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Abstract: One possible device authentication method is based on device fingerprints, such as software-
or hardware-based unique characteristics. In this paper, we propose a fingerprinting technique
based on passive externally measured information, i.e., current consumption from the electrical
network. The key insight is that small hardware discrepancies naturally exist even between same-
electrical-circuit devices, making it feasible to identify slight variations in the consumed current
under steady-state conditions. An experimental database of current consumption signals of two
similar groups containing 20 same-model computer displays was collected. The resulting signals
were classified using various state-of-the-art time-series classification (TSC) methods. We successfully
identified 40 similar (same-model) electrical devices with about 94% precision, while most errors
were concentrated in confusion between a small number of devices. A simplified empirical wavelet
transform (EWT) paired with a linear discriminant analysis (LDA) classifier was shown to be the
recommended classification method.

Keywords: device fingerprinting; consumption analysis; electrical network; electrical device; time-
series classification (TSC); current measurement; switched-mode power supply (SMPS)

1. Introduction

There currently exist a number of powerful techniques for physical device fingerprint-
ing, i.e., techniques for remote indirect identification or classification of a device of interest
with or without the active cooperation of the fingerprinted device. The particular challenge
faced by these techniques is related to the fingerprinting of similar devices, e.g., different
devices that utilize similar hardware (same electrical scheme) and/or software, or use the
same standardized communication protocols.

The fingerprinting task has been a subject of interest for many years. For example,
remote identification of operating systems by the analysis of clock skews of the same
communication protocol was provided in [1]. Ji et al. [2] showed effective fingerprinting of
laptops with the same software and hardware by utilizing slight differences in the CPU’s
emission of magnetic induction. It was shown that differences in the power consumption
profiles of a mobile phone might be used to identify the currently used application [3]. The
performance may be further improved when power consumption profiling is performed
together with network traffic data analysis [4].

Another area of considerable interest is the analysis of the current consumption of a
hardware device. In this case, by measuring those currents, certain side-channel [5] and
covert-channel [6,7] attacks are possible.

In this paper, we have addressed the fingerprinting of electrical devices with the same
software and hardware by exploiting the microscopic deviations in current consumed
from the electrical network. Such a fingerprinting technique has a few interesting possible
applications. One of them is identifying counterfeit devices, which are expected to have
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significantly different fingerprints from authentic devices. While different-model devices
monitoring is already commercially implemented (e.g., in [8]), same-model monitoring
is still a challenging problem. The effective same-device fingerprinting solution may
be expanded to electrical-network-based intrusion detection systems, which can check
the fingerprints of all electrical-network-connected devices. Such a system may identify
the special case of a supply-chain attack when a legitimate device is replaced with a
malicious non-legitimate one. Such a system may also identify new devices with unknown
fingerprints. This is particularly important in high-security facilities, where such a device
may be part of a cyber-attack or a spyware device.

The main challenges and the impact of the paper related to the fingerprinting of
electrical devices by examining the consumed current are as follows.

• All devices have exactly the same hardware and software and, therefore, similar
consumption profiles.

• We have chosen relatively simple devices (computer monitors) with a single mode of
operation. This is in contrast to computers [2] or cyber-physical systems (CPS) [9,10],
where differences between complex modes of operation may be identified.

• The proposed measurement is completely passive, with all the devices having a similar
unsupervised mode of operation. This is in contrast to the situation with dedicated
supervision, such as a computer system that runs on particular calculations [2,6,7].

• Devices of interest do not include multiple feature-rich protocols, such as in the field
of fingerprinting communications devices [11–13].

• A very low-frequency sampling rate of 50 kHz was applied. This sampling frequency
is below the commonly applied bandwidth in RF-based fingerprinting [14] and is four
times smaller than the one reported in the magnetic induction fingerprinting study
reported in [2]. It is also lower than the switching frequency of common switched-
mode power supplies (SMPSs) (see also Section 2 below).

The goal of the paper is to show that, in general, it is possible to discriminate between
multiple devices of the same model by their current consumption. The preliminary results
were published in [15].

