based Defect Detection and

Classifica-tion Approaches for Industrial Applications—A Survey. Sensors 2020, 20, 5. [CrossRef] [PubMed]
2. Sadeghi, M.; Soltani, H.; Zamanifar, K. Application of Parallel Algorithm in Image Processing of Steel Surfaces for Defect

Detection. Fen Bilim. Derg. (CFD) 2015, 36, 4.
3. Song, K.; Yan, Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects.

Appl. Surf. Sci. 2013, 285, 858–864. [CrossRef]
4. Tian, S.; Xu, K. An Algorithm for Surface Defect Identification of Steel Plates Based on Genetic Algo-rithm and Extreme Learning

Machine. Metals 2017, 7, 8. [CrossRef]
5. Ragab, K.; Alsharay, N. Developing Parallel Cracks and Spots Ceramic Defect Detection and Classifica-tion Algorithm Using

CUDA. In Proceedings of the EEE 13th International Symposium on Autonomous Decentralized System (ISADS), Bangkok,
Thailand, 22–24 March 2017.

6. Ragab, K. Fast and parallel summed area table for fabric defect detection. Int. J. Pattern Recognit. Artif. Intell. 2016, 30, 9.
[CrossRef]

7. Neogi, N.; Mohanta, D.K.; Dutta, P.K. Review of vision-based steel surface inspection systems. EURASIP J. Image Video Process.
2014, 2014, 50. [CrossRef]

8. Jia, H.; Murphey, Y.L.; Shi, J.; Chang, T.S. An Intelligent Real-Time Vision System for Surface Defect Detection. In Proceedings of
the 17th International Conference on Pattern Recognition, Cambridge, UK, 26 August 2004; IEEE: New York, NY, USA, 2004;
Volume 3.

9. Sager, K.H.; George, L.E. Defect Detection in Fabric Images using Fractal Dimension Approach. In Proceedings of the International
Workshop on Advanced Image Technology, Singapore, 6–9 January 2011.

10. Wang, F.L.; Zuo, B. Detection of surface cutting defect on magnet using Fourier image reconstruction. J. Cent. South Univ. 2016,
23, 1123–1131. [CrossRef]

11. Zhou, S.; Chen, Y.; Zhang, D.; Xie, J.; Zhou, Y. Classification of surface defects on steel sheet using convolutional neural networks.
Mater. Technol. 2017, 51, 123–131.

12. Wang, H.Y.; Zhang, J.; Tian, Y.; Chen, H.Y.; Sun, H.X.; Liu, K. A Simple Guidance Template-Based Defect Detection Method for
Strip Steel Surfaces. IEEE Trans. Ind. Inform. 2018, 15, 2798–2809. [CrossRef]

13. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
14. Ke, X.; Lei, W.; Wang, J. Surface defect recognition of hot-rolled steel plates based on tetrolet trans-form. J. Mech. Eng. 2016,

52, 13–19.

http://doi.org/10.3390/s20051459
http://www.ncbi.nlm.nih.gov/pubmed/32155900
http://doi.org/10.1016/j.apsusc.2013.09.002
http://doi.org/10.3390/met7080311
http://doi.org/10.1142/S0218001416600041
http://doi.org/10.1186/1687-5281-2014-50
http://doi.org/10.1007/s11771-016-0362-y
http://doi.org/10.1109/TII.2018.2887145
http://doi.org/10.1038/nature14539

Sensors 2023, 23, 544 16 of 18

15. Chu, M.; Gong, R.; Gao, S.; Zhao, J. Steel surface defects recognition based on multi-type statistical features and enhanced twin
support vector machine. Chemom. Intell. Lab. Syst. 2017, 171, 130–140. [CrossRef]

16. Xiao, M.; Jiang, M.; Li, G.; Xie, L.; Yi, L. An evolutionary calssifier for steel surface defects with small sample set. EURASIP J.
Image Video Process. 2017, 2017, 48. [CrossRef]

17. Dong, H.; Song, K.; He, Y.; Xu, J.; Yan, Y.; Meng, Q. PGA-net: Pyramid feature fusion and global context at-tention network for
automated surface defect detection. IEEE Trans. Ind. Inform. 2019, 16, 7448–7458. [CrossRef]

18. Chao, W.; Liu, Y.T.; Yang, Y.N.; Xu, X.Y.; Zhang, T. Research on Classification of Surface Defects of Hot-rolled Steel Strip Based on
Deep Learning. DEStech Trans. Comput. Sci. Eng. 2019, 375–379. [CrossRef]

19. Di, H.; Ke, X.; Peng, Z.; Dongdong, Z. Surface defect classification of steels with a new semi-supervised learning method.
Opt. Lasers Eng. 2019, 117, 40–48. [CrossRef]

20. Krizhevsky, A.; Ilya, S.; Geoffrey, H. ImageNet classification with deep convolutional neural net-works. Commun. ACM 2017,
60, 84–90. [CrossRef]

21. Liu, S.; Deng, W. Very deep convolutional neural network-based image classification using small training sample size. In
Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 3–6 November 2015.

