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Abstract: For infrastructures to be sustainable, it is essential to improve maintenance and manage-
ment efficiency. Vibration-based monitoring methods are being investigated to improve the efficiency
of infrastructure maintenance and management. In this paper, signals from acceleration sensors
attached to vehicles traveling on bridges are processed. Methods have been proposed to individually
estimate the modal parameters of bridges and road unevenness from vehicle vibrations. This study
proposes a method to simultaneously estimate the mechanical parameters of the vehicle, bridge, and
road unevenness with only a few constraints. Numerical validation examined the effect of introducing
the Kalman filter on the accuracy of estimating the mechanical parameters of vehicles and bridges.
In field tests, vehicle vibration, bridge vibration, and road unevenness were measured and verified,
respectively. The road surface irregularities estimated by the proposed method were compared with
the measured values, which were somewhat smaller than the measured values. Future studies are
needed to improve the efficiency of vehicle vibration preprocessing and optimization methods and to
establish a methodology for evaluating accuracy.

Keywords: drive-by bridge monitoring; vehicle–bridge interaction; system identification; field test

1. Introduction

Transportation and logistics are supported by civil structures. Civil structures de-
teriorate due to daily use and natural disasters. If the deterioration of infrastructures is
left unattended, it will lead to structural damage. Structural damage sometimes causes
serious accidents, with economic consequences and loss of life. Therefore, infrastructure
development is essential, and structure health monitoring (SHM) is attracting attention
in many countries [1–3]. Infrastructures are maintained and managed through detailed
inspections, but inspection costs are high. Therefore, methods focusing on vibration have
been proposed as low-cost bridge inspection methods. The suggested methods can be
divided into two categories. One is direct monitoring, in which sensors are installed directly
on the bridges. This method uses multiple sensors on each bridge to measure vibration
data. Based on the measured data, the modal parameters of the bridge are estimated, and
the bridge’s state is monitored. However, this method requires the installation of multiple
sensors on each bridge, which is costly.

Indirect monitoring has been proposed as an alternative to costly direct monitoring
methods [4]. Indirect monitoring uses mounting sensors on vehicles; the data are measured
when vehicles pass over a bridge. The vehicle acts as a bridge exciter and vibration
receiver in this method. When a vehicle passes over a bridge, it is shaken by the vehicle.
At the same time, the vehicle is also shaken by the bridge. This interaction is called
vehicle–bridge interaction (VBI). The vehicle vibration includes the response due to this
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interaction. Therefore, it is possible to estimate the structural parameters of the bridge from
the measured vehicle vibration. Once the structural parameters of the bridge are estimated,
priorities for bridge inspection can be determined. Indirect monitoring can be implemented
quickly and inexpensively because it is sufficient to mount sensors only on the vehicle.
A conceptual diagram of the efficiency of detailed inspections with drive-by monitors is
shown in Figure 1.
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Figure 1. Conceptual diagram of drive-by monitoring.

Existing drive-by-bridge monitoring techniques are affected by road surface irregu-
larities, limited VBI time, and the environment [5]. Therefore, crowdsourcing information
collection and the integrated analysis of multiple data runs are considered [6]. Integrated
data analysis can eliminate influences unrelated to bridge damage, such as measurements
and factors that may affect the behavior of bridges. However, existing methods separately
estimate the mass, damping, and stiffness of bridges and road unevenness. Therefore, an
analytical method capable of integrated analysis is needed to detect bridge damage from
vehicle vibration.

The authors proposed the VBI system identification (VBISI) method [7–9]. The VBISI
method can simultaneously estimate vehicles’ and bridges’ mechanical parameters and road
unevenness from vehicle vibration and location information, under the condition that both
the wheelbase and total weight of the vehicle are known. The VBISI method is inspired
by technology that simultaneously estimates the vehicles’ mechanical parameters and
road unevenness [10,11]. The numerical simulation of bridge vibration is combined with
methods proposed in previous studies. The numerical validation of the VBISI method [7–9]
has already shown the feasibility of this method. However, it is not verified in a field test.

This study aims to identify issues based on the results of field tests of the VBISI method.
A Kalman filter is used to mitigate the effects of measurement noise in vehicle vibration.

The contribution of this research is as follows.

- The Kalman filter can be used to estimate road unevenness, but estimating mechanical
parameters is challenging.

- The applicability of the VBISI method was verified using experimental data from a
14-t truck and an actual concrete bridge with a 30 m span.

- Through the VBISI method in the field study, a vehicle response analysis problem
was proposed.

This paper is organized as follows: Section 2 introduces the related techniques of the
VBISI method. Section 3 presents the identification method for the coupled vehicle–bridge
system. Section 4 describes the basic mathematics of vehicle–bridge interaction system
identification. Next, Section 5 verifies the effectiveness of applying the findings of previous
studies to this technology through numerical simulations. Section 6 analyzes the field
test data, and Section 7 discusses this study’s limitations and future challenges. Section 8
summarizes the conclusions of this paper.

2. Related Work

This section reviews previous studies. Fortunately, there is an extensive review
article [5,6,12–15]. Malekjafarian et al. [5] provided the first comprehensive review of bridge
monitoring using vehicle response. Yang et al. [12] summarized methods for estimating the
bridge mode shapes and detecting damage from vehicle vibration. Sholravi, H. et al. [13]
outlined the broad framework of vehicle-assisted monitoring, which considers the vehicle
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classification-based SHM from bridge vibration. Hou et al. [14] comprehensively summa-
rized SHM for bridges from 2010 to 2019 and touched on the challenges of damage detection
by drive-by monitoring. Based on the previous review paper [5], Malekjafarian et al. [6]
discussed drive-by monitoring by dividing it into individual and multiple passes.