The sampled current measurements are used as inputs to a time-series classifier. The
following experimental results show the feasibility of device fingerprinting based on the
consumed current analysis. The novelty of this work lies in its evaluation of modern
time-series classification-based fingerprinting techniques. To the best of our knowledge,
the given task has never been attempted under the constraints described above. Among the
considered methods, the algorithm based on the simplified empirical wavelet transform
(EWT) paired with a linear discriminant analysis (LDA) classifier was shown to be the
recommended solution for this task.

The rest of the paper is organized as follows. Section 2 describes SMPS essentials.
Section 4 provides experimental details. Section 3 reviews recent progress in time-series clas-
sification (TSC). Section 5 evaluates TSC of the experimental results followed by discussion
in Section 6. Section 7 concludes and provides recommendations for future work.

2. Switch-Mode Power Supply Background

An SMPS is a basic component in modern computer-related devices and device
fingerprinting heavily depends on SMPS properties. In this section, we describe the
principle of SMPSs and then explain how SMPSs may be differentiated following their
design principles.

2.1. Basic Principles

Consumer electronics and computer-related devices require stable and efficient DC
voltage and current supplies. The modern approach is to convert from an AC electrical
network to DC by a supply that is based on switching-regulator principles. A high-
frequency switching regulator uses a series switching element that charges and discharges
capacitors and/or inductors at sufficiently high frequency.
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An illustration of the generic SMPS design is presented in Figure 1. First, AC input is
converted into DC by a rectification process using a rectifier and a filter. Then, the switch
controls the charge and discharge of an LC circuit through the load. Moreover, the combina-
tion of the inductor and the capacitor form an LC filter that smooths out any ripple created
by the switching action of the transistor. The typical switching frequency is between a few
tens of kilohertz up to about one hundred kilohertz.

Controlled
Switch

Load

Rectifier

Filter

Figure 1. A simplified illustration of the switching regulator principle for AC–DC conversion.

2.2. Electromagnetic Interference Filtering

The current consumed from an electrical network is highly non-linear, as illustrated in
Figure 2. Combining switching and non-linear consumption yields a wideband harmonic
signal that may conduct to the electrical network [16]. The combination of a switching pro-
cess and non-linear consumption produces a wideband harmonics signal that may conduct
towards the electrical network. All power supplies contain electromagnetic interference
(EMI) filtering to reduce conducted emissions toward the electrical network. This filtering
is regulated by safety standards, such as FCC part 15 in the USA and CISPR 22 in Europe.
According to common standards, the EMI filter dramatically reduces higher-frequency
current components at frequencies higher than 150 kHz.
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Figure 2. Illustration of the typical current consumption of SMPSs.

3. Time-Series Classification Considerations

Device fingerprinting involves the classification of signal segments, also termed TSC.
In the following, we review current state-of-the-art TSC methods. The TSC methods can
be divided into four groups, as discussed in the following sub-sections. In general, these
methods reflect the performance-complexity trade-off that refers to the balance between the
classification efficiency of a method, and the amount of resources (such as time, memory,
or computational power) required to achieve that efficiency.
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3.1. Data-Based Approach

The data-based methods are applied directly to raw or easily transformed time-series
segments. In this approach, every two series, or their segments, are compared either as
vectors (as with traditional multidimensional data points) or by some distance measure
that uses all data points [17]. The segments can be selected pseudo-randomly, by some
predefined rules or by their discriminative power (like shapelets). Most of these methods
are applied in the time domain; some of them also incorporate the frequency or the
pseudo-frequency domain [18,19]. Typically, distance measures are elastic, such as dynamic
time-warping (DTW) distances.

The main disadvantages of using a data-based approach are high computational
costs in the inference mode and challenging interpretability. For these reasons, data-based
methods are less useful for classification tasks [20].

3.2. Feature-Based Approach

The feature-based approaches assume two stages:

1. A sequence-dependent feature-extraction (FE) stage that transforms time-series into
numerical features that can be processed, while preserving the information in the
original data set. It yields better results than applying machine learning directly to
the raw data.

