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Abstract: Neurological diseases including stroke and neurodegenerative disorders cause a hefty
burden on the healthcare system. Survivors experience significant impairment in mobility and daily
activities, which requires extensive rehabilitative interventions to assist them to regain lost skills
and restore independence. The advent of remote rehabilitation architecture and enabling technology
mandates the elaboration of sensing mechanisms tailored to individual clinical needs. This study
aims to review current trends in the application of sensing mechanisms in remote monitoring and
rehabilitation in neurological diseases, and to provide clinical insights to develop bespoke sensing
mechanisms. A systematic search was performed using the PubMED database to identify 16 papers
published for the period between 2018 to 2022. Teleceptive sensors (56%) were utilized more often
than wearable proximate sensors (50%). The most commonly used modality was infrared (38%) and
acceleration force (38%), followed by RGB color, EMG, light and temperature, and radio signal. The
strategy adopted to improve the sensing mechanism included a multimodal sensor, the application of
multiple sensors, sensor fusion, and machine learning. Most of the stroke studies utilized biofeedback
control systems (78%) while the majority of studies for neurodegenerative disorders used sensors
for remote monitoring (57%). Functional assessment tools that the sensing mechanism may emulate
to produce clinically valid information were proposed and factors affecting user adoption were
described. Lastly, the limitations and directions for further development were discussed.

Keywords: sensing mechanism; sensors; remote rehabilitation; remote monitoring; neurological
disease; stroke; neurodegenerative disorder

1. Introduction

Neurological diseases not only impact physical functioning but also affect the patient’s
cognition and psychological health. The resultant disability restricts participation in pre-
morbid social roles and entails an increased demand for care services. In the same context,
the functional outcome of patients undergoing treatment for neurological diseases corre-
lates with personal well-being as well as public welfare expenditures. Recently, the Global
Burden of Disease reported that most neurological diseases led to a substantial increase
in social burden from 1990 to 2017 [1]. Hence, delivering patient-centric rehabilitation
interventions is integral to minimizing disability and maximizing independence.

The recent experience of pandemic-related service disruptions has accelerated the
paradigm shift from conventional gym-based rehabilitation therapy to home-based therapy.
Remote rehabilitation, an alternative mode of service delivery, has emerged to safeguard
the continuity of care. It was reported that telerehabilitation was not inferior to in-person
therapy to improve independence in activities of daily living (ADLs), balance, health-
related quality of life, and depressive symptoms [2]. Ideally, this trend is bolstered by
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the integration of sensing mechanisms paired with processing algorithms for remote
rehabilitation, which enables unmanned monitoring and quantifiable measurements. Given
the aging population leading to an increased demand for rehabilitation coupled with the
shortage of manpower, home-based remote therapy may be the mainstay of futuristic
rehabilitation of neurological diseases.

There have been enormous technical advances and breakthrough innovations in
designing sensors to detect user intent or behavior, composing algorithms to improve
the accuracy of data interpretation or therapeutic efficacy, and creating human-machine
interfaces combined with optimized interoperability between sensors and rehabilitative
devices. Chen Y et al. performed a systemic review of home-based technologies for
stroke rehabilitation including purposeful games, virtual reality, harnessing information
and telecommunication technologies for telerehabilitation, robotic devices to augment or
replace manual therapy, sensors, and mobile devices which connected users with sensors.
The authors derived two main human factors in designing home-based technologies,
which were engagement including motivation. and the home environment including
understanding the social context [3]. However, the review did not elaborate on the sensor
type or sensing modality. Alarcón-Aldana AC et al. focused on the therapeutic use of
motion capture systems to aid post-stroke upper limb rehabilitation and the most commonly
used were Kinect and inertial measurement units (IMUs) [4]. Spencer J et al. concluded
that the evidence for biofeedback for post-stroke gait training was equivocal but showed
promising effectiveness, which warranted better designed larger-scale studies [5]. Di Biase
L et al. reviewed the various technologies used for gait analysis in Parkinson’s Disease
(PD) but only few studies showed accurate algorithms that could be clinically useful for
diagnosis and symptoms monitoring [6]. On the contrary, Ferreira-Sánchez MDR et al.
concluded that the quantitative measurement of rigidity in PD was all valid and reliable
using servomotors, inertial sensors, and biomechanical and neurophysiological study [7].
Aşuroğlu T et al. demonstrated that signals from ground reaction force (GRF) sensors
analyzed with a deep learning approach, a combination of Convolutional Neural Networks
(CNN) and Locally Weighted Random Forest (LWRF), were used successfully in disease
detection and severity assessment of PD [8]. Açıcı K et al. provided a set for context
awareness through wrist-worn sensors comprising accelerometers, magnetometers, and
gyroscopes. The team presented a computational method for activity recognition and
person identification from hand movements. They proved that multimodal sensors, such
as accelerometers and magnetometers, can improve the accuracy of data compared with
the individual use of each sensor type [9].

However, recent evidence suggests that physiological sensors can support remote
assessment and management, but this is mainly observed in research settings and has
not yet been translated to routine clinical care [10]. Considering a paucity of surveys
scrutinizing the sensing mechanism utilized in clinical practice, especially such as remote
monitoring and rehabilitation settings, it would be meaningful to collate published findings
on how to generate suitable data required for tailored rehabilitative interventions according
to the various clinical manifestations of neurological diseases. At the same time, it has
to be underscored that the major challenges of remote rehabilitation would be to assure
patient safety, adherence, and the efficacy of interventions. As clinicians who participate
in the architecture development of remote rehabilitation and prescribe the system for end
users, patients, we, the authors, hope to share opinions from a clinical point of view in this
scoping review.

The aims of this study are to (1) review current trends in the application of sensing
mechanisms in remote monitoring and rehabilitation with a focus on two broad categories
of neurological diseases (stroke and neurodegenerative disorders (NDD)), and (2) to elabo-
rate and propose the underpinnings to develop bespoke sensing mechanisms for remote
rehabilitation from a clinical perspective.
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2. Methods
2.1. Search Method

A systemic search of available literature in PubMed using Medical Subject Headings
(MeSH) was performed following the PRISMA guidelines. Medical Subject Headings
including “Stroke”, “Neurodegenerative Disease”, “Parkinson’s Disease”, “Alzheimer
Disease”, “Dementia”, “Amyotrophic Lateral Sclerosis”, “Motor Neuron Disease”, with
“Remote Sensing Technology” or “Telerehabilitation” was used.