2.1. Estimating the Bridge Modal Parameter

The estimation of the bridge’s modal parameters is a central topic in indirect moni-
toring. Modal parameters of bridges are mainly natural frequency, damping, and mode
shape. Since indirect monitoring was proposed, identifying bridge frequencies [16–27]
from vehicle vibrations has been an exciting topic. Yang et al. [4] proposed the first method
to estimate the natural frequencies of bridges from vehicle vibrations. After that, Lin and
Yang [16] showed applicability in a field test, and Yang and Lin [17] also investigated the
estimation of higher-order frequencies. Jian et al. [25] focused on coupled vibration in a 3D
model of the vehicle–bridge interaction system. By taking the difference in the acceleration
of the front and rear wheels in the frequency domain, it is possible to suppress the influence
of road unevenness and identify the bridge’s natural frequency. In addition, estimations of
mode shapes [28–36] and damping [37–44] were also performed. Yang et al. [35] proposed
a method for estimating the bridge mode shapes from the acceleration responses on towed
vehicles. Next, the bridge stiffness is calculated from the estimated bridge mode shape.
From the estimated bridge stiffness, the bridge deflection was calculated using the finite
element method and compared to the measured values [36]. Other methods have been
proposed that use machine learning to identify bridge damage from multiple data [45]
and estimate bridge vibration from vehicles traveling at high speeds [46]. Yamamoto
and Takahashi [47] proposed a damage index that can detect minor damage, such as bolt
dropout. Shin et al. [48] proposed a model to discriminate whether the vehicle vibration
data were obtained from driving on a bridge or not to implement VBI technology in society.

2.2. Estimating the Road Unevenness

Road unevenness also shakes vehicles. If the road pavement is rough, the luggage
will deteriorate due to the shaking of the vehicle, and the passenger’s satisfaction will
be low. Road roughness affects logistics efficiency, so the World Bank adopted it as an
investment decision index. Therefore, it is crucial to manage pavement conditions. Road
unevenness reduces the accuracy of estimating bridge modal parameters and damage
states from vehicle vibration. Therefore, estimating road unevenness from vehicle vibration
is essential. McGetrick et al. [49] proposed a method to estimate road unevenness by
calculating dynamic vehicle forces from vehicle vibrations. A study of bridge span lengths
and vehicle speeds was conducted to verify the method’s robustness. He and Yang [50]
proposed a method for estimating road unevenness on a bridge from a single vehicle using
a Kalman filter. The proposed method showed robust results against VBI, vehicle speed,
noise contained in vehicle vibration, and bridge damping. Yang et al. [51] estimated the
displacement input to the vehicle system (input profile in this study) using the Kalman filter
from the measured vehicle vibration. The input profile is the sum of bridge vibration and
road unevenness at the axle position. The bridge vibration component is obtained from the
difference between the input profile’s front and rear axle positions. Road unevenness can be
estimated by subtracting the bridge vibration from the input profile. Hasegawa et al. [52]
proposed a road unevenness estimation method using regularized least squares minimiza-
tion by dynamic programming. Compared to the Kalman filter, it is helpful to use fewer
hyperparameters for optimization. The methods described above aim at estimating road
unevenness from vehicle vibration.

2.3. Estimating the Mechanical Parameters and the Road Unevenness

On the other hand, methods for estimating mechanical vehicle parameters simul-
taneously with estimating road unevenness have been proposed. Keenahan et al. [53]
proposed a method for estimating road unevenness from the vibrations of multiple vehicles
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traveling on the same route. Their research is interesting because it proposes a method
that can integrally process multiple vehicles and driving data. The proposed method was
verified by numerical simulations and can also estimate vehicle parameters. Previous
research [10,11] estimated vehicles’ mechanical parameters and road unevenness using a
Kalman filter from vehicle vibration data measured by smartphones. The smartphone is
installed in only one vehicle, and in field tests, road unevenness has been estimated with
high accuracy. Techniques for simultaneously identifying road unevenness and vehicles’
mechanical parameters from vehicle vibrations are susceptible to noise. Therefore, it is
necessary to reduce the influence of noise using a Kalman filter or the like. The noise
reduction method means it is possible to estimate the flatness of a road surface even when
the vehicle vibration contains high noise [10,11]. However, when the Kalman filter is used,
the accuracy of estimating the mechanical parameters of a vehicle decreases. In particular,
the VBISI method can simultaneously estimate a bridge’s mass, damping, and stiffness
parameters. However, papers have yet to investigate the relationship between the Kalman
filter and the accuracy of estimating the mechanical parameters of vehicles and bridges.
In the context of comparison with the VBISI method, the methods for estimating road
surface irregularities from vehicle vibrations are summarized in Table 1. The first three
columns in Table 1 depict the targets estimated by the methods proposed in each paper.
They also distinguish whether the model includes bridges, and whether the estimation
process incorporates the Kalman filter. If the relevant condition is satisfied, it is indicated
by a symbol #.

Table 1. Comparison with previous studies.

Estimated Target

Road Vehicle Bridge Including
Bridges

Kalman
Filter

McGetrick et al. [49] # #
He and Yang [50] # # #
Yang et al. [51] # # #
Hasegawa et al. [52] #
Xue et al. [10]
Nagayama et al. [11] # # #

Keenahan et al. [53] # # # #
VBISI method [7–9] # # # # # [7,9]

3. Preliminaries

Before explaining the VBISI method, this section mentions what a VBI system is.

3.1. Vehicle–Bridge Interaction System

VBI systems consist of bridge and vehicle systems. The bridge system takes the
contact-point force of a vehicle as an input and returns bridge vibration as an output.
Bridge vibration as an output is the response at a fixed point of a bridge. Now, vibrations
at fixed points are converted into vibrations at moving points using interpolation. In this
paper, the bridge vibration at a moving point is called the bridge profile. On the other hand,
the vehicle system receives the input profile and returns the vehicle vibration as an output.
The input profile is the sum of the road profile and the bridge profile. Here, the road
profile represents road unevenness at the moving point. The vehicle’s contact-point force is
obtained from the output vehicle vibration, which is used as the input of the bridge system.
In summary, the vehicle and bridge systems have mutual input and output relationships.
The VBI system is nonlinear because of repeated interactions as vehicles travel over bridges.

3.2. Vehicle–Bridge Interaction System Identification Method

Next, an overview of the VBISI method to be verified in this study is provided. The
VBISI method first assumes random vehicle and bridge mechanical parameters. The VBISI
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method is divided into two processes. The first is the vehicle system’s IEP (input estimation
problem) from the vehicle vibration. In this research, the input profile is estimated using the
Kalman filter from the equation of motion of the vehicle. The second is the bridge system’s
DRS (dynamic response simulation). The input is the contact-point force calculated from
the measured vehicle responses. In DRS, the dynamic response of the bridge is calculated by
numerical schemes. The bridge profile is obtained from the obtained bridge vibration. The
road profile is given by subtracting the bridge profile from the input profile. The obtained
road profile can also be converted back to road unevenness. Assuming the vehicle’s
pathway is straight, the front and rear wheels run on the same road. However, because
the mechanical parameters of the vehicle and bridge are assumed randomly, the estimated
road unevenness usually does not match. The objective function is the residual of the road
surface roughness estimated for the front and rear wheels. The dynamic parameters of
the vehicle and bridge are estimated by solving an optimization problem to minimize this
objective function.