2. Feature-based classification of the resulting numerical features. This stage can also in-
clude the process of reducing the number of features required for effective classification.

Feature-based classification typically has a number of advantages, such as a reduced
amount of storage and rapid inference time. Moreover, in the case of small feature-spaces,
such methods can have a high degree of result interpretability [19,21]. Feature-based
approaches may also be less sensitive to complex patterns in the series than data-based
approaches [17].

In recent years, a number of different techniques were proposed for time-series
FE. Some recent popular FE algorithms implementations are in libraries Catch22 [22],
tsfresh [23], TSFEL [24], and hctsa [25], amongst others. Earlier techniques were based
on Fourier and wavelet transforms [18]. Note, most of these FE libraries do not include
authors’ recommended classifiers; resulting features are typically combined with random
forest or logistic regression classifiers [18].

There are also some recent techniques that combine FE with classification. For example,
time-series forest [19], random interval spectrum ensemble [17], diverse representation
canonical interval forest classifier (DrCIF) [26] and others.

3.3. Hybrid Approaches

Some TSC techniques use only time-domain data representation, while others use
frequency-based data representation. Consequently, the first techniques are more sensitive
to the appearance of patterns in the data, while the other techniques are more sensitive
to the period during which these patterns appear. In general, each approach has its own
advantages and disadvantages.

Thus, some authors proposed to combine these techniques into ensembles of classifiers,
such as HIVE-COTE (and HIVE-COTE V2) [17,26]. These two ensemble-based techniques
combine different classifiers that are sensitive to the shape, the period of the shape repetition,
time domain features and spectrum domain features. The results for all classifiers are
combined with the hierarchical voting and class-agnostic weights that are proportional to
the probability of correct classification for each class. Perhaps the most serious disadvantage
of this technique is the high training and inference time, which can take a few days or
even weeks for large datasets. HIVE-COTE has bi-quadratic time complexity, and another
popular technique—time-series combination of heterogeneous and integrated embedding
forest (TS-CHIEF) [27]—has quadratic time complexity [21,28].
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3.4. Deep-Learning-Based Approaches

Many deep-learning-based (DL-based) architectures have been proposed recently for
TSC, such as InceptionTime [28], ResNet-1D, siamese networks [29] and others [30]. Most
of the modern TSC architectures belong to the family of 1D convolution neural networks
(CNNs) or their modifications [31]. With this approach, there is no need for manual FE
and series of any complexity and dimension can be processed. However, the inference and
training time is long and the method lacks any interpretability of the results.

One of the most notable DL-inspired methods is RandOm Convolutional KErnel
Transform (ROCKET). This method is based on a large number of convolutional ker-
nels with random parameters. It shows almost state-of-the-art performance for the UCR
benchmark [20], with training times significantly lower than for HIVE-COTE and Incep-
tionTime [32]. The next modification of this method, MiniROCKET, proposed an improved
strategy for kernel parameter selection with an improvement in speed and without loss of
accuracy [33].

3.5. Classifier Selection Discussion

Finding the optimal classifier selection is still an open problem. Some recent progress
has been made and some implementations can be found, for instance, using the UEA &
UCR Time-Series Classification Repository [34], and sktime [35] and tsai [36] frameworks.
However, even if a particular TSC method shows good results in terms of common bench-
marks, see [20], this does not guarantee its performance for any specific problem. All
mentioned methods suffer either from high complexity (i.e., high computation time) or
from working only for some specific domain of time-series. Therefore, it is commonly
required to do some additional adjustments, such as feature selection, method selection,
or some domain-related modifications.

4. Experimental Design

The devices under test (DUT) that were chosen are 22” computer displays of two
similar models: Dell P2217H and Dell E2214H. The collected database includes samples
taken from a total of 40 displays, 20 per device model.

