
Citation: Wu, D.; Yu, Z.; Adili, A.;

Zhao, F. A Self-Collision Detection

Algorithm of a Dual-Manipulator

System Based on GJK and Deep

Learning. Sensors 2023, 23, 523.

https://doi.org/10.3390/s23010523

Academic Editors: Luige Vladareanu,

Hongnian Yu, Hongbo Wang and

Yongfei Feng

Received: 3 December 2022

Revised: 29 December 2022

Accepted: 31 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Self-Collision Detection Algorithm of a Dual-Manipulator
System Based on GJK and Deep Learning
Di Wu 1,2 , Zhi Yu 1,2,*, Alimasi Adili 1,2 and Fanchen Zhao 1

1 School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
2 Chengdu Research Institute, Dalian University of Technology, Chengdu 611900, China
* Correspondence: yuzhi1357@mail.dlut.edu.cn

Abstract: Self-collision detection is fundamental to the safe operation of multi-manipulator systems,
especially when cooperating in highly dynamic working environments. Existing methods still face
the problem that detection efficiency and accuracy cannot be achieved at the same time. In this
paper, we introduce artificial intelligence technology into the control system. Based on the Gilbert-
Johnson-Keerthi (GJK) algorithm, we generated a dataset and trained a deep neural network (DLNet)
to improve the detection efficiency. By combining DLNet and the GJK algorithm, we propose a two-
level self-collision detection algorithm (DLGJK algorithm) to solve real-time self-collision detection
problems in a dual-manipulator system with fast-continuous and high-precision properties. First,
the proposed algorithm uses DLNet to determine whether the current working state of the system
has a risk of self-collision; since most of the working states in a system workspace do not have a
self-collision risk, DLNet can effectively reduce the number of unnecessary detections and improve
the detection efficiency. Then, for the working states with a risk of self-collision, we modeled precise
colliders and applied the GJK algorithm for fine self-collision detection, which achieved detection
accuracy. The experimental results showed that compared to that with the global use of the GJK
algorithm for self-collision detection, the DLGJK algorithm can reduce the time expectation of a
single detection in a system workspace by 97.7%. In the path planning of the manipulators, it could
effectively reduce the number of unnecessary detections, improve the detection efficiency, and reduce
system overhead. The proposed algorithm also has good scalability for a multi-manipulator system
that can be split into dual-manipulator systems.

Keywords: self-collision detection; dual-manipulator system; artificial intelligence; deep neural
network; GJK algorithm

1. Introduction

Robots, especially manipulators, now play a significant part in medical [1,2], aerospace [3,4],
industrial production [5,6], and other industries as a result of the ongoing advancements in
science and technology, helping people solve problems by delivering distinct advantages.
In recent years, with a deepening of the application of manipulators in various fields,
the complexity of tasks has gradually increased, and many tasks require the cooperative
operation of dual or multiple manipulators, such as the extraction and transportation of
heavy objects [7]. In this context, research on the collaboration of multiple manipulators is
of great significance, and the collision detection of manipulators is an indispensable part [8].
The working environment of a multi-manipulator system is typically more complex than
that of a single manipulator, except for the collision detection between a manipulator
and obstacle, and the self-collision problem caused by the overlapping workspace of
manipulators should also be considered.

The purpose of collision detection is to find a collision that may occur during ma-
nipulation tasks and avoid collision in the subsequent path planning [9]. At present, the
mainstream collision-detection methods of manipulators can be categorized into two types:

Sensors 2023, 23, 523. https://doi.org/10.3390/s23010523 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23010523
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0972-6636
https://doi.org/10.3390/s23010523
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23010523?type=check_update&version=2

Sensors 2023, 23, 523 2 of 22

physical sensor-based and geometric simulation-based [10]. Sensor-based methods utilize
physical sensors, which are usually implanted directly inside or outside the robot manipu-
lators, and these methods are generally applicable to dynamic workspaces with external
obstacles or human-machine interactions. External cameras are involved sometimes, as
authors in [11] placed a dual-depth vision camera to detect the contact position when the
manipulator collides with external obstacles. In addition, a torque sensor is also applicable
for collision detection. In ref. [12], collision was detected by comparing the deviation
between the calculated torque of kinematics and the measured torque of actual joints. The
authors of [13] studied the feasibility of collision detection by using the change in the joint
motor current value before and after collision, without using an additional physical joint
sensor. In paper [14], external acceleration sensors were used to monitor the vibration of
the manipulator in real-time, detect the collision of the manipulator through the abnormal
vibration frequency, and determine the position and direction of the collision. Although
physical sensor-based methods have clear advantages in many scenarios, these methods are
costly and cannot be used in simulation studies. Collision detection in simulation scenes
uses more geometric simulation-based methods.

The geometric simulation-based methods employ various shapes of the bounding box
to envelope the manipulator and obstacle in the simulation environment and calculate
the spatial position relationship between bounding boxes with respective algorithms to
determine whether collision occurs between colliders [15,16]. The geometry-based method
is applicable to situations where coordinates of each manipulator joint and obstacles in
Cartesian space are known, such as manipulator path planning. For example, in [17], a
manipulator collision constraint for subsequent path planning was established by using
the geometric simulation method. Almost all geometric simulation-based methods can be
divided into two steps: the establishment of the colliders and the detection of the collision
relationship of colliders. The selection of the collider shape directly affects the accuracy
of collision detection and the difficulty of the algorithm. Since the geometric simulation
method requires real-time continuous modeling for fast-continuous collision detection, it
has high requirements for the computing power of control system. Most current collision
detection in simulation environments uses a regular-shaped bounding box to envelop the
manipulator as the colliders. The authors in [18] used a sphere bounding box envelope
manipulator for collision detection in path planning, while those of [19,20] used Oriented
Bounding Box (OBB) in their studies. Since collision-detection algorithms are simpler for
regular-shaped colliders, these regular-shaped bounding boxes can optimize the modeling
and computing speed by simplifying the collider structure and improve the detection
efficiency at the cost of a loss of the detection accuracy. This also leads to the problem that
all existing methods using regular-shaped colliders have insufficient detection accuracy in
manipulator systems with irregular surfaces.

Considering that there is a demand for high precision self-collision detection, in this
paper, we used irregular shapes when modeling colliders. Therefore, we used the fine
collision-detection algorithm to perform self-collision detection, and the Gilbert-Johnson-
Keerthi algorithm (GJK algorithm) [21] is one of those algorithms. The GJK algorithm is an
algorithm proposed and continuously improved by Gilbert, Johnson, and Keerthi to quickly
detect the distance between two convex polyhedrons [22]. It can output the Euclidean
distance of two convex polyhedrons after a finite number of iterations and determine
whether a collision occurs from the overlap perspective [23]. Since its introduction, the GJK
algorithm has been widely used in various collision detection scenes due to its universality
and high accuracy. The authors of [24] proposed a contact-detection and resolution frame-
work based on the GJK algorithm in the Discrete Element Method (DEM), which improves
computational compatibility. Meanwhile, those of [25] proposed a GJK-TD method to solve
the problem of precision instability that may exist in the application of the GJK algorithm
in the DEM. The authors of [26] proposed a method to calculate mesh porosity (volume
and area) based on the GJK algorithm for fluid flow modeling. Those of [27] applied the
GJK algorithm to the field of robotics to optimize the gripping force of the robotic arm on

Sensors 2023, 23, 523 3 of 22

the target object, via the accurate calculation of the distance between convex objects. The
authors of [28] used the GJK algorithm for collision detection in Unmanned Aerial Vehicle
(UAV) swarm trajectory planning and improved the distance operator by combining the
usage scenarios. After simulation and actual robot validation, the GJK algorithm of the
original authors was selected for self-collision detection in our research. However, the fine-
detection algorithms represented by the GJK algorithm all face a problem. With an increase
in the number of convex polyhedrons and vertices, those algorithms require more time to
complete the detection, which cannot meet the requirement of a real-time control system.

Along with artificial intelligence (AI) technologies, most recent delegates, such as deep
learning and deep reinforcement learning, are widely deployed in robotics. Benefiting
from the excellent feature-extraction capability of deep learning, collision problems at
hand have a new solution. Many studies combined neural networks with sensor-based
methods. The authors in [29] proposed a deep neural network to learn the collision
signal in a torque sensor dataset and extract the collision features of the torque signal,
which eventually resulted in high detection performance and real-time generalization
capability. The article [30] presented an algorithm based on convolutional neural network
and momentum observers, to learn the characteristics of joint motor current values when a
collision occurs in a manipulator, saving torque sensors while achieving good detection
results for various hard and soft collisions. The authors of [31] used joint-position sensors
and deep neural networks to detect collisions by learning the offset signals of the joint
positions before and after the manipulator collision. The powerful decision-learning
capability of deep reinforcement learning has also been applied to manipulator path
planning; the authors in [32] proposed Deep Deterministic Policy Gradient (DDPG) and
Twin Synchro-Control (TSC) algorithms to achieve the fast-continuous path planning
of a dual-manipulator system for multiple tasks. Moreover, those of [33] presented a
single robot arm path planning algorithm using a Twin Delayed Deep Deterministic Policy
Gradient (TD3) with Hindsight Experience Replay (HER) for a smoother path. With the
aforementioned applications, we hope that AI technology can also make progress in the
self-collision detection of a dual-manipulator system.

In this paper, we propose corresponding solutions to the above problems: (a) the GJK
algorithm was introduced to solve the problem of insufficient accuracy of self-collision
detection. (b) By introducing AI technology, a two-level self-collision detection algorithm is
proposed, which improves the efficiency of detection. To improve the accuracy of collider
modeling, the regular shaped bounding box was not applied in our research. We chose
appropriate convex point sets on the surface of the manipulators, and the point sets were
divided into multiple convex polyhedrons as the colliders of self-collision detection. It is
worth noting that this paper represents the first use of deep learning for the self-collision
detection of a dual-manipulator system under geometric simulation. A deep neural net-
work, DLNet, was trained to improve the detection efficiency of the GJK algorithm. First,
we generated all working states for the dual-manipulator system in its workspace and
detected self-collision with the GJK algorithm in these states. Therefore, we obtained the
self-collision state dataset of the workspace. Then, we used the dataset for training DLNet,
which can be applied directly to judge self-collision risk. Finally, the trained DLNet and GJK
algorithm were combined into a two-level self-collision detection algorithm, the DLGJK
algorithm, to solve the real-time self-collision detection problem in a dual-manipulator
system with fast-continuous and high-precision properties. The DLGJK algorithm takes
the joint motor configuration of each manipulator as input and has autonomous judgment
capability. DLNet firstly outputs a Boolean result for self-collision risk. For the working
state with a self-collision risk, the DLGJK algorithm enters the second level of detection,
which comprises calling the GJK algorithm to perform self-collision detection. The experi-
mental results show that compared to that with the global use of the GJK algorithm, the
DLGJK algorithm significantly increases the detection efficiency in both single detection
and working-path detection. In particular, the time expectation for single detection of the
workspace was reduced by 97.7%. At the same time, it was proven in experiments that the

Sensors 2023, 23, 523 4 of 22

DLGJK algorithm can be applied to a multi-manipulator system, which can be split into
dual-manipulator systems.