4. Methodology

The VBISI method verified in this study simultaneously estimates road unevenness
and all mechanical parameters (mass, damping, stiffness) both of vehicle and bridge only
from the position and vibration data of a traveling vehicle. The formulas of the VBISI
method have already been published [7–9].

4.1. Overview of Vehicle–Bridge Interaction

Figure 2 shows a conceptual diagram of the VBI system used in this study. A half-car
model is adopted for the vehicle, and the bridge is a simple one-dimensional beam model
that considers only bending. The half-car model considers four independent degrees of
freedom: the translation and rotation of the car body and the translation of the half-car
axle. As the VBI system is a non-linear system and the input/output of the vehicle is the
output/input of the bridge, convergence calculation is required to reproduce the vehicle
vibration. First, input displacement is given to the vehicle model to obtain the vehicle
vibration, and the contact-point force calculated from the vehicle vibration is input to the
bridge model to obtain the bridge vibration. The input displacement of the vehicle is
updated from the obtained bridge vibration, and the vehicle vibration is calculated again.
This process is repeated until the vehicle vibration converges.
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Figure 2. Conceptual diagram of vehicle–bridge interaction [9].

4.2. Vehicle

For the half-car model shown in Figure 2, ms is the mass of the vehicle body and csi,
ksi, di, mui, and kui represent the suspension damping, the suspension stiffness, the distance
from the gravity point, the unspring-mass, and the tire stiffness of the i-th axle, respectively.
Let zsi be the vertical displacement of sprung-mass vibration at the axle, zsi be the unsprung
mass, ui be the input profile at the axle. The sprung mass models the vehicle body, and the
unsprung mass models the tires and axles. The subscript i corresponds to the axle, with
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1 being the front wheel and 2 being the rear wheel. The equation of motion of the vehicle is
expressed as [7]

Mv
..
z(t) + Cv

.
z(t) + Kvz(t) = Fv (1)

where t represents the time.
..
z(t) and

.
z(t) represent the second and first derivatives of

z(t), which are the velocity vibration and the acceleration vibration. z(t) and Fv(t) can be
represented as

z(t) =


zs1(t)
zs2(t)
zu1(t)
zu2(t)

 (2)

Fv(t) =


0
0

ku1u1(t)
ku2u2(t)

 (3)

Mv =


d2ms

d1+d2

d1ms
d1+d2

I
d1+d2

− I
d1+d2

mu1
mu2

 (4)

Cv =


cs1 cs2

d1cs1 −d2cs2

−cs1 −cs2
−d1cs1 d2cs2

−cs1 0
0 −cs2

cs1 0
0 cs2

 (5)

Kv =


ks1 ks2

d1ks1 −d2ks2

−ks1 −ks2
−d1ks1 d2ks2

−ks1 0
0 −ks2

ks1 + ku1 0
0 ks2 + ku2

 (6)

Mv, Cv, and Kv are the mass, damping, and stiffness matrices of the vehicle. If the
center of rotation coincides with the gravity point, it is known that

I = msd1d2 (7)

4.3. Bridge

Let flexural rigidity and mass per unit length of bridge be EI(x) and ρA(x), respec-
tively; the equation of motion of the bridge system can be expressed as

ρA
..
y(x, t) +

∂2

∂x2 EI
(

∂2

∂x2 y(x, t)
)
= p(x, t) (8)

where y(x, t) denotes the deflection and x represents the position. The external force p
consists of the contact-point force Pi(t) of the vehicle and the reaction forces RA and RB at
both supports. x = 0 indicates the bridge entrance, and x = L indicates the exit. The bridge
span length is L. Let the positions of the fulcrums be also xA = 0 and xB = L, respectively,
and the position of the i-th wheel be xi(t). The function δ(x) represents Dirac’s Delta
function. The external force p is expressed as follows [7].

p =
2

∑
i=1

δ(x− xi)Pi(t) + δ(x)RA + δ(x− L)RB (9)
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This study applies the finite element method to solve Equation (8) numerically. The
finite element formulation is derived by the WRM (weighted residual method). The
weighted residual formula in Equation (8) is

∫ L

0
ω

(
ρA

∂2y
∂t2 + EI

∂4y
∂x4 − p

)
dx = 0 (10)

Let ω be the weight. The weak form of Equation (10) is given by Equation (11).

∫ L

0

(
ρAω

∂2y
∂t2 + EI

∂2ω

∂x2
∂2y
∂x2 − p

)
dx = 0 (11)

A one-dimensional finite element model discretizes the bridge vibration y(x, t) with a
Hermite basis. 

φ1(s) = 1
4 (s− 1)(s− 1)(s + 2)

φ2(s) = ∆x
8 (s− 1)(s− 1)(s + 1)

φ3(s) = − 1
4 (s + 1)(s + 1)(s− 2)

φ4(s) = ∆x
8 (s− 1)(s + 1)(s + 1)

(12)

where s represents the normalized local coordinate in each element. Assuming that the j-th
and (j + 1)-th nodes compose the j-th beam elements, X = −1 indicates the position of the
j-th node, and X = 1 indicates the position of the (j + 1)-th node. ∆x = xj − xj+1 when the
whole system is inside beam element j, which consists of node xj and node xj+1. Define a
basis function vector N(x) whose components are

N2j−1(x) = φ1(s)
N2j+0(x) = φ2(s)
N2j+1(x) = φ3(s)
N2j+2(x) = φ4(s)

(13)

All components outside the element are set to zero. Using the bridge deflection y
(

xj, t
)

and deflection angle θ
(
xj, t

)
at the nodes, the deformation vector y(t) is{

y2(j−1)+1(t) = y
(
xj, t

)
y2(j−1)+2(t) = θ

(
xj, t

) (14)

Then, the approximate solution of y(x, t) is

y(x, t) = N(x) · y(t) (15)

Similarly, by setting the weights to ω(x) = N(x) · ω and substituting them into
Equation (11), we obtain the following.