4.1. Electrical Setup

The electrical measurement setup (Figure 3) is based on a common electrical net-
work with a nominal network voltage of 220–240 Vrms and a standard network frequency
of about 50 Hz. Each electrical outlet has its own impedance due to branching cables,
impedance mismatches and other factors. To diminish the influence of outlet impedance,
all the measurements were performed with the same outlet. The consumed current lev-
els were sampled by a digital ammeter (NI-9227 in cRIO-9082 chassis) and data-logged.
The sampling was set to 24-bit resolution and a rate of 50 kS/sec. The sampling frequency
was set far beyond the electrical network frequency due to the harmonic nature of the
current signal [37]. The sampling and data logging was controlled by Labview software
(NI DAQExpress). Further analysis was performed by dedicated Python-based software.

DUT
0~ 

V

A
inet

220V/50Hz

Labview

(data-logger)

SMPS

SMPS: Switch-mode power supply

DUT: Device under test

Figure 3. Schematic diagram of the experimental setup.
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4.2. Data Collection

Each sampled signal included a 250-s recording at a 50 kHz sampling frequency with
a total of 1.25× 107 samples. Two signals for each device were sampled independently and
sequentially with a 5-s delay between them to provide independent train and test parts.
Manual triggering was applied.

4.3. Database

To create the signal database, all the samples were divided into non-overlapping
segments with a length of 10,000 samples, which are 20 ms of the signal. Each segment is
labeled with a class in accordance with its device number (0 to 39). Thus, the database has
50,000 entries of 10,000 samples (1250 entries per class), both for the train and the test parts.

4.4. Experimental Assumptions

In the following, we outline the experimental assumptions of our experiment. First,
at least 15 min of “heat up” time was provided in order to provide steady-state conditions
for all the devices. All devices had similar settings, e.g., without anomaly differences
in brightness and contrast. During the experiment, the nearly same temperature was
continually maintained by an air-conditioner.

5. Evaluation
5.1. Preliminary Analysis

Preliminary analysis showed that the resulting signals are nearly stationary in time-
domain, and without trends and significant changes in frequency components. These
results suggest concentrating on time- or frequency-behavior similarity for each class
instance, discarding in-shape or pattern similarity classifiers. A sample plot of the segment
examples is presented in Figure 4.
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Figure 4. Typical segments of data for some sources (classes).

5.2. Feature-Extraction

In this section, describe the three feature-extraction techniques that were used to derive
signal features. In the following section, these features are fed into different classifiers.

5.2.1. TSFEL

TSFEL (Time-Series Feature-Extraction Library) [24] was used as a sample of a fast
and accurate FE framework. In the TSFEL framework, all features are extracted in an
unsupervised way. The extracted features correspond to the summary statistics in the time-
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and frequency-domains, including Fourier and wavelet transforms. A set of 390 common
features [38] was created from the data. For the wavelet decomposition, the Mexican hat
wavelet with 1–10 orders (widths) was applied.

5.2.2. MiniROCKET

The MiniROCKET algorithm [33] was taken on the base of tsai [36] implementa-
tion. The underlying transformation includes about 2000 random kernels with different
parameters and dilation values. The particular implementation details are provided in
Appendix A.1. Since the performance of the MiniROCKET algorithm depends on a set
of random parameters, the classification performance has high variability, which leads to
weak reproducibility. For this estimator, the best performance among 10 experiments is
presented (Section 5.4).

5.2.3. Empirical Wavelet Transform (EWT)

In the EWT method, empirical wavelet filters adopt the use of adaptive partitions of
the Fourier domain in order to create an accurate time-frequency representation [39]. EWT
is a popular technique for signal FE. The particular implementation details are provided in
Appendix A.2.

The additional selected feature-space includes summary statistics (showing the energy
characteristics of each time-series in the time domain), an auto-regression coefficient,
a barycenter frequency and a correlation-based point-wise frequency (showing frequency-
domain summary statistics). We also note that the obtained feature-space is expected to
be exhaustive, and some of the features can have a higher correlation, but we assume this
effect is corrected during the feature selection stage.