The specific combinations that were used are:

“Stroke” AND “Remote Sensing Technology”
“Stroke” AND “Telerehabilitation”
“Neurodegenerative Disease” AND “Remote Sensing Technology”
“Neurodegenerative Disease” AND “Telerehabilitation”
“Parkinson’s Disease” AND “Remote Sensing Technology”
“Parkinson’s Disease” AND “Telerehabilitation”
“Alzheimer Disease” AND “Remote Sensing Technology”
“Alzheimer Disease” AND “Telerehabilitation”
“Dementia” AND “Remote Sensing Technology”
“Dementia” AND “Telerehabilitation”
“Amyotrophic Lateral Sclerosis” AND “Remote Sensing Technology”
“Amyotrophic Lateral Sclerosis” AND “Telerehabilitation”
“Motor Neuron Disease” AND “Remote Sensing Technology”
“Motor Neuron Disease” AND “Telerehabilitation”

2.2. Eligibility

We included English language articles of studies performed on human subjects pub-
lished from 2018 to 2022. Editorials, reviews, and meta-analyses were excluded.

2.3. Selection of Study

PICO (population, intervention, comparison, outcome) principles were used for the
selection criteria: (P) people with neurological diseases; (I) sensor usage in either remote
monitoring or rehabilitation of neurological diseases; (C) none; (O) none. The search process
is represented in Figure 1.
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3. Results
3.1. Characteristics of Included Study

A total of sixteen studies were included in this review, of which nine studies involved
stroke patients, and seven studies involved patients with NDD. Of these, three studies
involved patients with dementia, and four studies involved patients with Parkinson’s
Disease (PD).

3.2. Use of Sensors in Stroke

Nine studies describing the use of sensors for remote monitoring or rehabilitation were
identified in stroke patients. Four studies utilized sensors in rehabilitation which resulted in
improvement in upper limb function [11–14], Lee YM et al. used sensors to measure upper
limb impairment and disability [15] and Song Y et al. used sensors for both stroke preven-
tion and rehabilitation nursing via a mobile medical management system based on Internet-
Of-Things technology [16]. Chen SC et al. demonstrated superior or equal efficiency of a
Microsoft Kinect-based exergaming telerehabilitation system compared to conventional
one-on-one physiotherapy in chronic stroke patients [17]. Salgueiro C et al. utilized a G-
Walk accelerometer system to measure gait parameters in patients performing home-based
core strengthening guided by a telerehabilitation application [18]. Rogerson L et al. also
reported the feasibility of using The Howz system to identify activity abnormalities in
stroke survivors [19]. Table 1 summarizes the use of sensors for remote monitoring or
rehabilitation after stroke.

3.3. Use of Sensors in Neurodegenerative Disorders

Seven studies describing the use of sensors for remote monitoring or rehabilitation
were identified in patients with NDD. Four studies involved patients with Parkinson’s
disease, of which three studies used sensors to monitor parkinsonian manifestations [20–22]
and Cikajlo I et al. described the use of Microsoft Kinect to calibrate the difficulty of games in
a telerehabilitation exergaming system [23]. Another three studies involving patients with
dementia were identified. Vahia IV et al. described the use of radio signal sensing and signal
processing to identify behavioral symptoms of dementia [24]. Lazarou I et al. performed a
randomized parallel trial, in which patients who received tailored non-pharmacological
interventions according to observations by a sensor-based system showed statistically
significant improvement in cognitive function [25]. However, Gaugler JE et al. concluded
that ambient sensors placed to monitor daily activity did not affect caregiving outcomes
over a 6-month follow-up period [26]. Table 2 summarizes the use of sensors for remote
monitoring or rehabilitation in NDD.
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Table 1. Summary of identified studies involving stroke patients.

Authors,
Published Year Study Design Study Sample Device Name Site Sensor Type Sensing Modality

Measured
Clinical
Parameters

Dataset
(Repository)

Machine
Learning
Prediction

Results

Rogerson L et al.,
2019 [19] CS 19 stroke patients Howz system

(Commercialized) NA
Ambient sensor,
door sensor, and
smart plug

Temperature, light

Mean number of
times participant
was active during
the day, door
sensor activation,
alerts (due to low
activity or late
start)

Mean number of times
participant was active during
the day = 47.1 ± 55, Mean
number of times door sensor
was activated per
day = 5 ± 2.4, number of
alerts = 1.1 ± 1.2
(Public)

NA

Howz system for
monitoring and feedback
activities were feasible
and acceptable for stroke
survivors. No
technological problems
or adverse events were
noted. The system was
nonobtrusive, easy to use,
and provided peace of
mind that help would be
at hand if needed.

Lee YM et al.,
2020 [15] CS 41 stroke patients Microsoft Kinect

(Commercialized) NA
RGB camera,
depth sensor,
infrared sensor

RGB, depth,
infrared

Upper extremity
3D Kinect-based
reachable
workspace, FMA,
MI-UE,
QuickDASH

Total upper limb FMA
(n = 34) = 50.8 ± 19.5, MI-UE
(n = 41) = 79.8 ± 20.1,
QuickDASH = 32.5 ± 23.8.
Correlation: total RSA and
FMA total (R2 = 0.68, p < 0.01),
total RSA and MI-UE
(R2 = 0.65, p < 0.01), total RSA
and QuickDASH (R2 = 0.42,
p < 0.01)
(Public)

NA

A Kinect-based reachable
workspace could be a
useful alternative
outcome measure of
upper limb impairment
and disability. The total
relative surface area of
the paretic side correlated
with FMA, MI, and
QuickDASH scores.

Qiu Q et al.,
2020 [11] CS 15 stroke patients LMC NA Infrared LEDs,

infrared cameras Infrared

Upper extremity
FMA, hand
kinematics (HOR,
HOA, WPR, WPA,
HRR, HRA)

Mean increase of upper
extremity FMA = 5.2
(SE = 0.69, p < 0.001).
Improved ROM: 15.83% for
HOR, 27.50% for WPR, and
37.20% for HRR. Less error
during tracing task (15.76% in
HOA, 18.70% in WPA and
18.75% in HRA)
(Private)

NA

HoVRS provides data for
customizing upper limb
rehabilitation in their
home setting with
minimal in person
instruction or assistance.
Improvements in upper
limb function and six
measurements of hand
kinematics are noted
with use of the system.