ωT(Mb
..
y(t) + Kby(t)− F(t)

)
= 0 (16)

Mb, Cb, and Kb are the mass, damping, and stiffness matrices of the bridge.

Mb =
∫ L

0
NNTdx (17)

Kb =
∫ L

0

∂2N
∂x2

∂2NT

∂x2 dx (18)

F(t) is an external force vector whose components are the external forces (concentrated
load and moment of force) at each node. Considering Rayleigh damping,

Cb = αMb + βKb (19)
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Solving for the integration condition in Equation (16) for any ω gives the following
finite element equation.

Mb
..
y(t) + Cb

.
y(t) + Kby(t) = F(t) (20)

4.4. Vehicle–Bridge Interaction

In general, the responses of vehicles and bridges are modeled by interactions with
each other’s outputs as inputs. In order to realize a numerical simulation considering this
interaction, the following steps are performed. First, the vehicle vibration is calculated by
inputting only the road profile. Then, the contact-point force to the bridge is obtained from
the obtained vehicle vibration, and the bridge vibration is calculated. Adding this bridge
profile to the road profile creates a new input profile, and the vehicle vibration is obtained
again. By repeating this process, the displacement vibration of the vehicle and the bridge is
obtained. The input profile and contact-point force, which are the inputs of the vehicle and
bridge, are explained below [7].

4.4.1. Input Profile

The input profile u(t), which is the input of the vehicle system, is given by the sum of
the road profile r(t) and the bridge profile ỹ(t) and is expressed by Equation (21).

u(t) = r(t) + ỹ(t) (21)

Here, the road profile represents the road at the axle position. When the road uneven-
ness is R(x) and the axle position is xi(t),

ri(t) = R(xi(t)) (22)

ri(t) is the component of r(t). On the other hand, the bridge profile is the bridge
vibration y(x, t) at the axle position xi(t). In other words, the bridge vibration is the
deformation vector of each node fixed on the bridge. Therefore, converting to bridge
displacement at the axle position is necessary. The same basis used in the discretization
was used. The transformation matrix is

L(t) =
[
N(x1(t)) N(x2(t))

]
(23)

The bridge profile is
ỹ(t) = LT(t)y(t) (24)

4.4.2. Contact-Point Force

The contact-point force, which is the input to the bridge, corresponds to the restoring
force acting on the tire. However, as the equation of motion of the vehicle (Equation (1)) is
based on the equilibrium position, it should be noted that the gravity term has disappeared.
In calculating the restoring force, the effect of gravity is considered based on the equilibrium
length. Considering that the center of gravity of the vehicle body is the center of gravity,
the contact-point force between the front and rear wheels is

V1(t) = − d2ms
d1+d2

(
g +

..
zs1
)
−mu1

(
g +

..
zu1
)

V2(t) = − d1ms
d1+d2

(
g +

..
zs2
)
−mu2

(
g +

..
zu2
) (25)

The external force vector acting on the bridge is

F(t) = L(t)
[
V1(t) V2(t)

]
+ H(t) (26)

H(t) represents the fulcrum reaction force.
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4.5. System Identification

It is assumed that vehicle vibration is obtained as measurement data. Here, the road
profile can be estimated by substituting the vehicle vibration data and the vehicle and
bridge parameters whose initial values are randomly assumed in the VBI system. By
positionally synchronizing the obtained road profile, the estimated road unevenness R1(x)
and R2(x) for the front and rear wheels can be obtained. When the vehicle travels straight,
the front and rear wheels are considered to run on the same road unevenness. Therefore,
the estimated road unevenness R1(x) and R2(x) should also match. However, as the
mechanical parameters are given randomly, they do not match. Therefore, the optimization
problem is to update the dynamic parameters to minimize the error between the estimated
road unevenness R1(x) and R2(x). In other words, the VBISI method is a search method
for mechanical parameters where R1(x) = R2(x).

4.5.1. Kalman Filter

In order to estimate the road unevenness from the vehicle vibration, this study also
introduced the discrete-time extended state-space model proposed by Xu et al. [10]. The
following equations give the state vector and observation vector.

Zk =


z(k∆t)
.
z(k∆t)
u(k∆t)
.
u(k∆t)

 (27)

sk =

{ ..
z(k∆t)
z(k∆t)

}
(28)

The state vector is given by the vehicle’s vertical displacement vibration, velocity
vibration, input profile, and velocity vibration. The discrete-time extended state-space
model in this study can be written as follows:

Zk =
–
VZk−1 + ωk (29)

sk = HZk + εk (30)

The matrix index V is given by Equation (31), where ωk, εk represent system noise and
observation noise, and ω ∼ N(0, Q), ε ∼ N(0, R).

–
V = expm[V∆t]= Udiag(exp(D))U−1 (31)

V =


O4×4 I4×4 O4×2 O2×2

−M−1
v Kv −M−1

v Cv M−1
v Fv O2×2

O2×4 O2×4 I2×2 O2×2

O2×4 O2×4 O2×2 O2×2

 (32)

U and D are the modal matrices and diagonal matrix when V∆t is diagonalized and
are expressed as follows.

V∆t = UDU−1 (33)

Additionally, H is given by
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H =



− ks1
ms

0 ks1
ms

0 − cs1
ms

0 cs1
ms

0 0 0 0 0
0 − ks2

ms
0 ks2

ms
0 − cs2

ms
0 cs1

ms
0 0 0 0

ks1
mu1

0 − (ks1+ku1)
mu1

0 cs1
mu1

0 − cs1
mu1

0 ku1
mu1

0 0 0

0 ks1
mu2

0 − (ks2+ku2)
mu2

0 cs2
mu2

0 − cs1
mu2

0 ku2
mu2

0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0


(34)

Let Q and R be the variance–covariance matrices of system noise ωk and observation
noise εk.

Q = E
[
ωkωT

k

]
(35)

R = E
[
εkεT

k

]
(36)

Apply the Kalman filter [54] to the obtained discrete-time extended state-space model.
According to Xue et al. [10], it is possible to estimate the input profile even in a noisy
environment. In addition, the Robbins–Monro algorithm [55] can be used to dynam-
ically estimate the variance–covariance matrix of process noise and observation noise.
Xue et al. [10] also used Rauch-Tung-Striebel smoothing [56], which was also applied in
this study. The Kalman filter [55] is an efficient method for obtaining state vectors based
on observed data and a dynamic model. Let the estimated state vector be Ẑk. Now, when
Ẑk−1 is obtained, the candidate X of Ẑk from Equation (29) is X ∼ N(µa, Σa). On the
other hand, when sk is obtained, the candidate Y of Ẑk derived from Equation (30) follows
Y ∼ N(µb, Σb).