5.3. Feature Classification

After using the above-mentioned FE methods, the following standard classifiers
were applied:

• Logistic regression (LR) classifier;
• Random forest (RF) classifier with Gini-index-based splitting criteria, ensemble of

100 classifiers and unlimited tree depth;
• LDA classifier with a pre-selected tolerance threshold for singular values of data

decomposition (SVD). The threshold was selected using a grid search in the range
from 10−5 up to 1. This search was done because we had noticed the significant
influence of the tolerance threshold value on the obtained results;

• Naive Bayes (NB) classifier;
• k-nearest neighbors (kNN) classifier with k=1 (1-NN). This classifier was used as a

baseline due to its relatively high computational time and low classification accuracy.

All implementations of these classifiers were taken out-of-the-box from the
scikit-learn Python package.

5.4. Evaluation Results

This section presents the evaluation results of different feature extraction methods
combined with different classifiers. The resulting classification accuracy for test data for
all the evaluated methods is summarized in Table 1. The table presents four feature-
selection options with the corresponding number of features for each feature extraction
and feature-selection method:

1. Full feature-space of the feature extraction method.
2. Reduced feature-space with feature selection by correlation coefficient. Features with

a correlation coefficient of 0.95 or higher were removed (cor.select).
3. The previous feature subset further reduced by random-forest feature selection, i.e.,

selection by feature importance with threshold values 20% of importance (cor.+rf ).
4. Reduced feature-space only by random-forest feature selection (rf select).
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Table 1. Accuracy of classification.

Method Feature-Space LR RF LDA NB 1-NN

TSFEL

390 features 0.63 0.85 0.91 0.84 0.63
cor.select (248) 0.59 0.78 0.87 0.83 0.59
cor.+rf (30) 0.65 0.85 0.89 0.84 0.70
rf select (24) 0.63 0.93 0.91 0.91 0.83

Mini
ROCKET

1924 features 0.67 0.84 0.81 0.72 0.69
cor.select (435) 0.59 0.76 0.80 0.70 0.67
cor.+rf (18) 0.65 0.90 0.94 0.85 0.78
rf select (19) 0.63 0.92 0.88 0.92 0.88

EWT

2658 features 0.65 0.88 0.94 0.81 0.57
cor.select (781) 0.57 0.64 0.92 0.57 0.54
cor.+rf (19) 0.56 0.89 0.89 0.88 0.66
rf select (145) 0.88 0.92 0.92 0.91 0.75

Figure 5 presents the confusion matrices for the two most accurate algorithms (marked
with bold in Table 1). In all cases, misclassifications were between devices of the same
model without misclassifications between models.
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(a) EWT method.
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Figure 5. Confusion plots for the best results for EWT-based (a) and MiniROCKET-based
(b) approaches; medium amount ∈ [100, 600); large amount ∈ [600, 1250).

6. Discussion
6.1. MiniROCKET

MiniROCKET method was shown to have the best classification performance while de-
riving the smallest number of features. Since the method is based on random initialization
and highly depends on initialization parameters, only the best accuracy among 10 evalua-
tions is presented. Note, most of the evaluations have mediocre results. Moreover, different
MiniROCKET classification evaluations made mistakes on different segments. To conclude,
while having the highest ’lucky-shot’ accuracy, these results are hardly repeatable.

6.2. TSFEL and Empirical Wavelet Transform

Both the TSFEL- and EWT-based approaches produced similar, but easier to reproduce
results when compared to MiniROCKET. While TSFEL has a relatively small feature space,
the proposed EWT-based approach provides the most tractable results, since it depends on
frequency bands division and summary statistics for each band.

The results in Figure 5 show that the misclassifications for several particular devices
are the most significant; most of the devices were classified with 100% accuracy. However,
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the EWT-based classifier fully misclassified two sources. This problem can probably be
solved by some different feature-space expansion or by adding frequency bands.

6.3. General Aspects

The analyzed data was archived in a fully unsupervised mode of operation for the
same type of device under similar conditions. Consequently, the signals did not differ
much. Nevertheless, it was possible to tell which device was which. Furthermore, while
the applied algorithms are among the most accurate TSC methods and use a large fea-
ture space, their overall computational complexity is expected to be low enough for IoT
implementation (e.g., [34,40,41]).