Chen SC et al.,
2021 [17] CCT

30 stroke patients
(15 Kinect, 15
controls)

Microsoft Kinect
(Commercialized) NA

RGB camera,
depth sensor,
infrared sensor

RGB, depth,
infrared

BBS, TUG,
Modified Falls
Efficacy Scale, MI,
and FAC

Improvement in BBS in both
groups (control group:
p = 0.01, effect size = 0.49;
experimental group: p = 0.01,
effect size = 0.70). TUG scores
in experimental group
improved (p = 0.005, effect
size = 0.70)
(Private)

NA

Kinect-based interactive
telerehabilitation system
with remote therapist
supervision has superior
or equal efficiency
compared to one-on-one
physiotherapy.
Compliance and safety of
this interactive
telerehabilitation system
is observed.
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Table 1. Cont.

Authors,
Published Year Study Design Study Sample Device Name Site Sensor Type Sensing Modality

Measured
Clinical
Parameters

Dataset
(Repository)

Machine
Learning
Prediction

Results

Nam C et al.,
2021 [12] CS 11 stroke patients NA Wrist,

hand WH-ENMS EMG

FMA, ARAT,
WMFT, Motor
FIM, MAS, EMG
activation level,
and the
Co-contraction
Index (CI) of the
target muscles

Significant improvements
(p < 0.05, paired sample t test)
in the mean FMA full score
(33.4 vs. 44.5), ARAT (19.3 vs.
26.7), WMFT score (39.2 vs.
45.9), WMFT time (51.6 vs.
45.7) before and after training.
Significant decrease (p < 0.05,
Wilcoxon’s signed rank test)
in mean MAS scores at elbow
(2.18 vs. 1.49), wrist (1.95 vs.
1.18) and finger (1.98 vs. 1.40)
before and after training.
Significant decreases in the
EMG activation levels of the
APB and FCR-FD and EMG
co-contraction index of
measured muscle pairs; and
significant reductions in the
number of movements and
maximal trunk displacements.
(Private)

NA

WH-ENMS-assisted
home- based self-help
rehabilitation was
feasible and effective for
improving upper
limb function.
Significantimprovements
in the voluntary motor
control and muscle
coordination of the upper
limb, increased
smoothness and reduced
compensatory trunk
movement during arm
reaching coordinated
with distal movements,
and release of muscular
spasticity at the elbow,
wrist, and fingers.

Cha K et al.,
2021 [13] RPT 27 stroke patients VRRS, LMC NA

RGB camera
(VRRS), infrared
LEDs, and
cameras (LMC)

RGB, infrared

FMA, virtual
body ownership,
agency, location
of the body,
and usability

FMA pre- and post-training:
Conventional therapy (23.44
vs. 28.11, p = 0.000,
D-value = 4.67), LMC (27.67
vs. 33.56, p = 0.001,
D-value = 5.89), VRSS (20.78
vs. 31.22, p = 0.000,
D-value = 10.44). Significant
difference (F = 5.426, p = 0.005)
with a large effect size
(η2 = 0.361) in D-value
between VRSS and
conventional therapy.
Significant difference
(F = 5.426, p = 0.021) with a
large effect size (η2 = 0.221) in
the D-value between VRSS
and LMC. Significant
differences between VRRS
and LP in body ownership
(3.2 vs. 1.3, p = 0.044), agency
(6.8 vs. 4.2, p = 0.049), usability
(69.7 vs. 55.8, p = 0.038)
(Private)

NA

VRRS improved the
users’ senses of body
ownership, agency, and
location of the body.
Users preferred using the
VRRS to using the LMC.
VRRS promotes
rehabilitation; FMA
scores improved in all
groups in experiment 2,
the mean D-values of the
FMA scores of the group
using VRRS was
significantly higher than
the control groups.
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Table 1. Cont.

Authors,
Published Year Study Design Study Sample Device Name Site Sensor Type Sensing Modality

Measured
Clinical
Parameters

Dataset
(Repository)

Machine
Learning
Prediction

Results

Marin-Pardo O
et al., 2021 [14] CR 1 stroke patient Tele-REINVE-NT Forearm EMG Surface EMG

EMG signals,
game
performance, user
experience,
patient-reported
change in motor
function

No statistically significant
changes for extensor
(rho = 0.27, p = 0.164) or flexor
(rho = −0.34, p = 0.071)
muscle activity, game
performance (rho = 0.29,
p = 0.06).
(Public)

NA

Muscle-computer
interface system had no
adverse events and
patient did not perceive
discomfort, pain, or
fatigue. Normalization of
co-contraction was not
statistically significant.
Patient reported positive
changes in motor
function and improved
quality of life.

Song Y et al.,
2022 [16] CCT 32 stroke patients,

6 healthy control-s

Mobile medical
managem-ent
system based on
IOT technology

Upper
arm Accelerometer Acceleration force Brunnstrom

staging

When the noise intensity was
5%, 10%, 20%, 40%, and 60%,
the MSE of the optimized
median filtering algorithm
were 54:17 ± 4:52,
103:52 ± 8:63, 215:42 ± 17:95,
1302:17 ± 108:51, and
4865:22 ± 455:26, respectively,
and MSE of the median
filtering algorithm before
optimization were 2:17 ± 0:34,
15:41 ± 1:48, 21:52 ± 1:99,
52:42 ± 4:87, and 116:92 ±
8:63, respectively. PSNR of the
optimized median filtering
algorithm was significantly
higher than that before
optimization. Maximum
prediction accuracy of 89.83%
in the test set was achieved
with 23 neurons.
(Private)

BP neural
network.
Training time
(2.5 s) and root
MSE (0.29) of
the model were
lowest when
Traingda was
used. Training
time and root
MSE of
traingda were
significantly
lower than
traingd and
traingdm
functions.
Training steps
of traingda
function were
significantly
different from
those of traingd
and traingdm
functions.
When transfer
in the hidden
layer and the
input layer is
tansig, the error
percentage
(7.56%) and root
MSE (0.25) of
model are
minimum.

MSE of the signal showed
a significant upward
trend. Brunnstrom
staging results were
compared with the
prediction results of the
mobile monitoring
system. Prediction results
of Brunnstrom stages I
and II were completely
consistent with the
clinical staging results.
3 samples or 9.37%
showed different normal
prediction results and
clinical stage results in
stages III–VI, and the
prediction accuracy was
90.63%. There is certain
application value for the
rehabilitation of stroke
patients.
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Table 1. Cont.

