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Abstract: Effective accident management acts as a vital part of emergency and traffic control systems.
In such systems, accident data can be collected from different sources (unmanned aerial vehicles,
surveillance cameras, on-site people, etc.) and images are considered a major source. Accident site
photos and measurements are the most important evidence. Attackers will steal data and breach
personal privacy, causing untold costs. The massive number of images commonly employed poses
a significant challenge to privacy preservation, and image encryption can be used to accomplish
cloud storage and secure image transmission. Automated severity estimation using deep-learning
(DL) models becomes essential for effective accident management. Therefore, this article presents a
novel Privacy Preserving Image Encryption with Optimal Deep-Learning-based Accident Severity
Classification (PPIE-ODLASC) method. The primary objective of the PPIE-ODLASC algorithm is
to securely transmit the accident images and classify accident severity into different levels. In the
presented PPIE-ODLASC technique, two major processes are involved, namely encryption and
severity classification (i.e., high, medium, low, and normal). For accident image encryption, the
multi-key homomorphic encryption (MKHE) technique with lion swarm optimization (LSO)-based
optimal key generation procedure is involved. In addition, the PPIE-ODLASC approach involves
YOLO-v5 object detector to identify the region of interest (ROI) in the accident images. Moreover, the
accident severity classification module encompasses Xception feature extractor, bidirectional gated
recurrent unit (BiGRU) classification, and Bayesian optimization (BO)-based hyperparameter tuning.
The experimental validation of the proposed PPIE-ODLASC algorithm is tested utilizing accident
images and the outcomes are examined in terms of many measures. The comparative examination
revealed that the PPIE-ODLASC technique showed an enhanced performance of 57.68 dB over other
existing models.

Keywords: accident images; privacy preserving; key generation; deep learning; severity classification;
hyperparameter tuning

1. Introduction

Owing to the increase in motorization and population, the number of traffic accidents
and their victims seems to be increasing globally [1]. Complicated traffic situations and
random events pose a hazard to the safety of drivers, passengers, and pedestrians. In-
creasing populations and numbers of cars have made traffic accidents a major problem for
transportation security. Insurance, medical, and monetary costs all go up when accidents
occur on the road. Diverse factors included in traffic accidents have a significant impact
on each other, consequently making it tough to individually take any of the parameters
while describing the severity of traffic accidents. In the field of traffic safety research, the
growth of reliable methods for predicting and classifying crash injury severity, which relies
upon numerous explanatory variables, was a key factor [2]. A mechanism for accident
management serves a significant role in emergency systems and traffic control. In such
structures, data from diverse sources is gathered for supporting injured people [3].
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The photographs and measurements taken at the scene of the accident are the most
crucial pieces of evidence in cases of accidents. The data collected at the scene of an
accident is corrected by police or investigators. There should be no room for error in
accident investigations if police and investigators know exactly what they will be using
the photos they take at the scene for. It is more efficient to plan out a series of high-quality
images rather than taking a dozen random shots. Accident analysis relies heavily on having
access to high-quality images of the incidents.

One crucial data source in accidents is image source. Portable or fixed cameras
may capture such images, but the latter is very effective. Such digital images generally
have a wealth of personally delicate data. When the data is analyzed and collected by
attackers, unmeasurable losses will happen along with the leak of personal privacy [4]. The
privacy protection of images frequently depends on methods such as privacy encryption,
k-anonymity, and access control. Several perceptual encrypted techniques were modelled
to generate images without visual data according to the visual data-protection system, but
data theory-related encryption (AES and RSA) creates ciphertext [5]. Perceptual encryption
intended at generating images without visual data on plain images based on a visual
data-protection system as visual data involves private data such as personally identifiable
information, time, and place [6].

Conversely, there are several authors on analyzing accidents. Various image-processing
approaches were advanced to get a real-time mechanism to assist the accident [7]. Crash
severity methods may forecast severity that may be anticipated to occur for a crash that
aids clinics in offering proper health care as soon as possible [8]. Moreover, research on
crash injury severity even aids superior understanding of what factors contributed to injury
severity once a crash occurred, which will help improve road safety and reduce crash
severity. Crash severity was generally measured by numerous discrete classes of possible
injury, fatal, incapacitating injury, property damage only, and non-incapacitating injury [9].

Because of improvements in processing power and technologies, deep-learning (DL)
models have achieved excellent performance in a number of domains, including au-
tonomous vehicle systems. Now that neural networks (NN) have matured into a potent
tool for discovering intricate patterns in high-dimensional datasets and delivering on-target
predictions, they may now be relied upon to make accurate and trustworthy forecasts in
ordinal data. Some of these techniques implement ML techniques such as artificial neural
network (ANN). With the help of pooling layers, the hidden features can be derived [10].
Generally, the output of the final pooling layer was implemented for the purposes of
regression and classification.