The rest of this paper is organized as follow: in Section 2, we introduce the multi-
manipulator system used in this paper and introduce its kinematic modeling and the
generation of colliders with high accuracy. In Section 3, we introduce the GJK algorithm
and the process of collision detection mediated by the GJK algorithm. In Section 4, we
introduce the process of the DLGJK algorithm and generate the training dataset. Then, we
introduce the structure of DLNet and train it. In Section 5, we provide the experimental
results, and the conclusion is given in Section 6.

2. Multi-Manipulator System and Collider Modeling
2.1. Kinematic Modeling of Multi-Manipulator System

As shown in Figure 1, the research in this paper was based on a mobile handling
robot with four-manipulators attached. The four manipulators were named LS, LF, RF,
and RS, which represents the left side arm, left front arm, right front arm, and right side
arm, respectively. The load capacity of each manipulator could reach 50 kg. The robot
uses SolidWorks for structural design and is manufactured in strict accordance with the
design parameters.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 23

both single detection and working-path detection. In particular, the time expectation for
single detection of the workspace was reduced by 97.7%. At the same time, it was proven
in experiments that the DLGJK algorithm can be applied to a multi-manipulator system,
which can be split into dual-manipulator systems.

The rest of this paper is organized as follow: in Section 2, we introduce the multi-
manipulator system used in this paper and introduce its kinematic modeling and the gen-
eration of colliders with high accuracy. In Section 3, we introduce the GJK algorithm and
the process of collision detection mediated by the GJK algorithm. In Section 4, we intro-
duce the process of the DLGJK algorithm and generate the training dataset. Then, we in-
troduce the structure of DLNet and train it. In Section 5, we provide the experimental
results, and the conclusion is given in Section 6.

2. Multi-Manipulator System and Collider Modeling
2.1. Kinematic Modeling of Multi-Manipulator System

As shown in Figure 1, the research in this paper was based on a mobile handling
robot with four-manipulators attached. The four manipulators were named LS, LF, RF,
and RS, which represents the left side arm, left front arm, right front arm, and right side
arm, respectively. The load capacity of each manipulator could reach 50 kg. The robot uses
SolidWorks for structural design and is manufactured in strict accordance with the design
parameters.

Figure 1. Front view of four-manipulator system.

There are two modes for the robot control program to control the manipulators. The
first is that the manipulators move according to the specified path, and each working state
in the path performs self-collision detection during path planning. The second is the real-
time control mode, in which the control program controls the free movement of the ma-
nipulators in real time at the frequency of 50 times/s. In this mode, it is necessary to per-
form self-collision detection based on the working state in the command before each com-
mand is sent. Only the command without self-collision will be sent to the robot. With this
demand, geometric simulation-based self-collision detection is more suitable for this pa-
per.

In real-time motion planning, there is a risk of collision between two adjacent manip-
ulators. The four-manipulator system can be divided to three dual-manipulator systems,

Figure 1. Front view of four-manipulator system.

There are two modes for the robot control program to control the manipulators. The
first is that the manipulators move according to the specified path, and each working
state in the path performs self-collision detection during path planning. The second is
the real-time control mode, in which the control program controls the free movement of
the manipulators in real time at the frequency of 50 times/s. In this mode, it is necessary
to perform self-collision detection based on the working state in the command before
each command is sent. Only the command without self-collision will be sent to the robot.
With this demand, geometric simulation-based self-collision detection is more suitable for
this paper.

In real-time motion planning, there is a risk of collision between two adjacent manip-
ulators. The four-manipulator system can be divided to three dual-manipulator systems,
LF-RF, RF-RS, and LF-LS. We illustrate the self-collision detection algorithm with the LF-RF
dual-manipulator system.

Sensors 2023, 23, 523 5 of 22

As shown in Figure 2, each manipulator consists of four joints: the lifting joint (pris-
matic joint), shoulder joint, elbow joint, and wrist joint, and the wrist joint is attached to
a replaceable end-effector. The configuration of the joint motor is shown in Table 1. The
self-collision in the dual-manipulator system is influenced by the lift joint and shoulder
joint: LF1 represents the LF lifting joint motor value, LF2 represents the LF shoulder joint
motor value, RF1 represents the RF lifting joint motor value, and RF2 represents the RF
shoulder joint motor value.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 23

LF-RF, RF-RS, and LF-LS. We illustrate the self-collision detection algorithm with the LF-
RF dual-manipulator system.

As shown in Figure 2, each manipulator consists of four joints: the lifting joint (pris-
matic joint), shoulder joint, elbow joint, and wrist joint, and the wrist joint is attached to a
replaceable end-effector. The configuration of the joint motor is shown in Table 1. The self-
collision in the dual-manipulator system is influenced by the lift joint and shoulder joint:
LF1 represents the LF lifting joint motor value, LF2 represents the LF shoulder joint motor
value, RF1 represents the RF lifting joint motor value, and RF2 represents the RF shoulder
joint motor value.

Figure 2. Single manipulator joint motor position.

Table 1. Motor configuration of single manipulator.

Motor Position Operating Range Motor Stepping Amount
Lifting joint motor 0 mm~500 mm 10 mm

Shoulder joint motor −90°~90° 0.5°
Elbow joint motor −90°~90° 0.5°
Wrist joint motor −90°~90° 0.5°

The D-H parameters in mechanical engineering are the four parameters associated
with a particular convention, for attaching reference frames to the links of a spatial kine-
matic chain or robot manipulator. In this paper, as shown in Figure 3, we used the D-H
method in MATLAB to model the four-manipulator system. The base coordinate system
is named T0. The origin of T0 is the center of the robot chassis. We took the vertical direc-
tion pointing upwards as the positive direction of the T0-Z axis and the robot’s moving
forward direction as the positive direction of the T0-X axis.

Figure 2. Single manipulator joint motor position.

Table 1. Motor configuration of single manipulator.

Motor Position Operating Range Motor Stepping Amount

Lifting joint motor 0~500 mm 10 mm
Shoulder joint motor −90◦~90◦ 0.5◦

Elbow joint motor −90◦~90◦ 0.5◦

Wrist joint motor −90◦~90◦ 0.5◦

The D-H parameters in mechanical engineering are the four parameters associated with
a particular convention, for attaching reference frames to the links of a spatial kinematic
chain or robot manipulator. In this paper, as shown in Figure 3, we used the D-H method in
MATLAB to model the four-manipulator system. The base coordinate system is named T0.
The origin of T0 is the center of the robot chassis. We took the vertical direction pointing
upwards as the positive direction of the T0-Z axis and the robot’s moving forward direction
as the positive direction of the T0-X axis.

Sensors 2023, 23, 523 6 of 22Sensors 2023, 23, x FOR PEER REVIEW 6 of 23

Figure 3. D-H model of four-manipulator system and base coordinate system T0.

It should be noted that the four-manipulator system in this paper has only one base
coordinate system, T0, while each manipulator has its own joint coordinate system, Ti (i >
0). We took RF as an example, and the base coordinate system T0 and RF joint coordinate
system RF-T1, RF-T2 are shown in Figure 4. The D-H parameters of RF and LF are shown
in Table 2.

Figure 4. Front view of T0 and RF joint coordinate system RF-T1, RF-T2.

Figure 3. D-H model of four-manipulator system and base coordinate system T0.

It should be noted that the four-manipulator system in this paper has only one base
coordinate system, T0, while each manipulator has its own joint coordinate system, Ti
(i > 0). We took RF as an example, and the base coordinate system T0 and RF joint coordinate
system RF-T1, RF-T2 are shown in Figure 4. The D-H parameters of RF and LF are shown
in Table 2.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 23

Figure 3. D-H model of four-manipulator system and base coordinate system T0.

It should be noted that the four-manipulator system in this paper has only one base
coordinate system, T0, while each manipulator has its own joint coordinate system, Ti (i >
0). We took RF as an example, and the base coordinate system T0 and RF joint coordinate
system RF-T1, RF-T2 are shown in Figure 4. The D-H parameters of RF and LF are shown
in Table 2.

Figure 4. Front view of T0 and RF joint coordinate system RF-T1, RF-T2.

Figure 4. Front view of T0 and RF joint coordinate system RF-T1, RF-T2.

Sensors 2023, 23, 523 7 of 22

Table 2. D-H parameters of RF and LF.

Manipulator Link θi/(◦) di/mm ai/mm αi/(◦)

RF

l1RF 90 d1
RF + 780 125 90

l2RF θ2
RF − 90 351 346 −90

l3RF θ3
RF 182 0 90

l4RF θ4
RF 0 0 0

LF

l1LF 90 d1
LF + 780 −125 90

l2LF θ2
LF + 90 351 346 −90

l3LF θ3
LF 182 0 90

l4LF θ4
LF 0 0 0

Based on the D-H parameters, the kinematic model of each manipulator was estab-
lished, and the pose transformation matrix between two links i and i + 1 was obtained
as follows:

i−1
i T =

cos θi − sin θi cos αi sin θi sin αi ai cos θi
sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di
0 0 0 1

 (1)

To calculate the transformation relationship between Ti and T0, we established the
pose transformation matrix of the i-th link in space as follows:

0
i T = 0

1T1
2T2

3T · · · i−1
i T (2)

2.2. Collider Construction of Manipulators

Conventional geometric simulation-based methods use regular-shaped bounding
boxes, such as spheres, cylinders, and cubes as colliders. The modeling of these colliders is
simple, and the algorithm for distance calculation is relatively simple. For example, the
distance between spheres can be converted to calculate the distance between the centers
of spheres, and the distance between cylinders can be converted to calculate the distance
between axes [34]. However, this modeling method of the colliders will affect the modeling
accuracy at the irregular outer surface, thereby affecting the self-collision detection accuracy
at these positions. If the distances between colliders are large and the loss of accuracy at
these positions is acceptable, these methods can be used for collision detection.