Authors,
Published Year Study Design Study Sample Device Name Site Sensor Type Sensing Modality

Measured
Clinical
Parameters

Dataset
(Repository)

Machine
Learning
Prediction

Results

Salgueiro C et al.,
2022 [18] CCT

30 stroke patients
(15 G-Walk and 15
control-s)

G-Walk
accelerom-eter
system from BTS
Bioengine-ering
(Commercialized)

Trunk,
entire
lower
limb

Accelerometer Acceleration force

STIS2.0, S-FIST,
S-PASS, BBS, the
number of falls
and gait
parameters
measured by the
G-Walk
accelerometer
system

Improvements in S-TIS 2.0
balance pre- and
post-intervention: control
(4.27 vs. 4.31, p = 0.534),
experimental group (4.73 vs.
6.71, p = 0.001), p = 0.007.
Significant differences pre-
and post-intervention
intergroup S-TIS 2.0 total:
control (7.33 vs. 7.46,
p = 0.606), experimental group
(7.60 vs. 10.36, p = 0.000),
p = 0.032. BBS pre- and
post-intervention, improved
in both control (41.27 vs. 42.54,
p = 0.009) and experimental
groups (43.2 vs. 44.93,
p = 0.029).
(Public)

NA

The authors used an
accelerometer to measure
gait parameters.
Performing
core-strengthening
exercises guided by a
telerehabilitation
application vs.
conventional therapy
seems to improve trunk
function and sitting
balance in chronic
post-stroke.

Legend: APB—Abductor pollicis brevis; ARAT—Action Research Arm Test; BBS—Berg Balance Scale; BP—backpropagation; CCT—Controlled clinical trial; CR—Case report;
CS—Case series; EMG—electromyography; FAC—Functional ambulation category; FCR-FD—flexor carpi radialis-flexor digitorum; FMA—Fugl-Meyer Assessment; HOA—Hand
opening accuracy; HOR—Hand opening range; HRA—hand roll accuracy; HRR—Hand roll range; HoVRS—Home-based Virtual Rehabilitation System; IOT—Internet of Things:
LED—light-emitting diode; LMC—Leap Motion Controller; MAS—Modified Ashworth Scale; MI-UE—Motricity Index for Upper Extremity; MSE—Mean square error; PSNR—Peak
signal-to-noise ratio; QuickDASH—Disabilities of the Arm, Shoulder, and Hand; RFID—Radio frequency identification; RMSE—ROM—Range of motion; RPT—Randomized parallel
trial; RSA—Relative surface area; SEM—Standard Error of the Mean; S-FIST—Spanish version of Function in Sitting Test; S-PASS—Spanish version of Postural Assessment Scale for
Stroke Patients; STIS2.0—Spanish-Trunk Impairment Scale; TUG—Timed up and go; VRRS—Virtual reality rehabilitation system; WH-ENMS—Wrist-hand exoneuromusculoskeleton;
WMFT—Wolf Motor Function Test; WPA—Wrist pitch accuracy; WPP—Wrist pitch range.
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Table 2. Summary of identified studies involving patients with neurodegenerative disorders.

Authors/
Published Year Study Design Study Sample Device Name Site Sensor Type Sensing Modality

Measured
Clinical
Parameters

Dataset
(Repository)

Machine
Learning
Prediction

Results

Cikajlo I et al.,
2018 [23] CS 26 patients

with PD
Microsoft Kinect
(Commercialized) NA

RGB camera,
depth sensor,
infrared sensor

RGB, depth,
infrared

Box and Blocks
Test, UPDRS and
daily activity
Jebsen’s test,
writing a letter,
moving light
objects, Nine-Hole
Peg Test, PDQ-39

Statistically significant
improvements in Box and Blocks
Test (mean: 47 vs. 52, p = 0.002,
Cohen’s d = 0.40), UPDRS III
(mean: 27 vs. 29, p = 0.001,
d = 0.22), and daily activity
Jebsen’s test; writing a letter
(mean: 24.0 vs. 20.6, p = 0.003,
d = 0.23); and moving light
objects (mean: 4.4 vs. 3.9,
p = 0.006, d = 0.46).
(Private)

NA

Telerehabilitation
exergaming system
which tracked
participants’ movements
and adapted the
difficulty level of games
in real-time is feasible but
may require technical
assistance. This resulted
in clinically meaningful
significant improvements.
Nine-Hole Peg Test did
not significantly improve.
Participants claimed
problems with mobility
but less with ADLs and
emotional well-being.
(PDQ-39)

Gaugler JE et al.,
2019 [26] CCT

132 patients with
AD or a related
dementia

RAM System
(GreatCall system)
(Commercialized)

NA Ambient sensor Information not
available

Qualitative
outcomes of SSCQ,
self-efficacy,
burden, role
captivity, role
overload, and
CES-D

At baseline and 6 months post
RAM: SSCQ controls (24.26 vs.
23.73) treatment (24.17 vs. 23.33);
Self-Efficacy controls (27.62 vs.
27.59) treatment (27.94 vs. 28.39);
Burden: controls (37.01 vs. 40.93)
treatment (37.59 vs. 40.40); Role
Captivity: controls (6.35 vs. 6.56)
treatment (6.13 vs. 6.74); Role
Overload: controls (7.41 vs. 7.42)
treatment (7.95 vs. 7.51); CES-D:
controls (32.51 vs. 35.95)
treatment (33.01 vs. 38.90).
(Private)

NA

The system identifies
significant behavioral
changes by monitoring
patterns in ADLs,
generating an alert.
Compared to controls
without RAM, the RAM
system did not
significantly affect
caregiving outcomes over
a 6-month period.
Themes of caregiver
characteristics, care
recipient characteristics
and living arrangements
were identified by
qualitative analysis.
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Table 2. Cont.