Accident site photos and measurements are the most important evidence. Attackers
will steal data and breach personal privacy, causing untold costs. The massive number
of images commonly employed poses a significant challenge to privacy preservation,
and image encryption can be used to accomplish cloud storage [11] and secure image
transmission in the network; moreover, an automated deep-learning (DL)-based accident
severity classification is needed.

The novelty of this paper includes:

• This article presents a novel Privacy Preserving Image Encryption with Optimal Deep-
Learning-based Accident Severity Classification (PPIE-ODLASC) model. The goal of
the presented PPIE-ODLASC technique is to accomplish secure image transmission via
encryption and accident severity classification (i.e., high, medium, low, and normal).

• For accident image encryption, multi-key homomorphic encryption (MKHE) technique
with lion swarm optimization (LSO)-based optimal key generation process is involved.

• In addition, the PPIE-ODLASC algorithm involves YOLO-v5 object detector to identify
the region of interest (ROI) in the accident images. Moreover, the accident severity
classification module encompasses Xception feature extractor, bidirectional gated
recurrent unit (BiGRU) classification, and Bayesian optimization (BO)-based hyperpa-
rameter tuning.



Sensors 2023, 23, 519 3 of 19

• The experimental validation of PPIE-ODLASC technique is tested using accident
images and the results are investigated in terms of several measures.

The rest of the paper is organized as follows. Section 2 provides a detailed review of
existing models and Section 3 elaborates the proposed algorithm. Then, Section 4 shows
experimental validation and Section 5 draws the concluding remarks of the study.

2. Literature Review

Boulila et al. [12] advises a hybrid PPDL method for object classification. This study
aims to improve the encryption of satellite images while guaranteeing a higher object classi-
fier accuracy and good runtime. The technique projected to encrypt the image is preserved
by the public keys of somewhat homomorphic encryption and Paillier homomorphic en-
cryption. Chuman and Kiya [13] developed a learnable image encryption technique for
privacy-preserving DNN. The presented technique is performed based on block scrambling
utilized along with data augmentation methods, namely grid mask, random cropping,
and horizontal flip. The usage of block scrambling improves the robustness against many
attacks; on the other hand, combined with data augmentation, it allows the preservation of
a higher classifier accuracy while using encrypted images.

He et al. [14] developed a CryptoEyes to overcome the problems of privacy-preserving
classifier on encrypted images. The study presents a 2-stream convolution network struc-
ture for the classifier of encrypted images to capture the contour of the encrypted image,
thereby considerably increasing the accuracy of the classification. Shen et al. [15] devel-
oped a secure SVM that is a privacy-preserving SVM training system over blockchain
(BC)-based encrypted IoT information. The author utilizes the BC technique to construct
reliable and secured data sharing platforms amongst various data providers, whereas an
IoT information is encrypted and recorded on the distributed ledger. Ito et al. [16] designed
a transformation system to generate visually protected images for privacy-preserving
DNN. However, the presented technique allows us to preserve the image classification
performance and strongly protects visual information.

The authors in [17] resolve the challenges by designing Secure DL, a privacy-preserving
image detection technique for encrypted dataset over cloud. The presented block-based
image encryption system is well-developed for protecting the image’s visual data. The
presented technique is demonstrated to be secure from a probabilistic perspective, and
with different cryptographic attacks. Ahmad and Shin [18] present an effective pixel-based
encryption technique. The technique gives a basic level of privacy while maintaining the in-
herent property of the original images, thus allowing DL application in the encryption field.
The author has utilized logistic maps for the lower computation requirement. Furthermore,
in order to compensate for any ineffectiveness due to the logistic maps, the author uses a
second key for shuffling the sequence.

Li et al. [19] proposed a new FL into autonomous driving for preserving privacy of the
vehicle by sharing the model training parameter through MEC server and keeping original
information in a local vehicle. Salem et al. [20] introduce DeepZeroID: a multiple-party
biometric verification and privacy-preserving cloud-based technique which makes use
of homomorphic encryption. Training on sensitive biometric data is eliminated with the
help of transfer learning, and one pre-trained DNN is exploited as the feature extractor.
By proposing an exhaustive search algorithm, these feature extractors are employed on
the processes of liveness detection and biometric authentication. Song et al. [21] present a
novel technique that constructs an effective module without sharing sensitive information
between the source and target domain. The target domain benefit from the label-rich
source domain without exposing its private information. Zhao et al. [22] developed a
BC based privacy-preserving software updating protocol that delivers reliable and secure
updates with an incentive model while protecting the privacy of the user. Ibarrondo and
Önen [23] analyze the Batch Normalization (BN) layer: a modern layer that addresses
internal covariance shift, which was demonstrated to be highly effective in improving the
performance of the deep neural network. The study aims at reformulating BN that leads to
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a modest reduction on the number of operations in order to be compatible with the usage
of FHE.