Different from other studies, there were irregular outer surfaces at the joints of the
manipulators used in this paper. These irregular surfaces were only a few millimeters away
from the other manipulator in many working states. Therefore, these positions were the
focus areas of this paper. Our task requirements exceeded the detection accuracy of con-
ventional geometric simulation-based methods, resulting in undetected self-collisions that
have occurred or false self-collision warnings. These conventional methods are not suitable
for our manipulators, and we needed to study a method with higher detection accuracy.

To improve the detection accuracy, we selected a certain number of points on the
surface of each manipulator to envelop them. The selected points of each manipulator were
accurately measured, calculated using the SolidWorks (version 2021) modeling software
and confirmed on the actual robot. After the high-precision collider modeling of the
manipulators, the distance calculation method based on the regular-shape collider cannot be
used, and thus, we introduced the GJK algorithm. Since the GJK algorithm can only detect
the collision relationship between convex shapes, as shown in Figure 5, each manipulator
was divided into multiple convex colliders. All colliders of manipulators were established
in their own T2 coordinate system.

Sensors 2023, 23, 523 8 of 22Sensors 2023, 23, x FOR PEER REVIEW 8 of 23

Figure 5. The point set of RF colliders.

In order to detect the spatial position relationship between the colliders of each ma-
nipulator, these colliders needed to be converted from T2 to T0. Therefore, the pose trans-
formation matrix of each manipulator needed to be calculated. Taking RF as an example,
from Equation (1) we can obtain:

+
=

1000
780010

125001
0100

RF
1

RF0
1 d
T (3)

−−
−−
−−−

=

1000
351)90 (cos10

)90 (sin34600)90 (sin
)90 (346cos)90 (sin-0)90(cos

RF
2

RF
2

RF
2

RF
2

RF
2

RF
2

RF1
2 θ

θθ
θθθ

T (4)

Then, from Equation (2) we can obtain the transformation matrix between the RF-T2
and T0 as follows:

++−−
+

−

==

1000
780)(cos34600)(cos

125)(346sin)(cos0)(sin
351)(sin10

RF
1

RF
2

RF
2

RF
2

RF
2

RF
2

RF
2

RF1
2

RF0
1

RF0
2 d

TTT
θθ

θθθ
θ

 (5)

According to the robot forward kinematics, with the manipulator joint motors angle

data, we can calculate the matrix T0
2 in real-time:

 2
0
20 posTpos ⋅= (6)

According to Equation (6), we can convert the coordinates of the colliders from T2 to
the uniform base frame T0, where 0pos represents the generated point set of colliders in
T0 and 2pos represents the generated point set of colliders in T2. Hence, during the

Figure 5. The point set of RF colliders.

In order to detect the spatial position relationship between the colliders of each ma-
nipulator, these colliders needed to be converted from T2 to T0. Therefore, the pose
transformation matrix of each manipulator needed to be calculated. Taking RF as an
example, from Equation (1) we can obtain:

0
1TRF =

0 0 1 0
1 0 0 125
0 1 0 dRF

1 + 780
0 0 0 1

 (3)

1
2TRF =

cos(θRF

2 − 90) 0 − sin(θRF
2 − 90) 346 cos(θRF

2 − 90)
sin(θRF

2 − 90) 0 0 346 sin(θRF
2 − 90)

0 −1 cos(θRF
2 − 90) 351

0 0 0 1

 (4)

Then, from Equation (2) we can obtain the transformation matrix between the RF-T2
and T0 as follows:

0
2TRF = 0

1TRF1
2TRF =

0 −1 sin(θRF

2) 351
sin(θRF

2) 0 cos (θRF
2) 346 sin(θRF

2) + 125
− cos (θRF

2) 0 0 −346 cos (θRF
2) + dRF

1 + 780
0 0 0 1

 (5)

According to the robot forward kinematics, with the manipulator joint motors angle
data, we can calculate the matrix 0

2T in real-time:

pos0 = 0
2T · pos2 (6)

According to Equation (6), we can convert the coordinates of the colliders from T2
to the uniform base frame T0, where pos0 represents the generated point set of colliders
in T0 and pos2 represents the generated point set of colliders in T2. Hence, during the
movement of the system, we can obtain the point sets representing corresponding colliders
in T0 in real-time.

Sensors 2023, 23, 523 9 of 22

3. GJK Algorithm for Dual-Manipulator Self-Collision Detection
3.1. Introduction of GJK Algorithm
3.1.1. Minkowski Difference

Before introducing the GJK algorithm, we first introduced the Minkowski difference.
Assuming A and B are two convex polyhedrons in Cartesian space, a is a vector in A and b
is a vector in B. The Minkowski difference between A and B is defined as:

A− B = {a− b|a ∈ A, b ∈ B} (7)

We named the convex polyhedron formed by A− B as C, C = A− B. The distance
between A and B can be expressed as follows:

d(A, B) = min{‖ x − y ‖ : x ∈ A, y ∈ B} (8)

assuming that v(C) represents the point nearest to the origin in C and satisfies the follow-
ing equation:

‖v(C)‖ = min{‖ x‖ :x ∈ C} (9)

According to Equations (8) and (9), we obtained:

d(A, B) = v(C) (10)

Which proves that calculating the minimum distance between A and B can be trans-
lated into determining whether C contains the origin.

In other words, if there is a collision between convex polyhedron A and B, the convex
polyhedron C (C = A− B) must contain the origin. This is a very important property of
the Minkowski difference in convex polyhedron collision detection.

3.1.2. Basic Principle of GJK Algorithm

Before describing the basic principle of the GJK algorithm, we needed to understand
two definitions.

Definition 1: Point P belongs to the convex polyhedron C. For a given direction vector d, if point
P satisfies equation:

d · P = max{d ·V|V ∈ C} (11)

then point P is called the support point of C in direction d. The function to find the support point is
called the support function, written as S(C), the finding direction is written as Vdir.

Definition 2: For convex polyhedron C, a simplex is a convex tetrahedron formed by any four
vertices in C. If the selected vertices are different, the simplex formed is also different. Selected
vertex q is constructed by S(C) along different Vdir and satisfies the equation:

q = S(C)(A, Vdir)− S(C)(B, Vdir) (12)

The GJK algorithm uses the Minkowski difference property described in Section 3.1.1 to
compute the minimum distance between two convex polyhedrons. For convex polyhedron
A and B, the GJK algorithm iteratively searches the point with the closest distance to the
origin in C (C = A− B). The GJK algorithm generates a simplex in every iteration process,
and the simplex generated at the k-th iteration process is denoted as Wk. vk is the point
nearest to the origin in Wk and can be calculated by choosing the Johnson operator [21] or
the improved operator [28,35,36] depending on the situation. If vk is the origin, then Wk
contains the origin, which means that C contains the origin, and thus, a collision occurs
between A and B. If vk is not the origin, then the algorithm updates Vdir according to the
rule and obtains the new vertex qk+1, replacing a vertex in Wk with qk+1 to get Wk+1 and
continue to determine whether Wk+1 contains the origin.

Sensors 2023, 23, 523 10 of 22

The GJK algorithm terminates the loop in two cases:

(a) vk is the origin, A and B collide, and the GJK algorithm is exited;
(b) The dot product of qk+1 and Vdir is less than zero (dot(Vqk+1O, Vdir) < 0), at this time,

the simplex containing the origin cannot be found in C, no collision occurs between A
and B, and the GJK algorithm is exited.

3.2. GJK Self-Collision Detection for Dual-Manipulator System

As shown in Figure 6, by inputting the real-time joint motor configuration (height
data and angle data) of the dual-manipulator system, the transformation matrix between
T0 and T2 are obtained. After converting all colliders to a unified coordinate system, the
GJK algorithm determines the real-time self-collision detection results of the colliders. The
collision mark is recorded as CheckGJK, which is equal to 1 when a self-collision occurs.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 23

process, and the simplex generated at the k-th iteration process is denoted as kW . kv is

the point nearest to the origin in kW and can be calculated by choosing the Johnson op-

erator [21] or the improved operator [28,35,36] depending on the situation. If kv is the
origin, then kW contains the origin, which means that C contains the origin, and thus,

a collision occurs between A and B . If kv is not the origin, then the algorithm updates
dirV according to the rule and obtains the new vertex 1+kq , replacing a vertex in kW with

1+kq to get 1+kW and continue to determine whether 1+kW contains the origin.
The GJK algorithm terminates the loop in two cases:

(a) kv is the origin, A and B collide, and the GJK algorithm is exited;

(b) The dot product of 1+kq and dirV is less than zero (0),(dot
1

<
+ dirOq VV

k), at this time, the
simplex containing the origin cannot be found inC , no collision occurs between A
and B , and the GJK algorithm is exited.

3.2. GJK Self-Collision Detection for Dual-Manipulator System
As shown in Figure 6, by inputting the real-time joint motor configuration (height

data and angle data) of the dual-manipulator system, the transformation matrix between
T0 and T2 are obtained. After converting all colliders to a unified coordinate system, the
GJK algorithm determines the real-time self-collision detection results of the colliders. The
collision mark is recorded as CheckGJK, which is equal to 1 when a self-collision occurs.

Figure 6. Flowchart of GJK algorithm self-collision detection.

4. DLGJK Algorithm
4.1. Structure of DLGJK Algorithm

Figure 7 shows the flowchart of the DLGJK algorithm. The DLGJK algorithm consists
of DLNet and the GJK algorithm, and the input of the DLGJK algorithm is the real-time
joint motors configuration of the dual-manipulator system. First, the DLGJK algorithm
uses DLNet to make a judgment, and if there is no self-collision risk, the DLGJK algorithm
is directly quit; if there is a risk of self-collision, the DLGJK algorithm calls the GJK algo-
rithm to perform self-collision detection, and the GJK algorithm will detect whether self-
collision occurs in the current working state.

Figure 6. Flowchart of GJK algorithm self-collision detection.

4. DLGJK Algorithm
4.1. Structure of DLGJK Algorithm

Figure 7 shows the flowchart of the DLGJK algorithm. The DLGJK algorithm consists
of DLNet and the GJK algorithm, and the input of the DLGJK algorithm is the real-time
joint motors configuration of the dual-manipulator system. First, the DLGJK algorithm uses
DLNet to make a judgment, and if there is no self-collision risk, the DLGJK algorithm is
directly quit; if there is a risk of self-collision, the DLGJK algorithm calls the GJK algorithm
to perform self-collision detection, and the GJK algorithm will detect whether self-collision
occurs in the current working state.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 23

Figure 7. Flowchart of DLGJK algorithm self-collision detection.

The overall workflow of collision detection consists of two layers; the first layer is
DLNet for risk checking, the second layer is GJK for risky situations, which are deter-
mined as such from first layer DLNet.