Authors/
Published Year Study Design Study Sample Device Name Site Sensor Type Sensing Modality

Measured
Clinical
Parameters

Dataset
(Repository)

Machine
Learning
Prediction

Results

Lazarou I et al.,
2019 [25] RPT

18 patients (12
with MCI and 6
with AD)

Xtion Pro,
Plugwise, Wireless
Sensor Tag
System, Presence
sensors, Withings
Aura, Jawbone

Wrist Ambient sensor,
accelerometer

Infrared, depth,
temperature, hu-
midity/moisture,
light, pressure,
acceleration force

Standard neu-
ropsychological
assessment, GDS,
PSS, and NPI

Improvement in experimental
group RAVLT total: M(SD)
38.67(13.53) to
M(SD) = 45.83(15.94), p = 0.03).
Significant difference in
experimental group MMSE
M(SD) = 28.33(1.86) compared to
non-pharmacological
interventions group
M(SD) = 25.33(1.51) and regular
care M(SD) = 25.17(2.79).
Significant difference in
RAVLT-learning between
experimental group
(M(SD) = 9.00(4.05) and
non-pharmacological
interventions group
(M(SD) = 4.00(1.90). Significant
difference in PSS of
experimental group
(M(SD) = 3.83(8.2) and regular
care (M(SD) = 15.33(3.50).
(Private)

NA

The experimental group
received tailored
non-pharmacological
interventions according
to system observations
and showed
improvement in the
majority of
neuropsychological tests
(TEA, elevator time test,
TRAIL-B, RBMT-recall,
BDI) and statistically
significant improvement
in cognitive function,
sleep quality, and daily
activity compared to both
control groups (tailored
non-pharmacological
interventions based on
self-reported symptoms
vs. neither system
installation nor
interventions)

Vahia IV et al.,
2020 [24] CR 1 patient with AD The Emerald

device
(Commercialized)

NA Radio signal
sensor

Radio signals

Positional data,
motion episodes
(a segment of
uninterrupted
motion of ≥6 feet
in one direction)

Mean motion episodes per day
across all days = 82.7 (SD = 35.8).
Significant (paired t test,
p < 0.05) increase in motion
episodes on days with family
visits (93.8 (SD = 30.4) vs. non
visit days 80.9 (SD = 36.3).
Average 13.7% increase in
motion episodes on visit days
compared to the prior day and a
29.9% increase compared to the
subsequent day.
(Private)

NA

“The Emerald device”
helps to identify
behavioral symptoms of
dementia on a day-to-day
basis, while staff logs on
patient behavior did not
generate comparable
temporally detailed
information on behavior.
The device transmitted
96.2% of data with no
adverse events. Data may
help identify and
preempt triggers
for BPSD.
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Table 2. Cont.

Authors/
Published Year Study Design Study Sample Device Name Site Sensor Type Sensing Modality

Measured
Clinical
Parameters

Dataset
(Repository)

Machine
Learning
Prediction

Results

Abujrida H et al.,
2020 [20] CS

152 patients with
PD, 304 healthy
controls

NA NA

Smartphone
sensor
(accelerometer,
gyroscope,
pedometer)

Acceleration,
angular velocity

Statistical, time,
wavelet, and
frequency domain
features, and other
lifestyle features

Gait features which decrease
prediction error (MSE) in
classification:
(1) Entropy rate for walking
balance severity
(2) Lifestyle features and
multiple gyroscope features for
shaking/tremor, and
(3) Accelerometer and
gyroscope features for FoG
Entropy rate and minMaxDiff
(differences in step swing
captured with accelerometer
peaks) correlate linearly with
gait severities.
(Public)

Highest
accuracy and
AUC were
(1) Random
forest and
entropy rate,
93% and 0.97,
respectively, for
walking balance;
(2) Bagged
trees and
MinMaxDiff,
95% and 0.92
respectively, for
shaking/tremor;
(3) Bagged
trees and
entropy rate,
98% and 0.98
respectively, for
FoG; and
(4) Random
forest and
MinMaxDiff,
95% and 0.99
respectively, for
distinguishing
PD patients
from HC
False positive
rate of
classification is
significantly
higher if
lifestyle features
are not
included.

Feature importance
calculation based on
machine learning is a
better measure of feature
significance Through
machine learning
classification of
smartphone sensor data
of PD gait anomalies
collected in the home
environment, the stage
and severity of PD can
be inferred.
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Table 2. Cont.

Authors/
Published Year Study Design Study Sample Device Name Site Sensor Type Sensing Modality

Measured
Clinical
Parameters

Dataset
(Repository)

Machine
Learning
Prediction

Results

Dominey T et al.,
2020 [21] CS

166 patients
with PD

Parkinson’s
KinetiGraph
(PKG™)
(Commercialized)

Wrist Accelerometer Acceleration force

Bradykinesia,
dyskinesia,
percentage of time
with tremor, and
percentage of time
immobile

Most frequently reported
findings in both follow-up and
new patients were bradykinesia
(63% and 72%, respectively) and
sleep disturbance (58% and 41%,
respectively). Treatment
recommendations were made in
152/166 (92%) patients.
Treatment recommendations
were implemented for 83/114
(73%) patients, with advanced
therapy in 6/9 (67%), additional
motor agent in 34/71 (48%) and
additional non-motor agent in
16/28 (57%).
(Private)

NA

PKG™ indices with
detection threshold for
undertreatment were
determined. The most
common treatment
changes relating to
dopamine replacement
and advice on sleep
hygiene and bowel
management. The study
highlighted opportunities
and challenges associated
with incorporating digital
data into care
traditionally delivered
via in-person contact.

Lipsmeier F et al.,
2022 [22] CS 316 subjects

with PD NA Wrist Smartphone/
Smartwatch Acceleration force

Bradykinesia,
bradyphrenia and
speech, tremor,
gait, and balance

All pre-specified sensor features
exhibited good-to-excellent
test-retest reliability (median
intraclass correlation coefficient
= 0.9), and correlated with
corresponding UPDRS items
(rho: 0.12–0.71). Strongest
correlations between sensor
features and corresponding
clinical items are observed with
bradykinesia sensor features
(Hand Turning and Finger
Tapping), postural and rest
tremor sensor features. Weakest
correlations were found with the
Balance and Draw A Shape tests.
15/17 sensor features
discriminated participants with
UPDRS scores of 0 vs. 1. 13/17
sensor features discriminated
participants with H&Y stage I
vs. II.
(Private)

NA

The study demonstrated
the preliminary reliability
and validity of remote
at-home quantification of
motor sign severity with
Roche PD Mobile
application to assess
motor signs in early PD
and related
movement disorders.