22. Dou, Q.; Chen, H.; Yu, L.; Qin, J.; Heng, P. Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule
Detection. IEEE Trans. Bio-Med. Eng. 2017, 64, 1558–1567. [CrossRef]

23. Al-masni, M.A.; Kim, D.-H. CMM-Net: Contextual multi-scale multi-level network for efficient biomedi-cal image segmentation.
Sci. Rep. 2021, 11, 10191. [CrossRef]

24. Liang-Chieh, C.; Yi, Y.; Jiang, W.; Wei, X.; Yuille, A.L. Attention to scale: Scale-aware semantic image seg-mentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

25. Liu, Y.; Yuan, Y.; Balta, C.; Liu, J. A Light-Weight Deep-Learning Model with Multi-Scale Features for Steel Surface Defect
Classification. Materials 2020, 13, 4629. [CrossRef]

26. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Van Der Smagt, P.; Cremers, D.; Brox, T. FlowNet:
Learning optical flow with convolutional neural networks. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), Santiago, Chile, 7–13 December 2015.

27. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmenta-tion with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848.
[CrossRef] [PubMed]

28. Ahmed, K.R. Parallel Dilated CNN for Detecting and Classifying Defects in Surface Steel Strips in Re-al-Time. In IntelliSys2021;
Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2021.

29. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2016, arXiv:1511.07122.
30. Severstaldataset. Serverstal: Steel Detetction on Kaggle Challenge, Kaggle, 1 March 2021. Available online: https://www.kaggle.

com/c/severstal-steel-defect-detection (accessed on 7 November 2022).
31. Ren, R.; Hung, T.; Tan, K. A generic deep-learning-based approach for automated surface inspection. IEEE Trans. Cybern. 2018,

48, 929–940. [CrossRef] [PubMed]
32. Zheng, X.; Zheng, S.; Kong, Y.; Chen, J. Recent advances in surface defect inspection of industrial products using deep learning

techniques. Int. J. Adv. Manuf. Technol. 2021, 113, 35–58. [CrossRef]
33. Gao, Y.; Li, X.; Wang, X.; Wang, L.; Gao, L. A Review on Recent Advances in Vision-based Defect Recog-nition towards Industrial

Intelligence. J. Manuf. Syst. 2022, 62, 753–766. [CrossRef]
34. Taştimur, C.; Karaköse, M.; Akın, E.; Aydın, İ. Rail defect detection and classification with real time im-age processing technique.

Int. J. Comput. Sci. Softw. Eng. 2016, 5, 283–290.
35. Jian, C.; Gao, J.; Ao, Y. Automatic surface defect detection for mobile phone screen glass based on machine vision. Appl. Soft

Comput. 2017, 52, 348–358. [CrossRef]
36. Win, M.; Bushroa, A.; Hassan, M.; Hilman, N.; Ide-Ektessabi, A. A contrast adjustment thresholding method for surface defect

detection based on mesoscopy. IEEE Trans. Ind. Inform. 2015, 11, 642–649. [CrossRef]
37. Kalaiselvi, T.; Nagaraja, P. A rapid automatic brain tumor detection method for MRI images using modi-fied minimum error

thresholding technique. Int. J. Imaging Syst. Technol. 2015, 1, 77–85.
38. Wang, L.; Zhao, Y.; Zhou, Y.; Hao, J. Calculation of flexible printed circuit boards (FPC) global and local defect detection based on

computer vision. Circuit World 2016, 42, 49–54. [CrossRef]
39. Bai, X.; Fang, Y.; Lin, W.; Wang, L.; Ju, B.F. Saliency-based defect detection in industrial images by using phase spectrum.