The segment judgment process of DLNet is closer to human thinking. When we judge
whether there is a collision between manipulators, we present the judgment that there is
no self-collision risk for manipulators with a long distance. As the distance between the
manipulators gets closer and closer, we will present the judgment that there is a risk of
self-collision and that self-collision detection is needed. After DLNet learns the relation-
ship between workspace self-collision states and joint motors data, the motors data can
replace the distance as the judgment basis of DLNet, so that DLNet can imitate our think-
ing logic for self-collision risk judgment.

Ideally, the working state of the dual-manipulator system and the self-collision de-
tection result of the DLGJK algorithm should contain the following three cases:

As shown in Figure 8, the system has no self-collision risk and no self-collision occurs:
the DLNet judges that there is no self-collision and the DLGJK algorithm returns the in-
formation that no self-collision is detected.

Figure 8. Dual-manipulator LF-RF without risk of self-collision.

Figure 7. Flowchart of DLGJK algorithm self-collision detection.

The overall workflow of collision detection consists of two layers; the first layer is
DLNet for risk checking, the second layer is GJK for risky situations, which are determined
as such from first layer DLNet.

The segment judgment process of DLNet is closer to human thinking. When we judge
whether there is a collision between manipulators, we present the judgment that there is
no self-collision risk for manipulators with a long distance. As the distance between the

Sensors 2023, 23, 523 11 of 22

manipulators gets closer and closer, we will present the judgment that there is a risk of
self-collision and that self-collision detection is needed. After DLNet learns the relationship
between workspace self-collision states and joint motors data, the motors data can replace
the distance as the judgment basis of DLNet, so that DLNet can imitate our thinking logic
for self-collision risk judgment.

Ideally, the working state of the dual-manipulator system and the self-collision detec-
tion result of the DLGJK algorithm should contain the following three cases:

As shown in Figure 8, the system has no self-collision risk and no self-collision occurs:
the DLNet judges that there is no self-collision and the DLGJK algorithm returns the
information that no self-collision is detected.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 23

Figure 7. Flowchart of DLGJK algorithm self-collision detection.

The overall workflow of collision detection consists of two layers; the first layer is
DLNet for risk checking, the second layer is GJK for risky situations, which are deter-
mined as such from first layer DLNet.

The segment judgment process of DLNet is closer to human thinking. When we judge
whether there is a collision between manipulators, we present the judgment that there is
no self-collision risk for manipulators with a long distance. As the distance between the
manipulators gets closer and closer, we will present the judgment that there is a risk of
self-collision and that self-collision detection is needed. After DLNet learns the relation-
ship between workspace self-collision states and joint motors data, the motors data can
replace the distance as the judgment basis of DLNet, so that DLNet can imitate our think-
ing logic for self-collision risk judgment.

Ideally, the working state of the dual-manipulator system and the self-collision de-
tection result of the DLGJK algorithm should contain the following three cases:

As shown in Figure 8, the system has no self-collision risk and no self-collision occurs:
the DLNet judges that there is no self-collision and the DLGJK algorithm returns the in-
formation that no self-collision is detected.

Figure 8. Dual-manipulator LF-RF without risk of self-collision. Figure 8. Dual-manipulator LF-RF without risk of self-collision.

As shown in Figure 9, the system has a self-collision risk, but no self-collision occurs:
the DLNet judges that there is a self-collision risk and the GJK algorithm does not detect
a self-collision, finally the DLGJK algorithm returns the information that no self-collision
is detected.

As shown in Figure 10, a self-collision occurs in the system: the DLNet judges that
there is a risk of self-collision, the GJK algorithm detects a self-collision, and finally the
DLGJK algorithm returns the information that a self-collision occurs.

Therefore, the DLNet must be accurate in judging the no-self-collision working state.
That is, if DLNet judges that there is no risk of self-collision, the dual-manipulator system
must be in a no self-collision state; if the DLNet judges that there is a risk of self-collision, the
system may have a self-collision. Then, the DLGJK algorithm must call the GJK algorithm
for self-collision detection and returns the final result. The implementation logic will be
introduced in the Section 4.3.

Sensors 2023, 23, 523 12 of 22

Sensors 2023, 23, x FOR PEER REVIEW 12 of 23

As shown in Figure 9, the system has a self-collision risk, but no self-collision occurs:
the DLNet judges that there is a self-collision risk and the GJK algorithm does not detect
a self-collision, finally the DLGJK algorithm returns the information that no self-collision
is detected.

Figure 9. Dual-manipulator LF-RF with risk of self-collision.

As shown in Figure 10, a self-collision occurs in the system: the DLNet judges that
there is a risk of self-collision, the GJK algorithm detects a self-collision, and finally the
DLGJK algorithm returns the information that a self-collision occurs.

Figure 10. Dual-manipulator LF-RF with self-collision.

Figure 9. Dual-manipulator LF-RF with risk of self-collision.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 23

As shown in Figure 9, the system has a self-collision risk, but no self-collision occurs:
the DLNet judges that there is a self-collision risk and the GJK algorithm does not detect
a self-collision, finally the DLGJK algorithm returns the information that no self-collision
is detected.

Figure 9. Dual-manipulator LF-RF with risk of self-collision.

As shown in Figure 10, a self-collision occurs in the system: the DLNet judges that
there is a risk of self-collision, the GJK algorithm detects a self-collision, and finally the
DLGJK algorithm returns the information that a self-collision occurs.

Figure 10. Dual-manipulator LF-RF with self-collision. Figure 10. Dual-manipulator LF-RF with self-collision.

Sensors 2023, 23, 523 13 of 22

4.2. Structure and Training of DLNet
4.2.1. Gathering DLNet Training Data

In order to obtain the dataset required for training the DLNet, it is necessary to generate
the workspace data of the dual-manipulator system. As described in the previous section,
the self-collision of the system studied in this paper is mainly affected by the motor motions
of the lifting joint motors (LF1, RF1) and shoulder joint motors (LF2, RF2). According to
the value ranges and step amounts of LF1, LF2, RF1, and RF2, the dual-manipulator system
workspace dataset is generated exhaustively, and the GJK algorithm is called to perform
self-collision detection on all data. Finally, the self-collision state dataset of the workspace
in the format [LF1, LF2, RF1, RF2, CheckGJK] is obtained, written as the Space-Col dataset.

The study of the Space-Col dataset shows that for the dual-manipulator system used
in this paper, when LF2 and RF2 are constant and the height difference between LF1 and
RF1 is unchanged, the values of LF1 and RF1 have no effect on the self-collision state. That
means only three variables: the height difference between LF1 and RF1, the LF2, and the
RF2 can represent the relative states between two manipulators. As shown in Figure 11,
the above conclusion means that, under the condition that the angle of the shoulder joint
motors is unchanged, two manipulators lifting or falling the same height at the same time
will not change the self-collision state.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 23

Therefore, the DLNet must be accurate in judging the no-self-collision working state.
That is, if DLNet judges that there is no risk of self-collision, the dual-manipulator system
must be in a no self-collision state; if the DLNet judges that there is a risk of self-collision,
the system may have a self-collision. Then, the DLGJK algorithm must call the GJK algo-
rithm for self-collision detection and returns the final result. The implementation logic
will be introduced in the Section 4.3.

4.2. Structure and Training of DLNet
4.2.1. Gathering DLNet Training Data

In order to obtain the dataset required for training the DLNet, it is necessary to gen-
erate the workspace data of the dual-manipulator system. As described in the previous
section, the self-collision of the system studied in this paper is mainly affected by the mo-
tor motions of the lifting joint motors (LF1, RF1) and shoulder joint motors (LF2, RF2). Ac-
cording to the value ranges and step amounts of LF1, LF2, RF1, and RF2, the dual-manipu-
lator system workspace dataset is generated exhaustively, and the GJK algorithm is called
to perform self-collision detection on all data. Finally, the self-collision state dataset of the
workspace in the format [LF1, LF2, RF1, RF2, CheckGJK] is obtained, written as the Space-
Col dataset.

The study of the Space-Col dataset shows that for the dual-manipulator system used
in this paper, when LF2 and RF2 are constant and the height difference between LF1 and
RF1 is unchanged, the values of LF1 and RF1 have no effect on the self-collision state. That
means only three variables: the height difference between LF1 and RF1, the LF2, and the
RF2 can represent the relative states between two manipulators. As shown in Figure 11,
the above conclusion means that, under the condition that the angle of the shoulder joint
motors is unchanged, two manipulators lifting or falling the same height at the same time
will not change the self-collision state.

Figure 11. Dual-manipulator LF-RF lift the same height at the same time.

The height difference between LF1 and RF1 is denoted as the Hvalue. We used the
Hvalue to replace LF1 and RF1 in the Space-Col dataset. After the data were de-duplicated,
the training dataset in the format of [Hvalue, LF2, RF2, CheckGJK] was obtained and writ-
ten as the DL-Train dataset.

4.2.2. Structure and Parameters of DLNet
The DL-Train dataset was used to train the DLNet. According to the characteristics

of the dataset, we used a five-layer fully connected neural network to construct DLNet.
The x-input of DLNet is the Hvalue, LF2, and RF2, and the y-input is CheckGJK. The output
of the network is the probability of self-collision of the dual-manipulator system in the
respective working state, denoted as OutDL.

The DLNet includes the input-layer, hidden-layer, and output-layer. The number of
neurons in the input-layer is set to three (x-input) and the number of neurons in the

Figure 11. Dual-manipulator LF-RF lift the same height at the same time.

The height difference between LF1 and RF1 is denoted as the Hvalue. We used the
Hvalue to replace LF1 and RF1 in the Space-Col dataset. After the data were de-duplicated,
the training dataset in the format of [Hvalue, LF2, RF2, CheckGJK] was obtained and
written as the DL-Train dataset.

4.2.2. Structure and Parameters of DLNet

The DL-Train dataset was used to train the DLNet. According to the characteristics of
the dataset, we used a five-layer fully connected neural network to construct DLNet. The
x-input of DLNet is the Hvalue, LF2, and RF2, and the y-input is CheckGJK. The output
of the network is the probability of self-collision of the dual-manipulator system in the
respective working state, denoted as OutDL.

The DLNet includes the input-layer, hidden-layer, and output-layer. The number
of neurons in the input-layer is set to three (x-input) and the number of neurons in the
output-layer is set to one (OutDL). The trial-and-error method was used to determine
the number of hidden-layers and the number of neurons in the hidden-layers. The final
number of hidden-layers was determined to be three, and the numbers of neurons were 12,
24, and 6, respectively. As shown in Figure 12, the final topology of DLNet was determined
to be 3:12:24:6:1.