Legend: AD—Alzheimer’s disease; ADL—activity of daily living; AUC—Area under the curve; BDI—Beck Depression Inventory; BPSD—Behavioral and psychiatric symptoms of
dementia; CCT—Controlled clinical trial; CES-D—Center for Epidemiological Studies—Depression; CR—Case report; CS—Case series; FoG—Freezing of gait; GDS—Global Deterioration
Scale; H&Y—Hoehn and Yahr; ICC—Intraclass correlation coefficient; MSE—mean squared error; NPI—Neuropsychiatric Inventory; PD—Parkinson’s disease; PDQ-39—Parkinson’s
Disease Questionnaire—39; PSS—Perceived Stress Scale; RAM—Remote activity monitoring; RAVLT—Rey Auditory Verbal Learning Test; RBMT—Rivermead Behavioral Memory Test;
RPT—Randomized parallel trial; SSCQ—Short Sense of Competence Questionnaire; TEA—Test of Everyday Attention; UPDRS—Unified Parkinson Disease Rating Scale.
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3.4. Summary of Study Findings Regarding the Sensing Mechanism in Neurological Diseases

Figure 2 illustrates the statistical summary of all sixteen papers included in this review.
As for publication years, one study was published in 2018 [23], three in 2019 [19,25,26], five
in 2020 [11,14,20,21,24], four in 2021 [12–15], and three up till September 2022 [16,18,22]. The
increased number of publications made since 2020 during the recent COVID-19 pandemic
may reflect the growing interest in remote rehabilitation technology in neurological diseases.
The most common study design was case series (50%), followed by a controlled clinical
trial (25%), randomized parallel trial (13%), and case report (13%).
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In our review, teleceptive sensors such as RGB cameras, depth sensors, infrared sensors,
ambient sensors, and radio signal sensors (56%) [11,13,15,17,19,23,24,26] were utilized
more frequently than wearable proximate sensors including accelerometer, gyroscope,
pedometer, and surface EMG (44%) [12,14,16,18,20–22]. One study used both types of
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sensors—an ambient sensor and an accelerometer [25]. The sensing modality was infrared
(38%) [11,13,15,17,23,25], acceleration force (38%) [16,18,20–22,25], RGB color (25%) [13,15,
17,23], EMG (13%) [12,14], light and temperature (13%) [19,25], and radio signal (6%) [24],
considering some studies used more than one sensing modality. The most common site
of proximate sensor placement was the arm (38%) [12,14,16,21,22,25], followed by the
trunk and leg (6%) [18]. The strategy adopted to elaborate the sensing mechanism was
multimodal sensor (38%), application of multiple sensors (6%), sensor fusion (6%), and
machine learning (6%) while the rest (43%) had no additional intervention.

As for the goals for adopting a remote sensing mechanism, there was a discrepancy
between studies performed on stroke and NDD. Most of the stroke studies utilized a
biofeedback control system (78%) [11–15,17,18] which aims to improve users’ limb function
and balance. Of these, six studies (86%) [11–14,17,18] demonstrated the efficacy of a
telerehabilitation strategy combined with the use of sensing mechanisms. While Marin-
Pardo O et al. were unable to demonstrate normalization of co-contraction with EMG-
based Tele-REINVENT, patients reported subjective improvements in motor function and
quality of life [14]. In contrast, many studies in NDD used sensors for remote monitoring
(57%) in order to provide diagnosis [20,22,24] and monitor pharmacological effects [21]. The
studies using a biofeedback control system in NDD (43%) focused on improving cognitive
function [25,26] and physical activity [23]. Of these, two studies (67%) showed statistically
significant improvements in measured primary endpoints.

Of the sixteen studies, five (31%) reported technical issues [11,12,21,23,24]. Technical
issues range from needing technical assistance with device [11,21,23], device failure [11],
and Wi-Fi connectivity issues [24]. Six studies (38%) [11–13,17,19,24] reported no ad-
verse events while the other ten studies (63%) did not report the rate of adverse events.
Eleven out of the sixteen studies (69%) [11–13,16,17,21–26] kept datasets in a private repos-
itory while the remaining five (31%) [14,15,18–20] allowed public access. Eight out of
the sixteen studies (50%) [15,17–19,21,23,24,26] adopted commercialized devices and the
rest (50%) [11–14,16,20,22,25] utilized devices not yet commercially available.

4. Discussion
4.1. Clinical Considerations for an Ideal Sensing Mechanism in Remote Rehabilitation

The common purpose of applying sensors in neurological disease remains to facilitate
remote rehabilitation regardless of diagnosis. The overarching principle of rehabilitation
for neurological diseases would be to improve locomotive function and help conduct
ADLs [27]. However, the specific goals for rehabilitative interventions should be tailored
according to individual disease characteristics. In addition, all stakeholders participating in
the development and application of sensors for remote rehabilitation need to consider the
heterogenicity and complexity of neurological disorders. Though this paper divided neuro-
logical diseases into stroke and other neurodegenerative disorders to better understand the
current practice, there would be inevitable overlaps in clinical features between disease
groups [28,29]. In order to achieve the best outcomes of remote rehabilitation in these cases,
a meticulous discussion to prioritize the goals should be held prior to adjusting the sensing
mechanism based on the prevailing challenges. As such, rendering a suitable system for
remote rehabilitation of neurological diseases would require a multifaceted approach.

4.1.1. Commonly Used Clinical Parameters for Functional Assessment in
Neurological Disease

A significant challenge remains when applying sensing mechanisms in the remote
monitoring and rehabilitation of neurological diseases as classic sensor-based physiologic
measures do not directly provide an index of a desired outcome measure [30]. However,
the application of remote sensing mechanisms can provide objective measurements to
derive close estimates for clinical assessments. Using sensors for continuous monitoring
of patients’ motor function during their daily activities also furnishes complementary
information to routine assessment tools [31].
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That said, it would be important to understand what tools are used to evaluate the
function in neurological diseases which sensors emulate by producing a sequence of data. In
stroke, the commonly utilized measures include Fugl-Meyer Assessment (FMA) [32] for the
locomotor function of upper and lower limbs, Functional Independence Measure (FIM) [33]
or Barthel Index [34] for the ability to perform ADLs, Functional Ambulation Category [35]
or Six-Minute Walk Test for the ability to walk, and Modified Tardieu Scale [36] or the
Modified Ashworth Scale [37] for spasticity. In NDD, common clinical measures of PD
include Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (UPDRS) [38],
gait speed, and Berg Balance Scale [39]. UPDRS values of patients are predicted with
machine learning methods using wearable sensors aiming to provide prognosis solutions
on rehabilitation areas [8,40] Dementia may cause changes in gait patterns such as decreased
step and stride length, increased single limb stance time, double limb support time, and
increased gait variability [41]. For dementia, assessment scales with established reliability
include the Berg Balance Scale [42], Groningen meander walking test [43], Modified test for
sensory interaction in balance [44], Step test [44], and Time up and go test [42].