IEEE Trans. Ind. Inform. 2014, 10, 2135–2145. [CrossRef]
40. Borwankar, R.; Ludwig, R. An Optical Surface Inspection and Automatic Classification Technique Using the Rotated Wavelet

Transform. IEEE Trans. Instrum. Meas. 2018, 67, 690–697. [CrossRef]
41. Hu, G.-H. Automated defect detection in textured surfaces using optimal elliptical Gabor filters. Optik 2015, 126, 1331–1340.

[CrossRef]
42. Susan, S.; Sharma, M. Automatic texture defect detection using Gaussian mixture entropy modeling. Neurocomputing 2017,

239, 232–237. [CrossRef]
43. Cen, Y.-G.; Zhao, R.-Z.; Cen, L.-H.; Cui, L.-H.; Miao, Z.-J.; Wei, Z. Defect inspection for TFT-LCD images based on the low-rank

matrix reconstruction. Neurocomputing 2015, 149, 1206–1215. [CrossRef]

http://doi.org/10.1016/j.chemolab.2017.10.020
http://doi.org/10.1186/s13640-017-0197-y
http://doi.org/10.1109/TII.2019.2958826
http://doi.org/10.12783/dtcse/ica2019/30756
http://doi.org/10.1016/j.optlaseng.2019.01.011
http://doi.org/10.1145/3065386
http://doi.org/10.1109/TBME.2016.2613502
http://doi.org/10.1038/s41598-021-89686-3
http://doi.org/10.3390/ma13204629
http://doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
https://www.kaggle.com/c/severstal-steel-defect-detection
https://www.kaggle.com/c/severstal-steel-defect-detection
http://doi.org/10.1109/TCYB.2017.2668395
http://www.ncbi.nlm.nih.gov/pubmed/28252414
http://doi.org/10.1007/s00170-021-06592-8
http://doi.org/10.1016/j.jmsy.2021.05.008
http://doi.org/10.1016/j.asoc.2016.10.030
http://doi.org/10.1109/TII.2015.2417676
http://doi.org/10.1108/CW-07-2014-0027
http://doi.org/10.1109/TII.2014.2359416
http://doi.org/10.1109/TIM.2017.2783098
http://doi.org/10.1016/j.ijleo.2015.04.017
http://doi.org/10.1016/j.neucom.2017.02.021
http://doi.org/10.1016/j.neucom.2014.09.007

Sensors 2023, 23, 544 17 of 18

44. Chondronasios, A.; Popov, I.; Jordanov, I. Feature selection for surface defect classification of extruded aluminum profiles. Int. J.
Adv. Manuf. Technol. 2015, 83, 33–41. [CrossRef]

45. Gibert, X.; Patel, V.M.; Chellappa, R. Deep Multitask Learning for Railway Track Inspection. IEEE Trans. Intell. Transp. Syst. 2016,
18, 153–164. [CrossRef]

46. Shumin, D.; Zhoufeng, L.; Chunlei, L. Adaboost learning for fabric defect detection based on hog and SVM. In Proceedings of the
International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011.

47. Ahmed, K.R.; Al-Saeed, M.; Al-Jumah, M.I. Parallel Algorithms to detect and classify defects in Surface Steel Strips. In Proceedings
of the World Congress in Computer Science, Computer Engineering, and Applied Computing (CSCE’20), Las Vegas, NV, USA,
27–30 July 2020.

48. Masci, J.; Meier, U.; Fricout, G.; Schmidhuber, J. Multi-scale pyramidal pooling network for generic steel de-fect classification. In
Proceedings of the International Joint Conference on Neural Networks, Dallas, TX, USA, 4–9 August 2013; pp. 1–8.

49. Natarajan, V.; Hung, T.-Y.; Vaikundam, S.; Chia, L.-T. Convolutional networks for voting-based anomaly classification in metal
surface inspection. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada,
22–25 March 2017.

50. He, Y.S.K.; Meng, Q.; Yan, Y. An End-to-End Steel Surface Defect Detection Approach via Fusing Multi-ple Hierarchical Features.
IEEE Trans. Instrum. Meas. 2020, 69, 1493–1504. [CrossRef]

51. Tao, X.; Zhang, D.; Ma, W.; Liu, X.; Xu, D. Automatic Metallic Surface Defect Detection and Recognition with Convolutional
Neural Networks. Appl. Sci. 2018, 8, 1575. [CrossRef]

52. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

53. Wang, T.; Chen, Y.; Qiao, M.; Snoussi, H. A fast and robust convolutional neural network-based defect detection model in product
quality control. Int. J. Adv. Manuf. Technol. 2018, 94, 3465–3471. [CrossRef]