Sensors 2023, 23, 523 14 of 22

Sensors 2023, 23, x FOR PEER REVIEW 14 of 23

output-layer is set to one (OutDL). The trial-and-error method was used to determine the
number of hidden-layers and the number of neurons in the hidden-layers. The final num-
ber of hidden-layers was determined to be three, and the numbers of neurons were 12, 24,
and 6, respectively. As shown in Figure 12, the final topology of DLNet was determined
to be 3:12:24:6:1.

Figure 12. Topology and model structure of DLNet.

For the selection of the activation function, the ReLU function that enables faster net-
work training was selected as the activation function of hidden-layers, while the output
of the output-layer is essentially a binary problem; therefore, the Sigmoid function, which
is more suitable for the binary problem, was selected as the activation function of the out-
put-layer. Since the DL-Train dataset features are clearly distributed, after experimental
verification, the Stochastic Gradient Descent (SGD) was selected as the optimization
method and the BinaryCrossEntropyLoss (BCELoss) function was selected as the loss
function.

It is worth noting that since the DL-Train dataset actually contains all the working
states of the dual-manipulator system used in this paper, it is unnecessary to consider the
overfitting problem. As long as the DLNet can learn the DL-Train dataset well, it can judge
all working states of the dual-manipulator system. Model training proceeds until the loss
value converges, and the loss changes in the training process are shown in Figure 13. In
this paper, accuracy was not an important indicator for evaluating the DLNet training
results. We will select a threshold in the following part and process the network output to
achieve 100% accuracy in judging no self-collision working states.

Figure 12. Topology and model structure of DLNet.

For the selection of the activation function, the ReLU function that enables faster
network training was selected as the activation function of hidden-layers, while the output
of the output-layer is essentially a binary problem; therefore, the Sigmoid function, which
is more suitable for the binary problem, was selected as the activation function of the
output-layer. Since the DL-Train dataset features are clearly distributed, after experimental
verification, the Stochastic Gradient Descent (SGD) was selected as the optimization method
and the BinaryCrossEntropyLoss (BCELoss) function was selected as the loss function.

It is worth noting that since the DL-Train dataset actually contains all the working
states of the dual-manipulator system used in this paper, it is unnecessary to consider the
overfitting problem. As long as the DLNet can learn the DL-Train dataset well, it can judge
all working states of the dual-manipulator system. Model training proceeds until the loss
value converges, and the loss changes in the training process are shown in Figure 13. In this
paper, accuracy was not an important indicator for evaluating the DLNet training results.
We will select a threshold in the following part and process the network output to achieve
100% accuracy in judging no self-collision working states.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 23

Figure 13. Change in the loss value during DLNet training.

4.3. Judgment Logic of DLNet for Self-Collision
As described in Section 4.1, the DLNet must be accurate in judging the no-self-colli-

sion working state. The output value (OutDL) of the DLNet is the predicted value of self-
collision in the current working state. The value of OutDL has a range of [0, 1], where
OutDL = 1 means that no self-collision occurs and OutDL = 0 means that self-collision
occurs. The closer the OutDL is to 0, the higher the probability of self-collision occurring.
Associating the model x-input with the OutDL, we obtained the DLNet output dataset in
the format [Hvalue, LF2, RF2, OutDL], written as the DL-Out dataset.

As the self-collision judgment basis of the DLNet, we need to select a critical thresh-
old (K) between 0 and 1. If 0 < OutDL ≤ K, the DLNet judges that there is a self-collision
risk; if K < OutDL ≤ 1, the DLNet judges that there is no self-collision risk. The selection of
K with this logic should satisfy the following requirements:

0 ≤ OutDL ≤ K, the DLNet judges that there is a risk of self-collision, and at this time,
the dual-manipulator system should be in a state with a risk of self-collision or a self-
collision has occurred, and the final detection result of the DLGJK algorithm needs to be
given by the GJK algorithm.

K < OutDL ≤ 1, the DLNet judges that there is no risk of self-collision, and at this time,
the dual-manipulator system should be in a state without self-collision risk, and the final
detection result of the DLGJK algorithm is directly given by the DLNet.

Thus, the key point is: for a selected K, for all data in the DL-Out dataset that satisfy
K < OutDL ≤ 1, the detection result given by the GJK algorithm (CheckGJK) should be
equal to 1. Therefore, the verification method for whether this K satisfies the requirements
is as follows: determine all data in the DL-Out dataset that meet K < OutDL ≤ 1, map these
data to the DL-Train dataset, and verify whether all corresponding CheckGJK values are
equal to 1. If the CheckGJK values of all data are equal to 1, this K satisfies the require-
ments.

For the DLNet, the range of K to satisfy the requirements should be an interval be-
longing to (0, 1). As shown in Figure 14, the search process for K can gradually approach
1 through dichotomy and finally find the K that satisfies the requirements.

Figure 13. Change in the loss value during DLNet training.

Sensors 2023, 23, 523 15 of 22

4.3. Judgment Logic of DLNet for Self-Collision

As described in Section 4.1, the DLNet must be accurate in judging the no-self-collision
working state. The output value (OutDL) of the DLNet is the predicted value of self-collision
in the current working state. The value of OutDL has a range of [0, 1], where OutDL = 1
means that no self-collision occurs and OutDL = 0 means that self-collision occurs. The
closer the OutDL is to 0, the higher the probability of self-collision occurring. Associating
the model x-input with the OutDL, we obtained the DLNet output dataset in the format
[Hvalue, LF2, RF2, OutDL], written as the DL-Out dataset.

As the self-collision judgment basis of the DLNet, we need to select a critical threshold
(K) between 0 and 1. If 0 < OutDL ≤ K, the DLNet judges that there is a self-collision risk;
if K < OutDL ≤ 1, the DLNet judges that there is no self-collision risk. The selection of K
with this logic should satisfy the following requirements:

0 ≤ OutDL ≤ K, the DLNet judges that there is a risk of self-collision, and at this
time, the dual-manipulator system should be in a state with a risk of self-collision or a
self-collision has occurred, and the final detection result of the DLGJK algorithm needs to
be given by the GJK algorithm.

K < OutDL ≤ 1, the DLNet judges that there is no risk of self-collision, and at this time,
the dual-manipulator system should be in a state without self-collision risk, and the final
detection result of the DLGJK algorithm is directly given by the DLNet.

Thus, the key point is: for a selected K, for all data in the DL-Out dataset that
satisfy K < OutDL ≤ 1, the detection result given by the GJK algorithm (CheckGJK) should
be equal to 1. Therefore, the verification method for whether this K satisfies the require-
ments is as follows: determine all data in the DL-Out dataset that meet K < OutDL ≤ 1,
map these data to the DL-Train dataset, and verify whether all corresponding CheckGJK
values are equal to 1. If the CheckGJK values of all data are equal to 1, this K satisfies
the requirements.

For the DLNet, the range of K to satisfy the requirements should be an interval
belonging to (0, 1). As shown in Figure 14, the search process for K can gradually approach 1
through dichotomy and finally find the K that satisfies the requirements.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 23

Figure 14. Flowchart for finding the K-value that satisfies the requirements.

Assuming that the minimum satisfying K is Kmin, as shown in Figure 15, the selected
K gradually approaches from Kmin to 1, and the DLNet is more and more cautious in judg-
ing self-collision. At the same time, the self-collision judgement distance of colliders will
be larger and larger, and the GJK algorithm will be called more often for self-collision
detection. We can adjust the judgement distance of DLNet for self-collision by adjusting
K.

Figure 15. The detection distance increases with an increase in K.

The pseudo-code of the DLGJK algorithm for self-collision judgment of the LF-RF
dual-manipulator system (Algorithm 1) is as follows:

Algorithm 1 DLGJK self-collision detection of the LF-RF dual-manipulator system
1. Input: motor data, containing motor data of 8 joints of the system.
2. Extract [LF1, LF2, RF1, RF2].
3. Hvalue ← LF1-RF1.
4. Call the DLNet, input [Hvalue, LF2, RF2]
If OutDL > K:
Return no self-collision occurs in the system, exit DLGJK algorithm;
If OutDL ≤ K:
Continue to execute the next step.
5. Call GJK algorithm, input [LF1, LF2, RF1, RF2]
If GJK algorithm detects no self-collision:
Return no self-collision occurs in the system, exit DLGJK algorithm;
If GJK algorithm detects the occurrence of self-collision:
Return self-collision occurs in the system, exit DLGJK algorithm.

The four-manipulator system used in this paper can be regarded as three dual-ma-
nipulator systems and can perform self-collision detection simultaneously in the control
system. Since the initial distance and relative position between each pair of manipulators
are different, the DLNet and K (the K below refers to Kmin) should be retrained for different
dual-manipulator systems. The pseudo-code of the DLGJK algorithm for self-collision de-
tection of the four- manipulator system (Algorithm 2) is as follows:

Figure 14. Flowchart for finding the K-value that satisfies the requirements.

Assuming that the minimum satisfying K is Kmin, as shown in Figure 15, the selected
K gradually approaches from Kmin to 1, and the DLNet is more and more cautious in
judging self-collision. At the same time, the self-collision judgement distance of colliders
will be larger and larger, and the GJK algorithm will be called more often for self-collision
detection. We can adjust the judgement distance of DLNet for self-collision by adjusting K.

Sensors 2023, 23, 523 16 of 22

Sensors 2023, 23, x FOR PEER REVIEW 16 of 23

Figure 14. Flowchart for finding the K-value that satisfies the requirements.

Assuming that the minimum satisfying K is Kmin, as shown in Figure 15, the selected
K gradually approaches from Kmin to 1, and the DLNet is more and more cautious in judg-
ing self-collision. At the same time, the self-collision judgement distance of colliders will
be larger and larger, and the GJK algorithm will be called more often for self-collision
detection. We can adjust the judgement distance of DLNet for self-collision by adjusting
K.

Figure 15. The detection distance increases with an increase in K.

The pseudo-code of the DLGJK algorithm for self-collision judgment of the LF-RF
dual-manipulator system (Algorithm 1) is as follows:

Algorithm 1 DLGJK self-collision detection of the LF-RF dual-manipulator system
1. Input: motor data, containing motor data of 8 joints of the system.
2. Extract [LF1, LF2, RF1, RF2].
3. Hvalue ← LF1-RF1.
4. Call the DLNet, input [Hvalue, LF2, RF2]
If OutDL > K:
Return no self-collision occurs in the system, exit DLGJK algorithm;
If OutDL ≤ K:
Continue to execute the next step.
5. Call GJK algorithm, input [LF1, LF2, RF1, RF2]
If GJK algorithm detects no self-collision:
Return no self-collision occurs in the system, exit DLGJK algorithm;
If GJK algorithm detects the occurrence of self-collision:
Return self-collision occurs in the system, exit DLGJK algorithm.