µa =
–
VẐk−1 (37)

Σa,k =
–
VPk−1

–
V

T
+ Q (38)

µb = H−1sk (39)

Σb = H−1RH−T (40)

After applying the Kalman filter, the state vector Ẑk is estimated as the maximum
likelihood value, assuming that the two candidates X and Y follow a normal distribution.
That is, Ẑk is derived as follows.

Ẑk =
(

Σ−1
a,k + Σ−1

b

)−1(
Σ−1

a,k µa + Σ−1
b µb

)
= [I−GkH]

{ –
VẐk−1

}
+ [GkH]

{
H−1sk

}
= [I−GkH]

{ –
VẐk−1

}
+ Gksk

(41)

where Gk and Pk are calculated as follows.

Gk = Σa,kHT
(

HΣa,kHT + R
)−1

(42)

Pk =
(

Σ−1
a,k + Σ−1

b

)−1
= [I−GH]Σa (43)

Subsequently, the Robbins–Monro algorithm [55] dynamically estimates the variance–
covariance matrix of the process noise ωk and the observation noise εk. Correctly estimating
the order of noise is important because it affects the practicality of Kalman filter-based road
profile estimation. Here, αQ,k and αR,k are positive real numbers smaller than one.

Qk =
(
1− αQ,k

)
Qk−1 + αQ,kGk

(
sk −HẐk

)(
sk −HẐk

)TGT
k (44)
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Rk = (1− αR,k)Rk−1 + αR,k
(
sk −HẐk

)(
sk −HẐk

)T (45)

4.5.2. Object Function

First,
.
z(t) and z(t) are obtained by applying the Newmark-β method to vehicle

vibration
..
z(t), which is the measurement data. Mv, Cv, and Kv can also be obtained by

randomly assuming the system parameters of the vehicle. At this time, u1 and u2 can be
obtained by estimating the state vector using the Kalman filter. Next, the vehicle vibration
data

..
z(t) and the assumed vehicle system parameters are substituted into Equation (25) to

obtain contact-point forces V1(t) and V2(t). Suppose the system parameters of the bridge
are also assumed randomly. In that case, the bridge vibration y(t) can be obtained using the
equation of motion of the bridge and the Newmark-β method, as in numerical simulation.
By substituting into Equation (24), the bridge profile ỹ(t) can be obtained. Then, r(t) can
be estimated by subtracting ỹ(t) from u(t) obtained earlier. Here, R1(x) is obtained by
synchronizing r1(t) with x1(t), and R2(x) is obtained by synchronizing r2(t) with x2(t).
Based on the assumption that road unevenness R1(x) and R2(x) should be equal, the
problem of estimating mechanical parameters is treated as an optimization problem that
minimizes the squared error of R1(x) and R2(x). The objective function of this optimization
problem is

J(x) = ∑|R1(x)− R2(x)|2 (46)

If the parameters of the vehicle and bridge are all correct values, the two road uneven-
ness calculations match. Therefore, if the parameters can be updated so that the calculated
road unevenness matches, it can be expected that the parameters will eventually approach
the correct values. However, the equations of motion are equivalent when all parameters
are multiplied by the same factor. Therefore, at least one parameter must be known. This
research assumes that the gross vehicle weight M = ms + mu1 + mu2 and the distance
between axles D = d1 + d2, which are easy to measure, are known parameters [7].

4.5.3. Optimization Method

This research adopts the Nelder–Mead method [57,58] as the parameter search method.
The method creates an initial simplex (a simulated triangle in high-dimensional space). The
simplex is then iteratively modified to approach the minimum or maximum value of the
function. The simplex is then modified using the reflection, expansion, contraction, and
shrink methods. The Nelder–Mead method is independent of the slope of the objective
function and searches for the optimal solution relatively quickly. This study uses the
faster adaptive Nelder-Mead method [58]. In addition, there are non-negative conditions
and constraints on mechanical parameters. Therefore, the objective function of the VBISI
method is changed from a constrained objective function to an unconstrained objective
function using a penalty function. The penalty function sets the value of the objective
function to infinity if the parameters do not satisfy the following conditions.

1. One of the parameters is negative.
2. The sum of axle weights mu1 and mu2 exceeds the vehicle weight.
3. The center of gravity position d1 exceeds the wheelbase value.

For the initial value, give 0.8 to 1.2 times the value assumed in advance.

4.6. Implementation of Numerical Simulation

Based on the model shown in Figure 2, the coupled vibration of the vehicle and bridge
is reproduced by numerical simulation. Here, the vehicle model is separated from the
bridge model, and the computation is repeated until the vehicle vibration converges [7].
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4.6.1. Newmark-β Method

Vehicle and bridge vibrations are obtained by applying the Newmark-β method to the
respective equations of motion. The arbitrary equations of motion are shown below.

M
..
η(t) + C

.
η(t) + Kη(t) = ξ(t) (47)

Discretize the time function η(t), and let ηk be the displacement response of the vehicle
or bridge, where ∆t is the time increment

ηk = η(k∆t). (48)

In the Newmark-β method,

.
ηk =

.
ηk−1 + ∆t

(
(1− γ)

..
ηk−1 + γ

..
ηk−1

)
ηk = ηk−1 + ∆t

.
ηk−1 + ∆t2

((
1
2 − β

) ..
ηk−1 + β

..
ηk

) (49)

From the above equation, the equation can be written as follows

M
..
ηk + C

.
ηk + Kηk = ξk (50)

Applying the Newmark-β method, we receive

A
..
ηk = bk. (51)

From this, the following can be derived

A =
[
M + ∆tγC + ∆t2βK

]
(52)

bk =

{
ξk − C

( .
ηk−1 + ∆t(1− γ)

..
ηk−1

)
−K

(
ηk−1 + ∆t

.
ηk−1 + ∆t2

(
1
2
− β

)
..
ηk−1

)}
(53)

4.6.2. Iterative Computation

Iterative calculations reproduce the coupled vibration of the vehicle and bridge. First,
vehicle vibration is calculated using only the road unevenness as an input. The data
matrix Z = [· · · zk · · ·] represents the discretized vehicle vibration. The obtained vehicle
vibration Z is set to Z0, as convergence calculations are performed, and using Z0, the
ground forces can be obtained. Replacing Equation (47) with the equation of motion of
the bridge (Equation (20), the bridge vibration is obtained in the same way. Let this be Y0

from Y0; Z1 is obtained. This process is repeated to obtain Yl from Zl and Zl+1 from Yl . The
convergence condition for this iterative calculation is

ε =

∣∣∣Zl+1 − Zl
∣∣∣∣∣∣Zl+1

∣∣∣ ≤ εmax. (54)

The computation is terminated when the update ratio of Zl is less than the threshold
value εmax. Additionally, | | denotes the quadratic norm.