The evaluation included two similar groups of identical devices. All the misclassifica-
tions in Figure 5 are among identical devices without misclassifications between devices
from different groups. This result can be explained by significant differences even between
similar models.

7. Conclusions

The main goal of the current study was to determine the possibility of distinguishing a
specific device from several same-model devices using only its consumed current. The study
may be thought of as a part of a suite of methods for passive device identification, i.e., device
fingerprinting under arbitrary conditions. In particular, the main issue related to the subject
of research is that all devices have exactly the same hardware, the same software and the
same unsupervised mode of operation. The overall analysis of the obtained suggests using
either an ensemble of MiniROCKET-based models or the EWT-based approach as proposed
in this paper. Among all the evaluated classifiers, LDA seems to be the best choice.

The proposed results could serve as a baseline for further research with additional
TSC methods, and additional models of evaluated devices. Moreover, it was not examined
whether additional parameters such as device aging, temperature fluctuations, different
impedance and others would affect identification performance.

The most interesting future implication is the simultaneous fingerprinting of two or
more devices on the same electrical line under variable experimental parameters.
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Appendix A. Configuration Details

Appendix A.1. MiniROCKET Configuration

For the FE, about 1932 kernels were generated with the following parameters, recom-
mended by authors of the original paper [33]:

• kernel size set 9;
• kernel weights are initialized with values −1 and 2 in proportion 2:1, so as to have a

sum of values equal to 0 (at all 84 kernels);
• kernel dilation rates from 1 to 903 with algorithmically increasing steps (at all 23 values,

but 21 rest unique with float32 precision);

https://github.com/MVRonkin/Passive-Fingerprinting-of-Same-Model-Electrical-Devices-by-Current-Consumption
https://github.com/MVRonkin/Passive-Fingerprinting-of-Same-Model-Electrical-Devices-by-Current-Consumption
https://doi.org/10.21227/zjn8-gw21
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• kernel padding calculated as b(k − 1) ∗ d)/2c, where k is the kernel size; d is the
dilation rate; bc is the floor (integer part) operation.

• the bias values taken during training are [0.25, 0.5, 0.75] quantiles from the kernel acting
(convolution) output for one randomly selected example. Either just one quantile or
more quantiles could be used.

The proportion of positive values (PPV) feature is calculated for the output of the
kernel acting.

Appendix A.2. EWT-Based FE

The particular realization of EWT-based FE consists of two steps. First, sequence
decomposition was performed as follows.

1. For all segments, the auto-covariance function was calculated and 19 peaks were
selected using a common find-peaks routine with an adjusted peak value threshold
and peak-peak distance.

2. Start and stop cutting frequencies for filtration bands were determined as middle
points between peak positions. For all these bands, we take bands that include one
peak, then two peaks, and so on.

3. Filtration is implemented by a rectangular window in the frequency domain. The
same filtering, but mirrored and shifted on one point to the left, is performed for a
range from fs/2 up to fs in order to avoid Hilbert filtration.

For each band, the extracted feature-space consists of the following:

• band summary statistics (mean value, standard deviation, kurtosis, skewness, me-
dian value);

• absolute values of band summary statistics (mean value, standard deviation, kurtosis,
skewness, median value);

• first-order autoregression coefficient for band;
• variance of residuals from 1-order autoregression for band;
• barycetner frequency, calculated as

f̂ =
∑N/2−1

k=0 S[k] fk

∑N/2−1
k=0 S[k]

,

where f̂ is the estimated frequency, S[k] is the k-th value of the DFT of segment s[n],
N/2 corresponds to the highest positive frequency of the transform and fk = fsk/N
is the k-th value of the frequency of a signal sampled with frequency fs;

• correlation-based point-wise frequency, calculated as

f̂ =
fs

2π
arccos

(
∑N−1

n=1 s(n) · s(n− 1)

∑N−1
n=0 |s(n)|2

)
.

The implementations of barycetner frequency and correlation-based point-wise fre-
quency are taken from the dsatools Python library [42,43].
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