The four-manipulator system used in this paper can be regarded as three dual-ma-
nipulator systems and can perform self-collision detection simultaneously in the control
system. Since the initial distance and relative position between each pair of manipulators
are different, the DLNet and K (the K below refers to Kmin) should be retrained for different
dual-manipulator systems. The pseudo-code of the DLGJK algorithm for self-collision de-
tection of the four- manipulator system (Algorithm 2) is as follows:

Figure 15. The detection distance increases with an increase in K.

The pseudo-code of the DLGJK algorithm for self-collision judgment of the LF-RF
dual-manipulator system (Algorithm 1) is as follows:

Algorithm 1 DLGJK self-collision detection of the LF-RF dual-manipulator system

1. Input: motor data, containing motor data of 8 joints of the system.
2. Extract [LF1, LF2, RF1, RF2].
3. Hvalue← LF1-RF1.
4. Call the DLNet, input [Hvalue, LF2, RF2]
If OutDL > K:
Return no self-collision occurs in the system, exit DLGJK algorithm;
If OutDL ≤ K:
Continue to execute the next step.
5. Call GJK algorithm, input [LF1, LF2, RF1, RF2]
If GJK algorithm detects no self-collision:
Return no self-collision occurs in the system, exit DLGJK algorithm;
If GJK algorithm detects the occurrence of self-collision:
Return self-collision occurs in the system, exit DLGJK algorithm.

The four-manipulator system used in this paper can be regarded as three dual-
manipulator systems and can perform self-collision detection simultaneously in the control
system. Since the initial distance and relative position between each pair of manipulators
are different, the DLNet and K (the K below refers to Kmin) should be retrained for different
dual-manipulator systems. The pseudo-code of the DLGJK algorithm for self-collision
detection of the four- manipulator system (Algorithm 2) is as follows:

Algorithm 2 DLGJK self-collision detection of the four-manipulator system

1. Input: motor data, containing motor data of 16 joints of the system.
2. Extract [LF1, LF2, RF1, RF2], [RS1, RS2, RF1, RF2], [LS1, LS2, LF1, LF2].
3. Apply DLGJK algorithm simultaneously for three groups of dual-manipulator systems:

DLGJK algorithm detection for LF-RF, input [LF1, LF2, RF1, RF2]:
If self-collision is detected:

Return LF-RF occurs self-collision, exit DLGJK algorithm;
If no self-collision is detected:

Return LF-RF no self-collision;:
DLGJK algorithm detection for RS-RF, input [RS1, RS2, RF1, RF2]

If self-collision is detected:
Return RS-RF occurs self-collision, exit DLGJK algorithm;

If no self-collision is detected:
Return RS-RF no self-collision;:

DLGJK algorithm detection for LS-LF, input [LS1, LS2, LF1, LF2
If self-collision is detected:

Return LS-LF occurs self-collision, exit DLGJK algorithm;
If no collision is detected:

Return LS-LF no self-collision;
4. If no self-collision occurs in the three groups of dual-manipulator systems, then no self-collision
occurs in the four-manipulator system, exit DLGJK algorithm.

Sensors 2023, 23, 523 17 of 22

5. Experiment and Discussion
5.1. Experimental Platform and Simulation Environment

The research in this paper was based on a mobile handling robot with four manipula-
tors. The simulation system environment is Windows 10 × 64, Intel i5-11600KF 3.90 GHz,
DDR4 64.0 GB, NVIDIA GeForce RTX 3070 Ti, and 1T SSD. The deep-learning environment
is based on the python3.9 pytorch framework, version 1.11.0. The robot control program
was written on QT Creator platform, version 5.15.2, and the programming language is C++.
The simulation software is Webots, version 2021b.

The simulation environment should be as close as possible to the real physical environ-
ment, so that the simulation manipulator can reflect the situation of the real manipulator in
real time and ensure that the algorithms and data in the simulation environment can be
used in the real environment. We directly imported the output model of SolidWorks into
Webots to ensure a high degree of unity among the SolidWorks model, Webots model, and
real robot. After our measurement and test, there was no visible error between the physical
environment robot and the simulation environment robot. Figure 16 shows the Webots
simulation model.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 23

Figure 16. Webots model of four-manipulator handling robot.

5.2. Single Detection Time of DLGJK Algorithm
5.2.1. Single Detection Time of DLNet and GJK Algorithm

In this section, we calculated the single-detection time by dividing the detection time
of the dataset by the amount of data in the dataset. We took RF-LF as an example; since
the DL-Train dataset had covered the entire workspace of RF-LF, we used the DLNet to
detect the DL-Train dataset ten times. For a comparison, we used the GJK algorithm to
detect the Space-Col dataset ten times as well, in order to control variables; data with the
same amount as the DL-Train dataset were randomly selected from the Space-Col dataset
for the GJK algorithm. The results of ten detection times are shown in Table 3.

Table 3. Dataset collision detection time of DLNet and GJK (ten detection times).

Algorithm 1 2 3 4 5 6 7 8 9 10
GJK 15,020.7985 s 15,024.0230 s 15,011.7995 s 15,001.7229 s 15,003.6697 s 15,033.8485 s 15,046.9780 s 15,007.4476 s 15,021.8630 s 15,024.3327 s

DLNet 1.5952 s 1.5773 s 1.5603 s 1.6240 s 1.6471 s 1.5634 s 1.6002 s 1.6001 s 1.5970 s 1.6033 s

As shown in Table 4, the average single-detection time of DLNet (TDL) is 0.12 μs, and
the average single-detection time of the GJK algorithm (TGJK) is 1129 μs, and the judgment
speed of DLNet for self-collision is much faster than the detection speed of the GJK algo-
rithm, which is one of the reasons why the DLGJK algorithm can improve detection effi-
ciency.

Table 4. Single self-collision detection time comparison of DLNet and GJK.

Algorithm Dataset Data Amount Average Dataset Detection Time Average Single-Detection Time
GJK 13,292,742 15,019.6483 s 1129 μs

DLNet 13,292,742 1.5969 s 0.12 μs

Figure 16. Webots model of four-manipulator handling robot.

5.2. Single Detection Time of DLGJK Algorithm
5.2.1. Single Detection Time of DLNet and GJK Algorithm

In this section, we calculated the single-detection time by dividing the detection time
of the dataset by the amount of data in the dataset. We took RF-LF as an example; since the
DL-Train dataset had covered the entire workspace of RF-LF, we used the DLNet to detect
the DL-Train dataset ten times. For a comparison, we used the GJK algorithm to detect
the Space-Col dataset ten times as well, in order to control variables; data with the same
amount as the DL-Train dataset were randomly selected from the Space-Col dataset for the
GJK algorithm. The results of ten detection times are shown in Table 3.

Sensors 2023, 23, 523 18 of 22

Table 3. Dataset collision detection time of DLNet and GJK (ten detection times).

Algorithm 1 2 3 4 5 6 7 8 9 10

GJK 15,020.7985 s 15,024.0230 s 15,011.7995 s 15,001.7229 s 15,003.6697 s 15,033.8485 s 15,046.9780 s 15,007.4476 s 15,021.8630 s 15,024.3327 s

DLNet 1.5952 s 1.5773 s 1.5603 s 1.6240 s 1.6471 s 1.5634 s 1.6002 s 1.6001 s 1.5970 s 1.6033 s

As shown in Table 4, the average single-detection time of DLNet (TDL) is 0.12 µs,
and the average single-detection time of the GJK algorithm (TGJK) is 1129 µs, and the
judgment speed of DLNet for self-collision is much faster than the detection speed of
the GJK algorithm, which is one of the reasons why the DLGJK algorithm can improve
detection efficiency.

Table 4. Single self-collision detection time comparison of DLNet and GJK.

Algorithm Dataset Data Amount Average Dataset Detection Time Average Single-Detection Time

GJK 13,292,742 15,019.6483 s 1129 µs
DLNet 13,292,742 1.5969 s 0.12 µs

5.2.2. Theoretical Single-Detection Time of DLGJK Algorithm

According to the working logic of the DLGJK algorithm, the single-detection time
of DLGJK algorithm should be discussed in different situations: for the working states
without a self-collision risk, the single-detection time of the DLGJK algorithm is denoted
as T1, T1 = TDL = 0.12 µs; for the working states with a self-collision risk or self-collision
occurrence, the single-detection time of the DLGJK algorithm is denoted as T2, T2 = TDL +
TGJK = 1129.12 µs, with the results recorded in Table 5. We could observe that the DLGJK
algorithm takes much less time than the GJK algorithm in a single detection for the state
without a self-collision risk and does not increase the detection time for the state with a
self-collision risk.

Table 5. Single self-collision detection time of DLGJK.

Working Conditions Time-Consuming Equation Single-Detection Time

No self-collision risk T1 = TDL 0.12 µs
With self-collision risk T2 = TDL + TGJK 1129.12 µs

5.2.3. Actual Single-Detection Time of the DLGJK Algorithm

For the workspace of the RF-LF dual-manipulator system, the single-detection time
of the DLGJK algorithm should be calculated as the time mathematical expectation of its
single detection, denoted as:

E(TDLGJK) = T1(1− P) + T2P (13)

P is the probability of the DLGJK algorithm calling GJK algorithm in a single detection.
We used the DLGJK algorithm and DL-Train dataset to detect the self-collision states of
the RF-LF workspace. In the DLGJK algorithm, the first-level frequency is the frequency
of calling DLNet, which is called globally during algorithm execution; the second-level
frequency is the frequency of calling the GJK algorithm, which is called according to the
judgment result of DLNet.

Compared to the global use of the GJK algorithm, the probability of the DLGJK
algorithm calling the GJK algorithm and the time expectation of a single self-collision
detection are shown in Table 6.

Sensors 2023, 23, 523 19 of 22

Table 6. RF-LF workspace self-collision detection time expectation of Global GJK and DLGJK.

Algorithm Number of Times Calling GJK P Single Detection-Time Expectation

Global GJK 13,292,742 100% E(TGJK) = TGJK = 1129 µs
DLGJK 306,463 2.3% E(TDLGJK) = T1 × 97.7% + T2 × 2.3% = 26.09 µs

We can observe that for the RF-LF system, compared to that with the global use of the
GJK algorithm, the single self-collision detection time when using the DLGJK algorithm is
reduced by 97.7%, and the number of times calling the GJK algorithm (DLGJK second-level
frequency) is effectively reduced, which reduces the system overhead.