The time increment is set to 1.0× 10−3[s], and the threshold for convergence judgment
is set to 1.0× 10−6. The Newmark-β method employs the average acceleration method,
with γ = 1

2 and β = 1
4 .

5. Numerical Validation
5.1. Setting

First, this study verifies whether road unevenness can be estimated from vehicle
vibration calculated by numerical simulation. To see how the Kalman filter’s application
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changes the parameter estimation accuracy. The mechanical parameters of the vehicle were
determined from the vehicle inspection certificate. The vehicle is assumed to be a 14-t truck
that can sufficiently vibrate the bridge. The mechanical parameters of the bridge were
determined concerning the bridge ledger (Table 2). The roughness of the road profile used
in the numerical simulation was determined based on the values calculated by the road
profiler. The vehicle displacement vibration is estimated from the acceleration using the
Newmark-β method. The estimated vehicle displacement vibration is high-pass filtered at
0.1 Hz. The filtering process is to remove trends due to numerical integration.

Table 2. The assumed mechanical parameters of vehicle and bridge.

Vehicle Parameter Assumed Bridge Parameter Assumed

d1 Distance between
wheels and center

of gravity

2.18 [m] L Length 30.0 [m]

d2 2.67 [m] Number of
Elements 7

ms Mass 13,060 [kg] EIi Bending stiffness 5.50× 1010 [Nm2]

mui Mass (sprung) 3.20× 103 [kg] ρA Mass per unit 1.80× 104 [kg/m]

csi Damping (sprung) 3.00× 104 [kg/s] α Rayleigh damping
coefficient

0.7024

ksi Stiffness (sprung) 4.00× 103 [N/m] β 0.0052

kui
Stiffness

(unsprung) 4.00× 105 [N/m]

The authors assumed values for the variance–covariance matrix based on previously
measured vehicle vibration data. Table 3 summarizes the initial value diagonal components
of the variance–covariance matrix of the process and observation noise. Even if the model
parameters corresponding to an actual vehicle are estimated, there will consistently be
modeling errors because the half-car model is a simplified linear system with limited
degrees of freedom. It is generally difficult to estimate the degree of the first through eighth
components of Q corresponding to this modeling error [10]. Therefore, the values were
determined by trial and error with reference to [10]. On the other hand, the observed noise
value can be determined by referring to the noise level of the measurement equipment and
the installation method. However, it is difficult to accurately estimate these values for each
measurement vehicle and installation method. Therefore, R was also determined by trial
and error. In this study, the values were set based on the RMS values of vehicle vibration
measured when the vehicle was stationary; the off-diagonal elements of Q and R are zero.

Table 3. Variance–Covariance Matrix Settings.

(i,i) (1, 1) (2, 2) (3, 3) (4, 4) (5, 5) (6, 6)

Qii 1.35× 10−4 1.47× 10−4 1.84× 10−4 1.85× 10−4 5.11× 10−4 5.73× 10−4

Rii 4.50× 10−3 5.20× 10−3 3.34× 10−3 3.34× 10−3 1.25× 10−4 1.37× 10−4

(i,i) (7, 7) (8, 8) (9, 9) (10, 10) (11, 11) (12, 12)

Qii 1.20× 10−3 1.20× 10−3 1.00× 10−9 1.00× 10−9 1 1

Rii 1.74× 10−4 1.75× 10−4

5.2. Result and Discussion

Parameter identification and road unevenness estimation are performed using vehi-
cle vibrations. The effect of the Kalman filter on parameter identification was confirmed
through comparison with the case where the Kalman filter was not used. The diagonal
elements of the variance–covariance matrices R and Q of the Kalman filter without consid-
eration of noise are assumed to be 1.00× 10−9 for all one to eight elements. In addition,
the case where noise is included in the vehicle vibration is also considered for field tests.
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The noise was set based on the value measured by an acceleration sensor installed in the
vehicle in a static state. Figure 3 shows the estimation of road unevenness by the VBISI
method without a Kalman filter. Figure 4 shows the results using the Kalman filter. The
upper and lower rows show the estimated road unevenness when noise is not considered
and when noise is considered, respectively. The set vehicle speed is 8.1 [m/s], and the data
for about 5 s is used. The Nelder–Mead method was adopted to minimize the objective
function, and the number of updates was set to 1000 times. The input profile without the
Kalman filter is obtained from Equations (1) and (3).
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When the Kalman filter is not used, the road unevenness estimated for the front
and rear wheels almost always coincide with the absence of noise. In addition, the road
unevenness calculated for the front and rear wheels almost always overlaps with the correct
value. However, when noise is considered, the estimation accuracy is significantly reduced.
On the other hand, when the Kalman filter is used, the decrease in the accuracy of road
unevenness is slight regardless of the presence or absence of noise. However, the road
unevenness estimated for the front and rear wheels differs from the correct ones. There
are several possible reasons for this. One is that the parameters of the variance–covariance
matrix of the Kalman filter need to be better adjusted, which may have been affected by the
noise processing. It is also known that the accuracy of the Kalman filter in estimating road
unevenness decreases as the distance from the center of gravity increases [7]. There is a
possibility that the influence of the estimation error of the front and rear wheels cannot be
ignored. Table 4 summarizes the parameter estimation results. The two columns on the left
in Table 4 indicate the presence or absence of the Kalman filter in the estimation process
and the consideration or lack thereof of noise to vehicle vibration. If the conditions are met,
a symbol of # is given; if not, a symbol of ×is assigned.
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Table 4. Variance–Covariance Matrix Settings.