Despite the ML and DL algorithms existing in the early research, it is still necessary
to optimize the privacy and accident severity classification performance. Simultaneously,
various hyperparameters have a crucial effect on the effectiveness of the CNN algorithm.
In particular, the hyperparameters including learning rate selection, epoch count, and batch
size are necessary to attain superior outcomes. Meanwhile, the trial-and-error algorithm
for hyperparameter tuning is an erroneous and challenging task; in the proposed method,
the BOA algorithm was used for the parameter selection of the BiLSTM module.

3. The Proposed Model

In this article, we developed a novel PPIE-ODLASC system for privacy and accident
severity classification process. In the presented PPIE-ODLASC technique, two major
processes are involved, namely encryption and severity classification (i.e., high, medium,
low, and normal). At the first level, the accident images are encrypted by the MKHE
technique with the LSO algorithm, and the encrypted images are transmitted to the received.
At the receiving end, the decryption process takes place, and then the accident severity
classification process is performed. Figure 1 demonstrates the overall block diagram of the
PPIE-ODLASC approach. The detailed working of these processes is deliberated in the
following sections.
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3.1. Image Encryption Module

In this study, the MKHE technique is applied to encrypt the accident images. An
MKHE is a cryptosystem that allows one to evaluate an arithmetic circuit on cipher images,
perhaps encrypting in multiple keys. Consider thatM remain the message space with
arithmetical structure [24]. Assume that each contributing party has a reference to their
confidential and public keys. A multi-key cipher image indirectly has an arranged set
T = {id1, . . . , idk} related to the reference. For example, a fresh cipher image ct←MKHE.
Enc(µ; pkid) is equal to single-element set T = {id}; however, the size of references fixed
attains better than the calculation among cipher image in party development.

• Setup: pp← MKHE .Setup
(
1λ
)
. Proceed with the secure parameters as input and

return the public parameterization. Consider that other techniques indirectly get pp
as an input.

• Key Generation: (sk, pk)← MKHE .KeyGen(pp). Resulting in a pair of public and
confidential keys.

• Encryption: ct←< KHE .Enc(µ; pk). Encrypt a plain image µ ∈ M and resultant a
cipher-image ct ∈

{
0, 1}*.

• Decryption: µ← MKHE .Dec
(

ct; {skid}id∈T

)
. For providing a ct cipher image with

equal order of confidential key, outcome a plain image µ.

The Homomorphic estimation can be described by using Equation (1):

ct← MKHE.Eva1
(

C,
(

ct, . . . , ctl

)
, {pkid}id∈T). (1)

To provide a C circuit, the equal group of public keys {pkid}id∈T and a tuple of
multi-key cipher-image

(
ct, . . . , ctl

)
results in a cipher-image ct. Its reference set is

T = T1 ∪ · · · ∪ T` of reference sets = Tj of input cipher-image ctj for 1 ≤ j ≤ `.
Semantic Security. For two communications µ0, µ1 ∈ M, the distribution {MKHE.Enc

(µi; pk)} for i = 0, 1 might be undistinguishable while pp← MKHE .Setup
(
1λ
)

and
(sk, pk)← MKHE .KeyGen(pp). Compactness and Correctness. An MKHE method was com-
pact when the size of cipher images associated with k party is constrained by the poly (λ, k) to set a
polynomial poly. Where 1 ≤ j ≤ `, consider ctj as a cipher image (with Tj reference set) as MKHE.
Considering C :M` →M as the circuit and ct← MKHE.Eval

(
C,
(
ct, . . . , ct

)
, {pkid}id∈T

)
for T = T1 ∪ · · · ∪ T`, then,

MKHE.Dec
(

ct, {skid}id∈T) = C(µ1, . . . , µ`). (2)

To optimally select the keys for the MKHE technique, the LSO algorithm is exploited.
The lion swarm race can be primarily classified into three classes for resolving the global
optimization problems of the objective function using the LSO technique: Young Lion, Lion
King, and Lioness [25]. They have dissimilar social behaviors. The lioness and lion king
are the adult lions, and might affect the difference in convergence speed and the algorithm
population size; for maintaining the effects of the algorithm, the proportion of young lion
ranges within 0.5 and 1, and the proportion of adult lion τ usually lesser than 0.5. The
location of lion king was given in the following:

Xt+1
i = gt(1 + γ‖Pt

i − gt) (3)

where t characterizes the present number of iterations, Xr+1
i signifies the new position

made after the update, gt is an optimum location of t-generation, γ represent the uniformly
distributed N(0, 1) random number, and Pt

i is the past optimum position of the i-th lion in t
generation population. They cooperate among themselves during hunting, which provides
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better food to the lion king, and are also accountable to lead the cubs to learn how to hunt;
it can be formulated as follows:

Xt+1
i =

(
Pt

i + pt
c
)

2

(
1 + α f γ

)
(4)

where Xt+1
i specifies the position of the lioness afterward the update, Pt

c is the better
location in the history of choosing a lioness randomly for cooperating with hunting in t
generation population, γ represent the uniformly distributed N(0, 1) random number, and
α f is a step control factor. The formula for updating the location of the lioness can be given
in the following:

α f = step·exp
(
−30t/tmax)

10 (5)

where step = 0.1(H − L) is the maximal moving step of the lioness. Let L and H be
the lower and upper boundaries of lion group space correspondingly. tmax is a maximal
number of iterations.

The young lion has three major behaviors: (1) once the cubs are full, it learns to hunt
with the lioness. (2) As an adult, it is evicted from the territory by the lion king and
confronted the location of the lion king suffering afterward. (3) If it is hungry, it will eat
nearer the lion king. The updated location of the young lions is given as:

Xr+1
i =


gt+Pt

i
2 (1 + αcγ), q ≤ 1

3
Pt

m+Pt
i

2 (1 + αcγ), 1
3 ≤ q < 2

13
gt′+Pt

i
2 (1 + αcγ), 2

3 ≤ q < 1

(6)

Xr+1
i where Xt+1

i is the position of the young lion, Pt
m is the better location at t-th generation

while the young lion follows the female lion to learn hunting, αc is a step control factor,
αc = step ∗

(
1− t

tmax

)
·gt′ adopt the concept of elite reverse learning that implies the

expelled lion cubs are farther from the lion king’s location, and gt′ = H + L− gt. q refers to
a probability factor, a uniformly distributed random integer U(0, 1).

The LSO technique proposes deriving the main function depending on the fitness
function (FF). The main purpose of the LSO technique is to propose a new image encrypt
system with minimized error (MSE) and maximized PNSR. It can be measured as:

F = {min(MSE), max(PSNR)}. (7)

The preferred minimization and maximization values can be achieved with utilization
of the LSO system.

3.2. Accident Severity Classification Model

In this work, the automated severity classification module comprises different sub
processes, namely YOLO-v5 based RoI detection, Xception feature extraction, BiGRU
classification, and BO-based hyperparameter tuning.

3.2.1. Accident Region Detection Using YOLO-v5

In the field of artificial intelligence, a convolutional neural network (CNN) is a type
of network that is optimized for processing input with a grid-like architecture, such as an
image. An electronic photograph is a binary representation of visual information. Semantic
segmentation, object detection, fake image identification [26], and image captioning [27]
are just a few examples of areas where convolutional neural networks (CNNs) have seen
significant advancements in recent years thanks to the explosion of deep learning. With
a CNN-LSTM model, features are extracted from input data using CNN layers, while
sequence prediction is accomplished using LSTM layers. In order for a neural network to
function properly, it needs to be able to store sequence information in both forward and
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backward directions, a process known as bidirectional long-short term memory (bi-lstm)
(past to future). A bi-lstm is distinct from a standard LSTM since its input goes in both
directions. Word classification in a text could be another application of bidirectional LSTM.
They are more equipped to categorize the word because they can understand its history
and its future.

To identify the RoI in the accident images, the YOLO-v5 model is used. YOLOv5 is the
most developed object detection technique obtainable. It is a new CNN which performs
object detection in real-time with maximum accuracy [28]. This technique utilizes a single
NN for processing the whole picture; afterwards, it divides it into parts and forecasts
bounding boxes and probability to all the components. These bounding boxes can be
weighted by expected possibility. This technique “just looks once” at the image from the
sense which it generates forecasts then forwards propagating run with NN. Then, it delivers
identified items after non-max suppression.

• Backbone: Backbone has frequently been utilized for extracting the main features
in input images. CSP (Cross Stage Partial Network) is utilized as the backbone in
YOLOv5 for extracting rich suitable features in an input image.