For the four-manipulator system, we used the same method to calculate the single-
detection time expectation for LF-LS and RF-RS, and the results are shown in Tables 7 and 8.

Table 7. LF-LS workspace self-collision detection time expectation of Global GJK and DLGJK.

Algorithm Number of Times
Calling GJK Single-Detection Time P Single-Detection Time Expectation

Global GJK 13,292,742 TGJK(LF-LS) = 1134 µs 100% E(TGJK) = TGJK(LF-LS) = 1134 µs

DLGJK 471,702 T1(LF-LS) = TDL(LF-LS) = 0.12 µs
T2(LF-LS) = TDL(LF-LS) + TGJK(LF-LS) = 1134.12 µs 3.5% E(TDLGJK)(LF-LS) = T1(LF-LS) × 96.5% + T2(LF-LS)

× 3.5% = 39.81 µs

Table 8. RF-RS workspace self-collision detection time expectation of Global GJK and DLGJK.

Algorithm Number of Times
Calling GJK Single Detection Time P Single-Detection Time Expectation

Global GJK 13,292,742 TGJK(RF-RS) = 1131 µs 100% E(TGJK) = TGJK(RF-RS) = 1131 µs

DLGJK 450,981 T1(RF-RS) = TDL(RF-RS) = 0.12 µs
T2(RF-RS) = TDL(RF-RS) + TGJK(RF-RS) = 1131.12 µs 3.4% E(TDLGJK)(RF-RS) = T1(RF-RS) × 96.6%

+ T2(RF-RS) × 3.4% = 38.57 µs

Since the collision detection of each group of dual-manipulator systems is calculated
in parallel in the robot control system, as 39.81 µs, the maximum values of E(TDLGJK),
E(TDLGJK)(RF-RS), and E(TDLGJK)(LF-LS) are taken as the time expectation of the DLGJK algo-
rithm single detection for the four-manipulator system. As shown in Figure 17, compared
to that when using the GJK algorithm globally, using the DLGJK algorithm can signifi-
cantly reduce the single-detection time expectation, improve the detection efficiency, and
effectively reduce the number of times calling the GJK algorithm.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 23

Table 7. LF-LS workspace self-collision detection time expectation of Global GJK and DLGJK.

Algorithm Number of Times
Calling GJK

Single-Detection Time P Single-Detection Time Expectation

Global GJK 13,292,742 TGJK(LF-LS) = 1134 μs 100% E(TGJK) = TGJK(LF-LS) = 1134 μs

DLGJK 471,702 T1(LF-LS) = TDL(LF-LS) = 0.12 μs
T2(LF-LS) = TDL(LF-LS) + TGJK(LF-LS) = 1134.12 μs

3.5% E(TDLGJK)(LF-LS) = T1(LF-LS) × 96.5% +
T2(LF-LS) × 3.5% = 39.81 μs

Table 8. RF-RS workspace self-collision detection time expectation of Global GJK and DLGJK.

Algorithm
Number of Times

Calling GJK Single Detection Time P
Single-Detection Time

Expectation
Global GJK 13,292,742 TGJK（RF-RS） = 1131 μs 100% E(TGJK) = TGJK(RF-RS) = 1131 μs

DLGJK 450,981 T1(RF-RS) = TDL(RF-RS) = 0.12 μs
T2(RF-RS) = TDL(RF-RS) + TGJK(RF-RS) = 1131.12 μs

3.4% E(TDLGJK)(RF-RS) = T1(RF-RS) × 96.6% +
T2(RF-RS) × 3.4% = 38.57 μs

Since the collision detection of each group of dual-manipulator systems is calculated
in parallel in the robot control system, as 39.81 μs, the maximum values of E(TDLGJK),
E(TDLGJK)(RF-RS), and E(TDLGJK)(LF-LS) are taken as the time expectation of the DLGJK algorithm
single detection for the four-manipulator system. As shown in Figure 17, compared to that
when using the GJK algorithm globally, using the DLGJK algorithm can significantly re-
duce the single-detection time expectation, improve the detection efficiency, and effec-
tively reduce the number of times calling the GJK algorithm.

Figure 17. Single-detection time expectation of system workspace.

For the real-time control system, the single-detection time of the DLGJK algorithm
meets the requirement, and the detection speed far exceeds the standard for most of the
working states.

5.3. DLGJK Algorithm Self-Collision Detection for Working Path
Self-collision detection is an important process of path planning for multiple manip-

ulators. In this part, we use the DLGJK algorithm to detect the working path of the dual-
manipulator system and the four-manipulator system. The global GJK algorithm can also
be used for comparison.

For the dual-manipulator system, a working path consisting of 800 motion-state se-
quences in the actual task of RF-LF is used. For the four-manipulator system, we also used
a working path consisting of 800 motion-state sequences, which is a total of 2400 motion-

Figure 17. Single-detection time expectation of system workspace.

Sensors 2023, 23, 523 20 of 22

For the real-time control system, the single-detection time of the DLGJK algorithm
meets the requirement, and the detection speed far exceeds the standard for most of the
working states.

5.3. DLGJK Algorithm Self-Collision Detection for Working Path

Self-collision detection is an important process of path planning for multiple ma-
nipulators. In this part, we use the DLGJK algorithm to detect the working path of the
dual-manipulator system and the four-manipulator system. The global GJK algorithm can
also be used for comparison.

For the dual-manipulator system, a working path consisting of 800 motion-state
sequences in the actual task of RF-LF is used. For the four-manipulator system, we also used
a working path consisting of 800 motion-state sequences, which is a total of 2400 motion-
state sequences for the three groups of dual-manipulator systems. The experimental results
are shown in Figure 18.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 23

state sequences for the three groups of dual-manipulator systems. The experimental re-
sults are shown in Figure 18.

Figure 18. Number of detections for manipulator working path.

During the movement of the RF-LF, the GJK algorithm is called 800 times when the
GJK algorithm is used globally, while it is called 156 times when the DLGJK algorithm is
used. When using the DLGJK algorithm, the number of self-collision detections is reduced
by 80.5%.

During the movement of the whole system, the GJK algorithm is called 2400 times
when the GJK algorithm is used globally and 496 times when the DLGJK algorithm is
used. In the case of using the DLGJK algorithm, the number of self-collision detections is
reduced by 79.4%.

The experimental results show that for the system used in this paper, since most of
the working states in the working path have no self-collision risk, compared to that when
using the GJK algorithm globally, the DLGJK algorithm improves detection efficiency by
saving the number of detections with no self-collision risk. At the same time, it can effec-
tively reduce the time spent on self-collision detection and reduce the system overhead.

6. Conclusions
To solve the problem of real-time self-collision detection with high-precision in a

multi-manipulator control system, we propose a two-level self-collision detection algo-
rithm based on the GJK algorithm and deep learning, the DLGJK algorithm. The proposed
algorithm has made great progress in the accuracy and efficiency of self-collision detec-
tion. When applying the DLGJK algorithm for self-collision detection, the DLNet is firstly
used to independently judge whether there is self-collision risk in the current working
state of the system. For the working state without a self-collision risk, the GJK algorithm
is not called; for the working state with a self-collision risk, the DLGJK algorithm enters
the second level of detection such that the GJK algorithm is called to perform self-collision
detection.

For the dual-manipulator system, the experimental results show that the DLGJK al-
gorithm takes much less single-detection time than the GJK algorithm for the working
state without self-collision and does not increase the detection time for the working state

Figure 18. Number of detections for manipulator working path.

During the movement of the RF-LF, the GJK algorithm is called 800 times when the
GJK algorithm is used globally, while it is called 156 times when the DLGJK algorithm is
used. When using the DLGJK algorithm, the number of self-collision detections is reduced
by 80.5%.

During the movement of the whole system, the GJK algorithm is called 2400 times
when the GJK algorithm is used globally and 496 times when the DLGJK algorithm is used.
In the case of using the DLGJK algorithm, the number of self-collision detections is reduced
by 79.4%.

The experimental results show that for the system used in this paper, since most of the
working states in the working path have no self-collision risk, compared to that when using
the GJK algorithm globally, the DLGJK algorithm improves detection efficiency by saving
the number of detections with no self-collision risk. At the same time, it can effectively
reduce the time spent on self-collision detection and reduce the system overhead.

6. Conclusions

To solve the problem of real-time self-collision detection with high-precision in a multi-
manipulator control system, we propose a two-level self-collision detection algorithm based
on the GJK algorithm and deep learning, the DLGJK algorithm. The proposed algorithm
has made great progress in the accuracy and efficiency of self-collision detection. When

Sensors 2023, 23, 523 21 of 22

applying the DLGJK algorithm for self-collision detection, the DLNet is firstly used to
independently judge whether there is self-collision risk in the current working state of the
system. For the working state without a self-collision risk, the GJK algorithm is not called;
for the working state with a self-collision risk, the DLGJK algorithm enters the second level
of detection such that the GJK algorithm is called to perform self-collision detection.

For the dual-manipulator system, the experimental results show that the DLGJK
algorithm takes much less single-detection time than the GJK algorithm for the working
state without self-collision and does not increase the detection time for the working state
with a self-collision risk. For the system workspace, compared to that with the global use
of the GJK algorithm, DLGJK algorithm can reduce the single-detection time expectation
by 97.7%. For the working path, the DLGJK algorithm effectively reduces the number of
self-collision detections, which improves the detection efficiency and reduces the system
overhead in self-collision detection.

The proposed approach also has good scalability for multiple-manipulator systems
that can be divided into dual-manipulator systems, and we used a four-manipulator system
to verify this.