KF Noise d1 cs1 cs2 ks1 ks2 mu1 mu2 ku1 ku2 ρA α bC EI1 EI4 EI7

× × 1.00 1.01 1.01 1.05 1.04 1.02 1.02 1.01 1.02 1.00 0.99 1.06 1.00 0.94 0.96

× # 0.00 0.20 0.13 0.07 3.02 2.32 0.37 2.69 1.19 0.33 1.73 2.01 0.62 0.36 0.02

# × 0.96 1.22 1.05 0.93 0.94 0.92 1.02 1.05 1.07 1.09 1.06 0.94 1.05 0.89 0.94

# # 1.13 1.82 2.11 0.70 1.41 1.05 0.93 0.68 0.85 1.60 1.86 0.84 1.07 1.08 0.38

Estimated parameters were divided by their correct values and normalized. Only the
bridge endpoints and the central part are represented as bridge stiffness values. The highest
accuracy is obtained when the Kalman filter is not used and noise is not considered. Even if
the Kalman filter is used, it is possible to estimate the mechanical parameters of the vehicle
and bridge without considering noise. However, the accuracy of the estimated parameters
is slightly lower than before using the Kalman filter. This phenomenon occurs even though
the front and rear wheels estimate almost the same road surface. In other words, the
difference between the estimated road unevenness and the correct road unevenness is the
cause. In addition, when noise is considered, the parameter estimation accuracy decreases
in both methods regardless of the introduction of the Kalman filter.

6. Field Test
6.1. Bridge Description

Matsumi Bridge is a one-span bridge constructed in 1973 across Kaede Street in
Tsukuba City, Ibaraki Prefecture, Japan (Figure 5). The bridge’s total length is about
30.88 m, and the width is about 12.98 m. The main girder is a PC box post-tension girder. It
is paved with asphalt and integrated with the main girder.
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To provide a baseline for comparison with drive-by measurements, the natural fre-
quency of Matsumi Bridge is directly measured by installing accelerometers on the bridge.
A three-axis wireless MEMS accelerometer was used to record the forced vibration of the
bridge. Two sensors were installed at the center of each bridge for bridge measurement. A
wireless accelerometer driven by a mobile battery was attached using double-sided tape
for construction. Vertical acceleration was measured at 300 Hz.

The first natural frequency of Matsumi Bridge was calculated by the fast Fourier
transform of free vibration and forced vibration data. Figure 6 shows an example of the
free vibration and FFT of the bridge after passing vehicles measured at two locations.
Additionally, forced vibration is shown in Figure 6. In this example, a passing measurement
vehicle excites a bridge. Comparing the free vibration and vehicle vibration, the latter
has more frequencies in the lower frequency range than the fundamental frequency of the
bridge (including vehicle frequencies). As shown in Figure 6, the first peak in the frequency
domain, corresponding to the fundamental frequency of the bridge, was evident in the
data from all two sensors. The averages of five measurements of free vibration and forced
vibration due to the passage of the measurement vehicle were 18.6 Hz and 18.33 Hz. The
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lower frequency of forced oscillation than that of free oscillation can be attributed to the
mass increase by the measurement vehicle [59]. As there are only two sensors in this study,
it is impossible to determine which bridge mode is responsible for the observed peaks.
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6.2. Measured Data

Measurements were taken with multiple accelerometers and multiple GPSs for a
two-axis vehicle. The layout of the installed sensors is shown in Figure 7. The instrumenta-
tion and testing details are presented in [48]. Over 18 and 19 May 2022, the vertical acceler-
ation was measured when the measurement vehicle crossed Matsumi Bridge 100 times. In
VBI studies, the measured acceleration vibration is often in the vertical direction. However,
it is difficult to obtain data only in the vertical direction when accelerometers are installed in
vehicles, depending on the location. Therefore, the acceleration data were corrected using a
rotation matrix before conducting this analysis. The accelerometers used in this study were
triaxial, and the vertical direction can be inferred in the post-process by correcting the data
with a rotation matrix. The sensor tilt was estimated from the vehicle vibration measured
while the vehicle was stopped and corrected. The obtained rotation matrix is applied to
the vehicle vibration data for analysis to obtain the mean value of the acceleration signal
in the vertical direction, and the process of average zeroing is performed. Figure 8 shows
an example of the vertical acceleration of a vehicle and the forced vibration of a bridge
and its FFT results. The upper, middle, and lower rows represent the vehicle’s front, rear,
and bridge vibrations. For vehicle vibration, the vibration of the vehicle body and the
vibration of the axle are plotted simultaneously. In common with front and rear vehicle
vibrations, the amplitude of axle vibration is larger than vehicle body vibration. In the
frequency domain, both the vehicle and bridge vibrations have a peak of about 3 Hz. By
VBI, a peak was observed that did not exist during forced vibration (Figure 8b). Some
peaks are seen around 13 Hz at the front of the vehicle. These are due to the effects of the
vehicle’s natural frequency, engine vibration, and road unevenness. In addition, the FFT
of vehicle vibration does not show a peak near 18 Hz. Therefore, it is difficult to identify
the fundamental frequency of a bridge simply by the FFT of the measurement data. The
Nelder–Mead method was adopted to minimize the objective function, and the number of
updates was set to 10,000 times.

6.3. Results

The results of the VBISI method run using the data measured in the field test are
summarized in Figures 9 and 10 and Table 4. Figure 9a shows the acceleration vibration
of the bridge vibration estimated by the VBISI method, its FFT result, and the estimated
road profile. In the frequency domain of Figure 6, a peak around 18 Hz can be observed for
the bridge vibration. This peak could not be observed from the estimated bridge vibration,
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as shown in Figure 9a. Figure 9b shows the road profile estimated by the VBISI method.
Large amplitudes can be seen around 0 m and 30 m of the estimated road unevenness.
These amplitudes can be attributed to the expansion joint in front of and behind the bridge.
The road unevenness estimated for the front and rear wheels show similar characteristics,
but they did not match. Figure 10 compares the power spectral density function (PSD) of
the VBISI-estimated and measured road unevenness. The estimated road unevenness was
assessed at the vehicle’s front axle position. The road unevenness was measured using a
road profiler. The estimated road unevenness is lower than the measured road unevenness.
Table 5 summarizes the vehicle and mechanical bridge parameters estimated by the VBISI
method. The correct values of the modal parameters for vehicles and bridges in a field test
have yet to be discovered. Therefore, evaluating the parameters estimated by this method
is a technical issue.
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Table 5. The estimated mechanical parameters of vehicle and bridge.