54. Cha, Y.-J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous structural visual inspection using region—Based
deep learning for detecting multiple damage types. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. [CrossRef]

55. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Pro-posal Networks.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 6, 1137–1149. [CrossRef] [PubMed]

56. Zhao, W.; Chen, F.; Huang, H.; Li, D.; Cheng, W. A New Steel Defect Detection Algorithm Based on Deep Learning. Comput. Intell.
Neurosci. 2021, 2021, 5592878. [CrossRef] [PubMed]

57. Yan, J.; Wang, H.; Yan, M. IoU-adaptive deformable R-CNN: Make full use of IoU for multi-class object detection in remote
sensing imagery. Remote Sens. 2019, 11, 286. [CrossRef]

58. Li, Z.; Tian, X.; Liu, X.; Liu, Y.; Shi, X. A Two-Stage Industrial Defect Detection Framework Based on Im-proved-YOLOv5 and
Optimized-Inception-ResnetV2 Models. Appl. Sci. 2022, 12, 834. [CrossRef]

59. Ian, J.G.; Jean, P.-A.; Mehdi, M.; Bing, X.; David, W.-F.; Sherjil, O.; Aaron, C.; Yoshua, B. Generative Adver-sarial Networks.
arXiv 2014, arXiv:1406.2661.

60. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolu-tional Generative Adversarial
Networks. arXiv 2016, arXiv:1511.06434.

61. Luo, W.; Li, Y.; Urtasun, R.; Zemel, R. Understanding the effective receptive field in deep convolutional neural networks.
arXiv 2017, arXiv:1701.04128.

62. Xiang, W.; Zhang, D.-Q.; Yu, H.; Athitsos, V. Context-Aware Single-Shot Detector. In Proceedings of the IEEE Winter Confer-ence
on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018.

63. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected CRFs. In Proceedings of the International Conference on Learninig Representations (ICLR2015), San Diego,
CA, USA, 7–9 May 2015.

64. Panqu, W.; Pengfei, C.; Ye, Y.; Ding, L.; Zehua, H.; Xiaodi, H.; Garrison, C. Understanding Convolution for Semantic Segmentation.
In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA,
12–15 March 2018.

65. Scherer, D.; Müller, A.; Behnke, S. Evaluation of Pooling Operations in Convolutional Architectures for Object Recogni-
tion. In Proceedings of the 20th International Conference on Artificial Neural Networks—ICANN 2010, Thessaloniki, Greece,
15–18 September 2010.

66. Liu, B.; Zhang, X.; Gao, Z.; Chen, L. Weld defect images classification with VGG16-Based neural network. In Proceedings of the
International Forum on Digital TV and Wireless Multimedia Communications (IFTC 2017), Shanghai, China, 8–9 November 2017.

67. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mo-bilenets: Efficient convo-
lutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

68. Jocher, G. “Yolov5,” LIC, Ultralytics. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 12 January 2021).
69. Zeqiang, S.; Bingcai, C. Improved Yolov5 Algorithm for Surface Defect Detection of Strip Steel. In Artificial Intelligence in China;

Springer: Singapore, 2022; Volume 854, pp. 448–456.

http://doi.org/10.1007/s00170-015-7514-3
http://doi.org/10.1109/TITS.2016.2568758
http://doi.org/10.1109/TIM.2019.2915404
http://doi.org/10.3390/app8091575
http://doi.org/10.1007/s00170-017-0882-0
http://doi.org/10.1111/mice.12334
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1155/2021/5592878
http://www.ncbi.nlm.nih.gov/pubmed/33824656
http://doi.org/10.3390/rs11030286
http://doi.org/10.3390/app12020834
https://github.com/ultralytics/yolov5

Sensors 2023, 23, 544 18 of 18

70. Kingma, D.P.; Ba, L.J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learn-ing
Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

71. Lv, X.; Duan, F.; Jiang, J.J.; Fu, X.; Gan, L. Deep Metallic Surface Defect Detection: The New Bench-mark and Detection Network.
Sensors 2020, 20, 1562.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Materials and Methods
	Datasets
	NEU Dataset Augmentation
	Severstal Dataset

	Proposed DSTEELNet Architecture
	Experiments
	Experiment Metrics
	Experiment Setup

	Results and Discussion
	Dilation Rates Experiments
	Computational Time

	Conclusions
	References