4.1.2. Elaboration of Sensing Mechanisms to Process Data Tailored to Clinical Needs
Multimodal Sensors

Multimodal sensors have been developed to detect various stimuli such as touch
and proximity amalgamating discrete sensors [45]. Our review shows that this strategy
is most commonly utilized by combining, for example, RGB cameras, depth sensors, and
infrared sensors [23] or merging accelerometers, gyroscopes, and pedometers [20]. In
addition, it was reported that the combination of IMUs with surface electromyography
(sEMG) and mechanomyography was used to assess elbow spasticity [46]. Wrist-worn
multimodal sensors comprising accelerometers, magnetometers, and gyroscopes improved
the accuracy of data compared with the individual use of unimodal sensors [9]. Recently, to
reduce the bulky size, a miniature multi-axial tactile sensor was fabricated by micro-electro-
mechanical-system technology, which detects shear force using NiCr strain gauge film
embedded in elastomer [47]. Developing multimodal sensors which can be incorporated
easily into rehabilitation devices using nanotechnology would enhance the reliability of
data and broaden the clinical applicability.

Applying Multiple Unimodal Sensors

Applying multiple unimodal sensors on different anatomical sites can generate stereo-
taxic data on top of the intrinsic biometric information. Salgueiro C et al. applied multiple
accelerometers to the trunk and entire lower limb to measure gait parameters, in combi-
nation with a telerehabilitation application, and successfully demonstrated improvement
of trunk function and sitting balance [18]. Oubre B et al. reported that two inertial sen-
sors on the wrist and sternum measuring 3-dimensional random movements combined
with unique movement decomposition techniques correlated moderately with upper limb
FMA [48].

Sensor Fusion

Sensing modalities can be broadly classified into proximate versus teleception. Proxi-
mate sensing involves sensors that are wearable or in direct contact with the user. Examples
include EMG sensors, load cells, linear encoders, smart fabric sensors, or IMU. In contrast,
teleception or remote sensing is defined as sensing that occurs remotely, or with no physical
contact being made with the object being sensed [49]. Teleceptive sensing may include
sensors indirectly measuring the environment or behavior of things external to the user,
such as RGB camera, IR sensor, laser/LED-based sensor, ultrasonic sensor, or Radar [50].

In our review, teleception is utilized more frequently (56%) than proximate sensing
method (50%). The sum of teleception and proximate sensing is more than 100% be-
cause Lazarou I et al. adopted a sensor-fusion strategy by applying information from
both ambient sensing (teleception) and proximate sensing (an accelerometer) to tailor non-
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pharmacological interventions in cognitive function, sleep quality, and daily activity [25].
From another clinical standpoint, both proximate sensing and teleceptive sensing mecha-
nisms can provide kinetic and kinematic data for motion analysis. It can be highlighted
that the former would be more effective in intent recognition by detecting subtle limb
movement or neuromuscular activity, while the latter would be more useful to evaluate gait
speed, balance, and gait pattern. Nonetheless, the fusion of proximate and teleceptive sens-
ing mechanisms may provide a promising solution to tackle the challenges regarding the
accuracy and clinical relevance of data acquired from sensors in the remote rehabilitation
of neurological diseases.

Machine Learning Algorithms

To enable generalization in sequential data structures, enhance the accuracy of recog-
nition, and achieve real-time forward prediction, the adoption of artificial intelligence
technology, especially supervised machine learning algorithms, is instrumental in develop-
ing sensing mechanisms. As shown in Tables 1 and 2, the machine learning algorithm has
been underutilized as a sensing mechanism for remote rehabilitation settings. Song Y et al.
applied backpropagation neural network for the assessment of arm function in stroke sur-
vivors, which showed prediction results of the mobile monitoring system for Brunnstrom
stages I and II were completely consistent with the clinical staging results while in stages
III-VI, the prediction accuracy was 90.63% [16]. The results demonstrate the pros and cons
of backpropagation such as a simplified network structure useful to work on error-prone
input data and sensitivity to noisy data. Abujrida H et al. applied Random Forest algorithm
and captured features of PD gait anomalies through machine learning classification of
smartphone sensor data collected in the home environment [20]. The team adopted two
strategies, machine learning as well as multimodal sensors comprising an accelerometer,
gyroscope, and pedometer, and showed that the stage and severity of PD can be inferred
by machine learning classification of data acquired by multimodal smartphone sensors.
Random Forest (RF) classifier [51,52] can be utilized in medical data analysis due to its ease
of interpretation as well as its speed of learning for a big dataset. There are other machine
learning classifier algorithms frequently used for sensing mechanisms in neurological dis-
eases. Artificial Neural Networks (ANNs) which were inspired by the structure of neurons
in the brain are mainly used for post-stroke rehabilitation assessments. Convolutional
Neural Networks (CNN) [53], a division of ANNs, are used in the computer vision field
with outstanding accuracy. Aşuroğlu T et al. introduced a supervised model, Locally
Weighted Random Forest (LWRF) fed by ground reaction force signal and focused on
predicting PD symptom severity to exploit relationships between gait signals [8]. Recently
the same group demonstrated that a hybrid deep learning model, the combination of CNN
and LWRF, outperformed most of the previous studies in disease detection and severity
assessment of PD [40]. k-Nearest Neighbour (kNN) classifier [54] is a simple algorithm and
is frequently used in real-time activity recognition. There have been trials to apply kNN to
detect stroke [55] and heart disease [56]. However, the efficiency of the kNN algorithm is
greatly reduced for large sample sizes and features. Cluster denoising and density cropping
are suggested to improve efficiency [57]. Support Vector Machines (SVM) [58] are used
for activity recognition and clinical assessments. Cai S et al. presented an upper-limb
motion pattern recognition method using sEMG signals with SVM to conduct post-stroke
upper-limb rehabilitation training [59]. Hamaguchi T et al. presented a non-linear SVM to
analyze and validate finger kinematics using the leap motion controller and the outcome
was compared with those assessed by therapists. The SVM-based classifier obtained high
separation accuracy [60].