• Neck: The Neck model was frequently utilized for creating feature pyramids. The
feature pyramids aid methods in effective generalizations once it derives to object
scaling. It supports the detection of similar objects in several scales and sizes. The
feature pyramids can be quite useful in supporting methods for performing effectually
on earlier unseen data. Other methods such as PANet, FPN, and BiFPN utilize several
sorts of feature pyramid methods. PANet was utilized as a neck from YOLOv5 for
obtaining feature pyramid.

• Head: A typical Head was frequently accountable for the last detection stage. It utilizes
anchor boxes for constructing last outcome vectors with class probability, objectiveness
score, and bounding box.

3.2.2. Xception Based Feature Extraction

At this stage, the features involved in the RoI are extracted by the Xception model.
For effective feature extraction, the Xception architecture was introduced to extract feature
vectors [29]. Initially, a pretrained Xception network model is selected named Inception. It
is a type of deep-CNN architecture that contains a total depth of 71 layers. It is a modified
version of Inception-V3 architecture that has surpassed ResNet, Inception-V3, and VGG16
in classification tasks. It encompasses a revised form of depth wise separable convolutional
and max-pooling layers, each related as a ResNet. The architecture of Xception consists of:
middle flow, exit flow, and entry flow. The input images are passed over the entry flow,
following a middle flow, i.e., repeated eight times, and finally, it is passed over the exit
flow for data classification. Finetuning can be performed on the exit and middle flow of
Xception architecture. The separable convolution layer in the middle flow is reformed after
the exit flow and the weight is upgraded to extract relevant features. Following the global
average pooling, the extracted features are fed through the topmost model correspondingly
comprising four fully connected layers with 256, 128, 1024, and 512 units, each containing
an output layer, and ReLU activation is accustomed to data classification.

3.2.3. Severity Classification Using Optimal BiGRU Model

For classification of accident severity into multiple classes, the BiGRU model is ex-
ploited in this work. Comparable with LSTM, GRU can be presented for tackling the
gradient vanishing problem current in RNNs and studying the long-term dependency from
the long sequence applications with internal gating approach [30]. A GRU cell comprises
reset gate rn and update gate zn. The activation of gates from the GRU was dependent upon
presenting input and prior output. The internal infrastructure of the GRU cell in which hn
and xn refers to the hidden layer and input vector from the time slice n, and h′n implies the
candidate of hidden state. For parts n, the reset gate rn determines preceding data has been



Sensors 2023, 23, 519 8 of 19

required for forget and the updating gate zn mechanism upgrading the hidden state with
the current EEG data.

rn = σ(Wr·[hn−1, xn]) (8)

zn = σ(Wz·[hn−1, xn]) (9)

h′n = tanh(Wh′ ·[rn ∗ hn−1, xn]) (10)

hn = (1− zn) ∗ hn−1 + zn ∗ h′n (11)

In the aforementioned equation, tanh(·) and σ(·) refer to the hyperbolic tangent
and sigmoid functions. · and ∗ symbol implies the matrix multiplication and Hadamard
product; furthermore, [] stands for the concatenation of 2 vectors. Wz, Wr, and Wh′ signifies
the weighted matrix learned by GRU network trained.

Finally, the BO algorithm is used for the optimal hyperparameter adjustment of the
BiGRU model. The proposed method is based on the assembly of heuristic approach,
whereupon numerous objective tasks was distributed to the objective of concern from the
input space [31].

D = {(ax, bx)}N
x=1 (12)

In Equation (12), N refers to the total amount of annotations of the input objective
set. A proxy optimization was performed by continuing the BO algorithm to decide the
next input. The function used in BO is distributed by means of GPs as a result of system-
atic, flexible, and ambiguous properties. Thus, BO is utilized to overcome minimization
complications as follows:

y∗ = argmin
y∈X g(y)

(13)

From the expression, X is a dense subset of RK. To meta-parameter of substitute method,
consider borderline analytical variance of the heuristic model as σ2(y, Θ) = Σ(y, y; Θ) and
µ(y;D, Θ), which characterizes the analytical mean and is defined by:

γ(y) =
g(yBEST)− µ(y,D, Θ)

σ(y,D, Θ)
(14)

In Equation (14), g(yBEST) signifies the minimal perceived value and it can be demon-
strated below:

αFI(y,D, Θ) = σ(y,D, Θ)·[γ(y)Φ(γ(y)) +M(γ(y), 0, 1)] (15)

In Equation (15), Φ is a cumulative function and M(0,1) is a density of common
standard. After the training on the diseased cropped region, the newly trained model is
obtained that is used for the feature extraction.