Author Contributions: Conceptualization, D.W. and Z.Y.; methodology, Z.Y. and A.A.; software, Z.Y.,
F.Z. and A.A.; validation, D.W., Z.Y. and A.A.; formal analysis, Z.Y.; investigation, Z.Y.; resources,
Z.Y. and A.A.; writing—original draft preparation, Z.Y.; writing—review and editing, D.W. and A.A.;
visualization, Z.Y. and F.Z.; project administration, D.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Chengdu Research Institute, Dalian University of Technol-
ogy, grant number XM01006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tang, W.X.; Cheng, C.; Ai, H.P.; Chen, L. Dual-arm robot trajectory planning based on deep reinforcement learning under complex

environment. Micromachines 2022, 13, 254. [CrossRef]
2. Shen, Y.; Guo, D.J.; Long, F.; Mateos, L.A.; Ding, H.Z.; Xiu, Z.; Hellman, R.B.; King, A.; Chen, S.X.; Zhang, C.K. Robots under

COVID-19 pandemic: A comprehensive survey. IEEE Access 2021, 9, 1590–1615. [CrossRef]
3. Zhu, Y.K.; Qiao, J.Z.; Long, F.; Guo, L. Adaptive sliding mode disturbance observer-based composite control with prescribed

performance of space manipulators for target capturing. IEEE T. Ind. Electron. 2019, 66, 1973–1983. [CrossRef]
4. Zhang, T.; Yue, X.K.; Ning, X.; Yuan, J.P. Stabilization and parameter identification of tumbling space debris with bounded torque

in postcapture. Acta Astronaut. 2016, 123, 301–309. [CrossRef]
5. Arents, J.; Abolins, V.; Judvaitis, J.; Vismanis, O.; Oraby, A.; Ozols, K. Human–robot collaboration trends and safety aspects: A

systematic review. J. Sens. Actuator Netw. 2021, 10, 48.
6. Robla-Gomez, S.; Becerra, V.M.; Llata, J.R.; Gonzalez-Sarabia, E.; Torre-Ferrero, C.; Perez-Oria, J. Working Together: A review on

safe human-robot collaboration in industrial environments. IEEE Access 2017, 5, 26754–26773. [CrossRef]
7. Pan, T.Y.; Wells, A.M.; Shome, R.; Kavraki, L.E. A general task and motion planning framework for multiple manipulators.

In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Electronic Network, Prague, Czech
Republic, 27 September–1 October 2021; pp. 3168–3174.

8. Ostyn, F.; Vanderborght, B.; Crevecoeur, G. Comparison of collision detection techniques for high-Speed industrial robot actuators
with overload clutch. In Proceedings of the International Conference on Advanced Intelligent Mechatronics (AIM), Electronic
Network, Delft, The Netherlands, 12–16 July 2021; pp. 448–453.

9. Haddadin, S.; De-Luca, A.; Albu-Schaffer, A. Robot collisions: A survey on detection, isolation, and identification. IEEE T. Robot
2017, 33, 1292–1312. [CrossRef]

10. Sivcev, S.; Rossi, M.; Coleman, J.; Omerdic, E.; Dooly, G.; Toal, D. Collision detection for underwater ROV manipulator systems.
Sensors 2018, 18, 1117. [CrossRef] [PubMed]

11. Hoang, X.B.; Pham, P.C.; Kuo, Y.L. Collision detection of a HEXA parallel robot based on dynamic model and a multi-dual depth
camera system. Sensors 2022, 22, 5923. [CrossRef]

http://doi.org/10.3390/mi13040564
http://doi.org/10.1109/ACCESS.2020.3045792
http://doi.org/10.1109/TIE.2018.2838065
http://doi.org/10.1016/j.actaastro.2016.04.007
http://doi.org/10.1109/ACCESS.2017.2773127
http://doi.org/10.1109/TRO.2017.2723903
http://doi.org/10.3390/s18041117
http://www.ncbi.nlm.nih.gov/pubmed/29642396
http://doi.org/10.3390/s22155923

Sensors 2023, 23, 523 22 of 22

12. Huang, S.F.; Gao, M.; Liu, L.; Chen, J.H.; Zhang, J.W. Collision detection for cobots: A back-input compensation approach.
IEEE-Asme T. Mech. 2022; accepted.

13. Park, K.M.; Park, Y.; Yoon, S.; Park, F.C. Collision detection for robot manipulators using unsupervised anomaly detection
algorithms. IEEE-Asme T. Mech. 2021; accepted.

14. Min, F.Y.; Wang, G.; Liu, N. Collision detection and identification on robot manipulators based on vibration analysis. Sensors 2019,
19, 1080. [CrossRef]

15. Kong, M.X.; Bai, Y.H. An efficient collision detection algorithm for the dual-Robot coordination system. In Proceedings of the Ad-
vanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 October 2018;
pp. 1533–1537.

16. Gottschalk, S.; Lin, M.C.; Manocha, D. OBBTree: A hierarchical structure for rapid interference detection. In Proceedings of the
International Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996.

17. Schulman, J.; Duan, Y.; Ho, J.; Lee, A.; Awwal, I.; Bradlow, H.; Pan, J.; Patil, S.; Goldberg, K.; Abbeel, P. Motion planning with
sequential convex optimization and convex collision checking. Int. J. Robot. Res. 2014, 33, 1251–1270. [CrossRef]

18. Salehian, S.S.M.; Figueroa, N.; Billard, A. A unified framework for coordinated multi-arm motion planning. Int. J. Robot. Res.
2018, 37, 1205–1232.

19. Park, K.W.; Kim, M.; Kim, J.S.; Park, J.H. Path planning for multi-Arm Manipulators using Soft Actor-Critic algorithm with
position prediction of moving obstacles via LSTM. Appl. Sci. 2022, 12, 9837. [CrossRef]

20. Prianto, E.; Kim, M.; Park, J.H.; Bae, J.H.; Kim, J.S. Path planning for multi-arm manipulators using deep reinforcement learning:
Soft actor-critic with hindsight experience replay. Sensors 2020, 20, 5911. [CrossRef] [PubMed]

21. Gilbert, E.G.; Johnson, D.W.; Keerthi, S.S. A fast procedure for computing the distance between complex objects in 3-dimensional
space. IEEE J. Robot. Autom. 1988, 4, 193–203. [CrossRef]

22. Gilbert, E.G.; Foo, C.P. Computing the distance between smooth objects in 3-dimensional space. In Proceedings of the International
Conference On Robotics and Automation, Scottsdale, AZ, USA, 4–9 May 1989.

23. Cameron, S. Enhancing GJK: Computing minimum and penetration distances between convex polyhedron. In Proceedings of the
International Conference On Robotics and Automation, Albuquerque, NM, USA, 20–25 April 1997.

24. Huang, S.; Huang, L.C.; Lai, Z.S.; Bae, J.H.; Kim, J.S. An extension of the Fourier series-based particle model to the GJK-based
contact detection and resolution framework for DEM. Comput. Part. Mech. 2022, 9, 381–391. [CrossRef]

25. Descantes, Y.; Tricoire, F.; Richard, P. Classical contact detection algorithms for 3D DEM simulations: Drawbacks and solutions.
Comput. Geotech. 2019, 114, 103134. [CrossRef]

26. Ferreira, T.D.; Santos, R.G.; Vianna, S.S.V. A coupled finite volume method and Gilbert-Johnson-Keerthi distance algorithm for
computational fluid dynamics modelling. Comput. Method. Appl. Mech. Eng. 2019, 352, 417–436. [CrossRef]

27. Zheng, Y.; Yamane, K. Ray-shooting algorithms for robotics. IEEE Trans. Autom. Sci. Eng. 2013, 10, 862–874. [CrossRef]
28. Sabetghadam, B.; Cunha, R.; Pascoal, A. A distributed algorithm for real-time multi-drone collision-free trajectory replanning.

Sensors 2022, 22, 1855. [CrossRef]
29. Heo, Y.J.; Kim, D.; Lee, W.; Kim, H.; Park, J.; Chung, W.K. Collision detection for industrial collaborative robots: A deep learning

approach. IEEE Robot. Autom. Lett. 2019, 4, 740–746. [CrossRef]
30. Park, K.M.; Kim, J.; Park, J.; Park, F.C. Learning-based real-dime detection of robot collisions without joint torque sensors. IEEE

Robot. Autom. Lett. 2021, 6, 103–110. [CrossRef]
31. Sharkawy, A.N.; Koustoumpardis, P.N.; Aspragathos, N. Neural network design for manipulator collision detection based only

on the joint position sensors. Robotica 2020, 38, 1737–1755. [CrossRef]
32. Kim, M.; Han, D.K.; Park, J.H.; Kim, J.S. Motion planning of robot manipulators for a smoother path using a twin delayed deep

deterministic policy gradient with hindsight experience replay. Appl. Sci. 2020, 10, 575. [CrossRef]
33. Liu, C.Z.; Gao, J.Y.; Park, J.H.; Bi, Y.Z.; Shi, X.Y.; Tian, D.K. A multitasking-oriented robot arm motion planning scheme based on

deep reinforcement learning and wwin synchro-control. Sensors 2020, 12, 3515. [CrossRef]
34. Liu, Z.Y.; Zhang, L.H.; Qin, X.H.; Li, G. An effective self-collision detection algorithm for multi-degree-of-freedom manipulator.

Meas. Sci. Technol. 2022, 34, 015901. [CrossRef]
35. Montanari, M.; Petrinic, N.; Barbieri, E. Improving the GJK algorithm for faster and more reliable distance queries between

convex objects. ACM Trans. Graph. 2017, 36, 30. [CrossRef]
36. Dyllong, E.; Luther, W. The GJK distance algorithm: An interval version for incremental motions. Numer. Algorithms

2004, 37, 127–136. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s19051080
http://doi.org/10.1177/0278364914528132
http://doi.org/10.3390/app12199837
http://doi.org/10.3390/s20205911
http://www.ncbi.nlm.nih.gov/pubmed/33086774
http://doi.org/10.1109/56.2083
http://doi.org/10.1007/s40571-021-00446-6
http://doi.org/10.1016/j.compgeo.2019.103134
http://doi.org/10.1016/j.cma.2019.04.023
http://doi.org/10.1109/TASE.2013.2272578
http://doi.org/10.3390/s22051855
http://doi.org/10.1109/LRA.2019.2893400
http://doi.org/10.1109/LRA.2020.3033269
http://doi.org/10.1017/S0263574719000985
http://doi.org/10.3390/app10020575
http://doi.org/10.3390/s20123515
http://doi.org/10.1088/1361-6501/ac9920
http://doi.org/10.1145/3072959.3083724
http://doi.org/10.1023/B:NUMA.0000049460.50984.b8

	Introduction
	Multi-Manipulator System and Collider Modeling
	Kinematic Modeling of Multi-Manipulator System
	Collider Construction of Manipulators

	GJK Algorithm for Dual-Manipulator Self-Collision Detection
	Introduction of GJK Algorithm
	Minkowski Difference
	Basic Principle of GJK Algorithm

	GJK Self-Collision Detection for Dual-Manipulator System

	DLGJK Algorithm
	Structure of DLGJK Algorithm
	Structure and Training of DLNet
	Gathering DLNet Training Data
	Structure and Parameters of DLNet

	Judgment Logic of DLNet for Self-Collision

	Experiment and Discussion
	Experimental Platform and Simulation Environment
	Single Detection Time of DLGJK Algorithm
	Single Detection Time of DLNet and GJK Algorithm
	Theoretical Single-Detection Time of DLGJK Algorithm
	Actual Single-Detection Time of the DLGJK Algorithm

	DLGJK Algorithm Self-Collision Detection for Working Path

	Conclusions
	References