4.1.3. Application of Feedback and Feedforward Control System to the Sensing Mechanism

In order to make remote rehabilitation a valid therapeutic alternative comparable to
in-person gym rehabilitation, biometric data collected by sensors should be automatically
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linked to actuating architecture. Feedback and feedforward systems, a key element of
industrial automation, could be applied for this purpose. A feedback system measures a
specific variable and reacts when there is a shift, while a feedforward system may measure
several variables simultaneously. Functional magnetic resonance imaging (fMRI) illustrates
that different brain regions contribute to feedback and feedforward motor control processes
and responds to global shifts in motor performance. Movements made to larger targets
relied more on feedforward control whereas movements made to smaller targets relied
more on feedback control [61].

For stroke rehabilitation, six out of the nine studies utilized sensors in the delivery
of telerehabilitation. Of the six studies, three (50%) [11,14,17] incorporated both a feedfor-
ward and feedback control system into the sensing mechanism. The Home-based Virtual
Rehabilitation System can feedforward motion signals into a cloud-based data server, then
can feedback the data to calibrate the difficulty of rehabilitation games [11]. A bidirectional
telerehabilitation exergaming system uses Microsoft Kinect to collect feedforward signals
which are then transmitted to a database center to allow monitoring and feedback by a
therapist remotely [17]. Similarly, Tele-REINVENT can feedforward EMG signals into a
processing algorithm to enable feedback after offline analysis on top of immediate feedback
provided by laptop recording, an occupational therapist, and real-time visualization of the
EMG signals [14].

When composing a bespoke sensing mechanism with multimodal sensors or the sensor
fusion approach, developers may adopt a feedforward system to process multiple inputs
from the user and the environment. Given that feedforward systems cannot be accurate
without an approximate process model, feedback controls should always be coupled with
feedforward to provide a proper backup.

4.2. Factors Affecting the Adoption of Sensing Mechanism

A bespoke sensing mechanism for remote rehabilitation enhances the user experience
of both the end user and the prescriber by optimizing user-technology-user interface.
Based on the technology acceptance model by Davis in 1989, the “perceived ease of use”
and “perceived usefulness” influence attitudes toward the usage of new technology [62].
For example, in an observational study, patients preferred wrist-worn sensors and those
that provided the most effective feedback [63]. Possible other significant factors would
include user trust, affordability, and practical features such as comfort and portability of
the sensing mechanism. For instance, material selection for the development of smart fabric
sensors would need to take into account breathability and stretchability. The virtual reality
rehabilitation system (VRRS) demonstrated significantly better system usability compared
to the Leap Motion Controller, which may be explained by the superior comfort of the
VRRS [13]. Ensuring the user’s understanding of the sensing and control mechanism can
build up user confidence and prevent fear of injuries or poor controllability [64]. The Howz
system received positive reviews from study participants as users felt that sensors were
nonintrusive, and their privacy was protected [19]. It may also improve patient satisfaction
if clear instructional videos and robust technical support via video calls or emails can be
provided [14].

For the prescriber, important performance prerequisites for sensing mechanisms are
reliability and accuracy. Sensors used in remote rehabilitation need to be calibrated for
noise created by movements during rehabilitation. Effects on measurements due to sensor
disconnections and placement of leads also warrant consideration. Moreover, data also
requires validation. With big data, which can be heterogeneous in nature, it will be
important to parallel the development of data management capabilities and analyzing
algorithms so that valuable information can be processed, interpreted, and translated into
improvements in clinical practice. Importantly, protective measures will need to be in place
to safeguard the confidentiality of data.
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4.3. Limitations and Directions of Future Development

There are some limitations in this study. As literature searching was performed only
on PubMED using Medical Subject Headings for pragmatic purposes, some relevant papers
might not have been included. This review targeted research testing sensors specifically
in remote monitoring or rehabilitation setting and removed many studies which were
carried out offline or made online void of integration into remote rehabilitation systems.
The value of this work is that the authors intended to share clinicians’ perspectives on
the development of ideal sensing mechanisms for remote rehabilitation in neurological
diseases rather than conduct a full-scale systemic review embracing issues about biomedical
engineering and data science.

Remote rehabilitation for neurological diseases is burgeoning at the moment and may
become mainstream in the near future due to its numerous merits. The key success factor
of this innovative mode of service delivery would be to develop versatile smart sensors
which can generate relevant clinical data and recognize user intent on a real-time basis.
Extensive testing of the algorithms and functionality of sensors with many users in various
ambiances would be required before a certain sensing mechanism is confirmed suitable for
daily use. Machine learning algorithms should be included to minimize the trial-and-errors
and expedite the development process.

Remote sensing mechanisms would move toward the integration of multiple sensors
to achieve a target task. The fusion of different categories of sensors may maximize
the synergistic output. For example, proximate sensors, such as inertial sensors, are
incorporated with teleceptive sensors, such as IR sensors, to produce more accurate data
about the target behavior. Multimodal sensors such as the combination of inertial data from
IMUs and intrinsic muscle activity from sEMG enable dynamic motion analysis. Using
multiple unimodal sensors can lower the risk of a system malfunction caused by a faulty
sensor and can even obtain 3-dimensional data when purposefully placed at different
body parts.

Though the inception of remote rehabilitation would be from the intent to reduce the
burden associated with in-person consultation or gym therapy, a meticulously arranged
discussion with healthcare professionals regarding the progress and updated goal setting
would be crucial. To make this healthcare model feasible, an intuitive and user-friendly
video consultation software network system should be installed in parallel. At the same
time, an eHealth literacy program should be provided to the user according to sociodemo-
graphic factors affecting acceptance and readiness of the technology [65].

5. Conclusions

A variety of sensors are integrated into the architecture of remote rehabilitation for
neurological diseases. The contemporary trend in the application of sensing mechanisms
to stroke and NDD was described and the elements of functional assessment that sensors
should emulate were discussed. The sensing mechanism can be further elaborated to
generate purposefully processed information that can meet clinical standards by adopting
multimodal sensors, sensor fusion, application of multiple sensors, and machine learning
algorithms. The merits of feedback or feedforward control systems, the factors affecting the
adoption of remote rehabilitation technology as end-user or prescribers, and the directions
of future research were critically reviewed. Undeniably, there is a solid trend toward
hybrid algorithms, multimodal sensing, sensor fusion, user comfort, and portability in
sensor development for remote rehabilitation of neurological diseases. Precision remote
rehabilitation in neurological disease can revolutionize the rehabilitation practice at the
pace of the development of bespoke smart sensing mechanisms, which would require
repeated testing and verification in a real-life environment.
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