4. Experimental Validation

The proposed technique is simulated by means of the Python 3.6.5 tool. The proposed
model is experimented on GeForce 1050Ti 4 GB, PC i5-8600k, 16 GB RAM, 1 TB HDD,
and 250 GB SSD. The parameter settings are as follows: dropout: 0.5, learning rate: 0.01,
activation: ReLU, batch size: 5, and epoch count: 50. The encryption performance of the
proposed model is investigated using different measures such as mean square error (MSE),
PSNR, structural similarity (SSIM), and root mean square error (RMSE). Next, accuracy,
precision, recall, F-score, and Mathew Correlation Coefficient (MCC) can examine the
classification performance.

In this study, we examined the performance of the PPIE-ODLASC model using a set of
accident images with four classes. For training purposes, we used the CADP dataset [32],
which contains 1416 video segments composed from YouTube, with 205 video segments
having full spatio-temporal annotations. For testing purposes, we used our own dataset
collected from a real-time environment. It comprises 20,000 samples with four classes
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(normal, low, medium, and high) as represented in Table 1. Figure 2 defines the sample
images of multiclass.

Table 1. Details of dataset.

Class No. of Instances

Normal 5000

low 5000

medium 5000

high 5000

Total number of Instances 20,000Sensors 2023, 23, x FOR PEER REVIEW 10 of 20 
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Figure 3 shows the RoI extracted by the PPIE-ODLASC approach on the applied
sample images. The result indicates that the PPIE-ODLASC technique has effectually
extracted the RoI on all images.
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Table 2 and Figure 4 report the outcomes of the PPIE-ODLASC approach on image
encryption process. The outcome stated that the PPIE-ODLASC approach has encrypted
the images proficiently. For instance, on image1, the PPIE-ODLASC system has obtained
an MSE of 0.1110, RMSE of 0.3332, PSNR of 57.68 dB, and SSIM of 99.81%. Meanwhile, in
image3, the PPIE-ODLASC method has reached an MSE of 0.1540, RMSE of 0.3924, PSNR
of 56.26 dB, and SSIM of 99.95%. Eventually, on image6, the PPIE-ODLASC technique
gained an MSE of 0.1610, RMSE of 0.4012, PSNR of 56.06 dB, and SSIM of 99.87%.

Table 2. Result analysis of the PPIE-ODLASC system with various images.

Test Images MSE RMSE PSNR SSIM (%)

Image1 0.1110 0.3332 57.68 99.81

Image2 0.0940 0.3066 58.40 99.95

Image3 0.1540 0.3924 56.26 99.95

Image4 0.1580 0.3975 56.14 99.86

Image5 0.1540 0.3924 56.26 99.80

Image6 0.1610 0.4012 56.06 99.87
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Figure 4. Result analysis of the PPIE-ODLASC system with distinct images.

Table 3 and Figure 5 represent the PSNR results of the PPIE-ODLASC system with and
without attacks. The outcome indicated that the PPIE-ODLASC algorithm has obtained
effectual PSNR values under the presence of attack. For sample, in image1, the PPIE-
ODLASC approach has obtained a PSNR of 57.68 dB and 56.73 dB for without and with
attacks, respectively. Concurrently, on image3, the PPIE-ODLASC method has gained a
PSNR of 56.26 dB and 55.14 dB for without and with attacks, correspondingly. Furthermore,
in image6, the PPIE-ODLASC model has obtained a PSNR of 56.06 dB and 54.98 dB for
without and with attacks, correspondingly.

Table 3. PSNR analysis of the PPIE-ODLASC system under with and without attacks.

Test Images Without Attack With Attack

Image-1 57.68 56.73

Image-2 58.40 57.50

Image-3 56.26 55.14

Image-4 56.14 55.21

Image-5 56.26 54.96

Image-6 56.06 54.98
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Figure 5. PSNR analysis of the PPIE-ODLASC system under with and without attacks.

A comparative PSNR study of the PPIE-ODLASC approach with other existing meth-
ods on various images is given in Table 4 and Figure 6. The outcome highlighted that the
PPIE-ODLASC system reached higher PSNR values. For instance, in image1, the PPIE-
ODLASC methodology obtained an improved PSNR of 57.68 dB, while the MSC-OKG, HSP-
ECC, OGWO-ECC, and DM-CM models obtained a reduced PSNR of 55.14 dB, 51.60 dB,
48.45 dB, and 45.37 dB, respectively. Similarly, in image 3, the PPIE-ODLASC model
reached an improved PSNR of 56.26 dB, while the MSC-OKG, HSP-ECC, OGWO-ECC, and
DM-CM [33] models obtained a reduced PSNR of 54.02 dB, 51.77 dB, 48.26 dB, and 45.88 dB,
correspondingly. Additionally, in image 6, the PPIE-ODLASC model obtained an improved
PSNR of 56.06 dB, while the MSC-OKG, HSP-ECC, OGWO-ECC, and DM-CM models
obtained a reduced PSNR of 53.86 dB, 50.36 dB, 47.72 dB, and 44.69 dB, correspondingly.