Parameter Estimated Parameter Estimated

d1 [m] 2.18 EI1 [Nm2] 5.48× 1010

d2 [m] 2.67 EI2 [Nm2] 5.35× 1010

mu1 [kg] 3.25× 102 EI3 [Nm2] 5.75× 1010

mu2 [kg] 3.27× 102 EI4 [Nm2] 5.19× 1010

cs1 [kg/s] 3.02× 104 EI5 [Nm2] 5.80× 1010

cs2 [kg/s] 3.04× 104 EI6 [Nm2] 5.38× 1010

ks1 [N/m] 4.22× 103 EI7 [Nm2] 5.25× 1010

ks2 [N/m] 4.17× 103 α 0.6921

ku1 [N/m] 4.04× 105 β 0.0055

ku2 [N/m] 4.07× 105 ρA [kg] 1.79× 104

7. Discussion

When the estimated road unevenness matches the correct values [8,9], the mechanical
parameters of the vehicle and bridge also mostly match the correct values. Therefore, the
accurate estimation of road unevenness is essential. To improve the estimation accuracy,
actions are taken to improve the accuracy of the road unevenness estimation. In this study,
several possible factors may reduce the accuracy of road unevenness estimation.

One is the problem of measured data. In this study, vehicle acceleration vibration
and displacement vibration are used as observation data. However, vehicle displacement
vibration is calculated by the numerical integration of vehicle acceleration vibration. The
acceleration vibration of a vehicle contains various noises. Vibrations included in vehicle
vibration may include engine vibration. Therefore, the numerically integrated displacement
vibration of the vehicle has a trend. Because it is difficult to remove this effect, the accuracy
of the road unevenness estimation is reduced. It is possible to use only acceleration
vibration as the observed data. However, displacement vibration is essential to satisfy
observability in the state-space model. In a model that does not satisfy observability, it is
difficult to determine the state variables from the observed data uniquely. On the other
hand, the vehicle is also equipped with a GPS sensor to measure vertical displacement. The
model’s accuracy can be improved if the GPS’s vertical displacement can compensate for
the accelerometer’s displacement oscillations.

Optimization also poses challenges. Many nonlinear optimization problems have
multiple local solutions. As the objective function of the VBISI method is also a nonlinear
function, there are local solutions. Therefore, even if the optimal solution is obtained,
there may be a different value. Moreover, in the absence of blueprints, it is necessary to
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increase the range of parameters to be explored. Therefore, a more efficient parameter
search method is needed for future verification. There is also potential for improvement in
the objective function. Although this study used road unevenness estimated from the front
and rear wheel positions, the synchronization of the positions takes work.

It is also necessary to consider how to verify the accuracy of this method. Therefore, it
is practical to conduct a laboratory experiment to examine the applicability of this method.
In laboratory experiments, it is relatively easy to grasp the mechanical parameters of the
vehicle and bridge. In addition, it may be possible to estimate mechanical vehicle parame-
ters from free vibration tests using humps and compare them with the results. Mechanical
bridge parameters are also being considered to use findings from direct monitoring of
bridges. A sensor is installed directly on the bridge, and the excitation test estimates the
modal parameters of the bridge. Nikkhoo et al. [60] proposed a method for estimating the
natural frequencies and dynamic response of various beams subjected to excitation by a
moving mass. If these direct bridge monitoring techniques can be utilized, more efficient
and reliable parameter estimation may be possible. Additionally, Yang et al. [36] proposed
a method to evaluate the stiffness of a bridge estimated from vehicle vibration. Based
on the estimated bridge stiffness, the deflection of the bridge, when given a specific load,
is calculated by the finite element method. A similar load is applied to an actual bridge
and compared with its displacement to verify accuracy. In addition, the VBISI method
does not examine vehicle speed restrictions, which have been pointed out in previous
studies [61]. Therefore, it is necessary to verify the practicality of this technique through
parametric studies.

8. Conclusions

A field study of an indirect bridge health monitoring method for single-span con-
crete bridges is described. Acceleration responses extracted from sensor-mounted sen-
sors were used. The study examined methods for estimating (i) mechanical vehicle
parameters, (ii) mechanical bridge parameters, and (iii) road unevenness. Direct mea-
surements using sensors installed on the bridges confirmed that the vehicles shook the
bridge. Road profilers were also used to measure road unevenness. It is difficult to identify
the fundamental frequencies of bridges from the estimated bridge vibrations. In addition,
the estimated road unevenness needs to be more accurate when compared to the measured
road unevenness, although they show some of the same trends. This paper is the first to
examine the simultaneous identification of vehicle and bridge parameters and road un-
evenness in a field test. The VBISI method is a new approach that expands the possibilities
of indirect monitoring.

A limitation of this study is that it took a lot of work to find a combination of param-
eters to estimate the road unevenness by the studied method between the front and rear
wheels. The VBISI method had to consider the effects of noise fully, and the optimiza-
tion method needed to be revised. Therefore, it is conceivable to adopt a less susceptible
technique to engine vibration and measurement noise in future research. Establishing a
methodology to evaluate the estimated mechanical parameters of the vehicle and bridge is
also essential.

A summary of the results is as follows:

1. The VBISI method can estimate the mechanical parameters of the vehicle and bridge
and road unevenness from vehicle vibration and position information. The only
information required for the estimation is the vehicle’s total weight and the wheelbase.

2. The Kalman filter improves the accuracy of estimating road unevenness but reduces
the accuracy of estimating the mechanical parameters of the vehicle and bridge.

3. The method was validated with vehicle vibrations measured during field tests. The val-
ues estimated by the proposed method are compared to the directly measured vibrations.

4. It is not easy to estimate the natural frequencies of bridges from the bridge vibrations
estimated by the proposed method. On the other hand, some of the estimated road
unevenness showed similar trends.
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5. To improve the accuracy of the VBISI method, the vibration preprocessing and op-
timization methods need to be improved. In addition, a method for evaluating the
estimated mechanical parameters needs to be established.
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