Table 4. PSNR analysis of the PPIE-ODLASC system with other approaches under different images.

PSNR (dB)

Test Images PPIE-
ODLASC MSC-OKG HSP-ECC OGWO-ECC DM-CM

Image-1 57.68 55.14 51.60 48.45 45.37

Image-2 58.40 54.54 51.84 49.56 46.47

Image-3 56.26 54.02 51.77 48.26 45.88

Image-4 56.14 52.00 48.47 45.69 43.17

Image-5 56.26 51.65 48.89 46.49 43.21

Image-6 56.06 53.86 50.36 47.72 44.69

The accident severity classification results of the PPIE-ODLASC model in terms of
the confusion matrix are shown in Figure 7. The results indicated that the PPIE-ODLASC
model has accurately classified different types of severity levels.

Table 5 represents an overall accident severity classification result of the PPIE-ODLASC
model under different sizes of TR and TS databases. The experimental results stated that
the PPIE-ODLASC model has accurately identified varying levels of severity. For example,
with 80% of TR data, the PPIE-ODLASC technique offered an average accuy of 98.32%,
precn of 96.68%, recal of 96.65%, Fscore of 96.65%, and MCC of 95.54%. Along with that,
with 20% of TS database, the PPIE-ODLASC technique offered an average accuy of 98.31%,
precn of 96.63%, recal of 96.64%, Fscore of 96.62%, and MCC of 95.51%. Moreover, with 70%
of TR database, the PPIE-ODLASC methodology offered an average accuy of 97.81%, precn
of 95.61%, recal of 95.61%, Fscore of 95.61%, and MCC of 94.15.
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Table 5. Accident severity classification outcome of the PPIE-ODLASC approach with varying measures.

Class Accuy Precn Recal Fscore MCC

Training Phase (80%)

Normal 98.51 96.87 97.14 97.01 96.01

low 98.36 96.17 97.37 96.77 95.67

medium 98.41 98.51 95.02 96.73 95.71

high 98.02 95.16 97.06 96.10 94.78

Average 98.32 96.68 96.65 96.65 95.54

Testing Phase (20%)

Normal 98.75 97.72 97.33 97.52 96.69

low 98.25 95.65 97.22 96.43 95.28

medium 98.12 97.88 94.73 96.28 95.05

high 98.12 95.26 97.28 96.26 95.01

Average 98.31 96.63 96.64 96.62 95.51

Training Phase (70%)

Normal 97.81 95.32 95.99 95.65 94.19

low 97.86 95.66 95.71 95.69 94.26

medium 96.96 94.21 93.47 93.84 91.83

high 98.61 97.26 97.26 97.26 96.33

Average 97.81 95.61 95.61 95.61 94.15

Testing Phase (30%)

Normal 97.93 96.00 95.61 95.81 94.43

low 98.10 96.44 96.06 96.25 94.98

medium 97.23 94.95 94.21 94.58 92.72

high 98.73 96.63 98.22 97.41 96.58

Average 98.00 96.00 96.03 96.01 94.68

The TACC and VACC of the PPIE-ODLASC approach are examined on accident
severity classification performance in Figure 8. The figure exhibited that the PPIE-ODLASC
method has shown improved outcomes with increased values of TACC and VACC. In
particular, the PPIE-ODLASC method has reached maximum TACC outcomes.
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The TLS and VLS of the PPIE-ODLASC method are tested on accident severity clas-
sification performance in Figure 9. The figure shows that the PPIE-ODLASC approach
has revealed better performance with minimal values of TLS and VLS. Notably, the PPIE-
ODLASC methodology has resulted in reduced VLS outcomes.
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A clear precision-recall investigation of the PPIE-ODLASC approach under test
database is seen in Figure 10. The figure indicated that the PPIE-ODLASC method has
superior values of precision-recall values under several classes.
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A brief ROC study of the PPIE-ODLASC method under test database is shown in
Figure 11. The result denotes the PPIE-ODLASC algorithm has demonstrated its ability in
categorizing distinct classes.

In Table 6, a detailed comparison study of the PPIE-ODLASC with current DL tech-
niques such as CNN with multilayer perceptron (MLP), CNN with multi-kernel extreme
learning machine (MELM), CNN with extreme learning machine (CNN-ELM), CNN with
optimal stacked extreme learning machine (CNN-OSELM), CNN with kernel extreme learn-
ing machine (CNN-KELM), CNN with radial basis function (CNN-RBF), and CNN with
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SVM (CNN-SVM) is provided [34]. Figure 12 represents the comparative accident severity
classification results of the PPIE-ODLASC model with respect to precn and recal. The ex-
perimental results stated that the PPIE-ODLASC model has gained enhanced performance.
Based on precn, the PPIE-ODLASC model has gained increased precn values of 96.68%,
while the CNN-MLP, CNN-MELM, CNN-ELM, CNN-OSELM, CNN-KELM, CNN-RBF,
and CNN-SVM models have reported reduced precn values of 94.28%, 92.73%, 92.33%,
92.16%, 92.05%, 89.40%, and 88.66%, respectively. At the same time, based on recal, the
PPIE-ODLASC method has obtained increased recal values of 96.65%, while the CNN-MLP,
CNN-MELM, CNN-ELM, CNN-OSELM, CNN-KELM, CNN-RBF, and CNN-SVM [31]
approaches have reported reduced recal values of 94.94%, 92.60%, 92.22%, 92.22%, 91.84%,
89.70%, and 89%, respectively.
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Table 6. Comparative analysis of PPIE-ODLASC with other recent systems.

Methods Precn Recal Fscore Accuy Training Time (s)

PPIE-
ODLASC 96.68 96.65 96.65 98.32 04.39

CNN-MLP 94.28 94.94 94.60 94.80 07.87

CNN-MELM 92.73 92.60 92.60 92.66 56.16

CNN-ELM 92.33 92.22 92.20 92.03 242.18

CNN-
OSELM 92.16 92.22 92.13 91.28 942.86

CNN-KELM 92.05 91.84 91.84 92.29 295.14

CNN-RBF 89.40 89.70 90.10 89.30 10.94

CNN-SVM 88.66 89.00 88.66 86.83 206.74
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Figure 13 represents the comparative accident severity classification results of the PPIE-
ODLASC technique in terms of accuy and Fscore. The result shows that the PPIE-ODLASC
technique has reached enhanced performance. Based on accuy, the PPIE-ODLASC technique
has acquired increased accuy values of 98.32%, while the CNN-MLP, CNN-MELM, CNN-ELM,
CNN-OSELM, CNN-KELM, CNN-RBF, and CNN-SVM methods have reported reduced accuy
values of 94.80%, 92.66%, 92.03%, 91.28%, 92.29%, 89.30%, and 86.83%, respectively.
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Simultaneously, based on Fscore, the PPIE-ODLASC technique has gained increased
Fscore values of 96.65%, while the CNN-MLP, CNN-MELM, CNN-ELM, CNN-OSELM,
CNN-KELM, CNN-RBF, and CNN-SVM models have reported reduced Fscore values of
94.60%, 92.60%, 92.20%, 92.13%, 91.84%, 90.10%, and 88.66%, respectively.

Finally, a detailed training time (TRT) inspection of the PPIE-ODLASC with other DL
methods takes place in Figure 14. The results implied that the PPIE-ODLASC approach
has gained better performance with a minimal TRT of 4.39 s. Contrastingly, the CNN-MLP,
CNN-MELM, CNN-ELM, CNN-OSELM, CNN-KELM, CNN-RBF, and CNN-SVM models
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have reported increased TRT of 94.28%, 92.73%, 92.33%, 92.16%, 92.05%, 89.40%, and
88.66%, respectively. The result shows the superior performance of the PPIE-ODLASC
approach over other existing techniques.
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5. Conclusions

In this article, we developed a new PPIE-ODLASC technique for privacy and acci-
dent severity classification process. Initially, the PPIE-ODLASC technique encrypted the
accident images using LSO with MKHE technique, where the design of LSO-based key
generation process helps in the maximization of PSNR. Next, the severity classification
module comprises YOLO-v5 based RoI detection, BiGRU classification, Xception feature
extraction, and BO-based hyperparameter tuning. The experimental validation of the
proposed PPIE-ODLASC technique is tested utilizing accident images and the outcomes
are examined in terms of many measures. The comparative examination revealed that
the PPIE-ODLASC technique has shown superior performance over other existing ap-
proaches. Compared with the other methods, the PPIE-ODLASC method’s F score has
improved, reaching 96.65%, while the F scores of the CNN-MLP, CNN-MELM, CNN-ELM,
CNN-OSELM, CNN-KELM, CNN-RBF, and CNN-SVM models have decreased. In the
future, hybrid metaheuristic algorithm can be derived to enhance the performance of the
PPIE-ODLASC technique.
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