
Citation: Buzura, S.; Peculea, A.;

Iancu, B.; Cebuc, E.; Dadarlat, V.;

Kovacs, R. A Hybrid Software and

Hardware SDN Simulation Testbed.

Sensors 2023, 23, 490. https://

doi.org/10.3390/s23010490

Academic Editor: Andrei Gurtov

Received: 29 November 2022

Revised: 18 December 2022

Accepted: 27 December 2022

Published: 2 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Hybrid Software and Hardware SDN Simulation Testbed
Sorin Buzura , Adrian Peculea , Bogdan Iancu * , Emil Cebuc, Vasile Dadarlat and Rudolf Kovacs

Computer Science Department, Technical University of Cluj-Napoca, 28 Memorandumului Street,
400114 Cluj-Napoca, Romania
* Correspondence: bogdan.iancu@cs.utcluj.ro; Tel.: +40-0264-401-245

Abstract: In recent years, the software-defined networking (SDN) paradigm has been deployed in
various types of networks, including wireless sensor networks (WSN), wide area networks (WAN)
and data centers. Given the wide range of SDN domain applicability and the large-scale environments
where the paradigm is being deployed, creating a full real test environment is a complex and costly
task. To address these problems, software-based simulations are employed to validate the proposed
solutions before they are deployed in real networks. However, simulations are constrained by
relying on replicating previously saved logs and datasets and do not use real time hardware data.
The current article addresses this limitation by creating a novel hybrid software and hardware
SDN simulation testbed where data from real hardware sensors are directly used in a Mininet
emulated network. The article conceptualizes a new approach for expanding Mininet’s capabilities
and provides implementation details on how to perform simulations in different contexts (network
scalability, parallel computations and portability). To validate the design proposals and highlight the
benefits of the proposed hybrid testbed solution, specific scenarios are provided for each design idea.
Furthermore, using the proposed hybrid testbed, new datasets can be easily generated for specific
scenarios and replicated in more complex research.

Keywords: hybrid testbed; Mininet and Mininet-WiFi; network sensors; quality of experiments;
simulation; software; software-defined network; system testing

1. Introduction

In recent years, solutions based on the software-defined networking paradigm have
been deployed in a multitude of environments, including data centers, wide area networks
(WANs) or wireless sensor networks (WSNs) [1,2]. Due to this diversity, testing environ-
ments need to be created to validate SDN-based system proposals before the proposed
solutions are deployed in real scenarios. The main problem with creating such a test envi-
ronment is that SDNs are usually deployed in large scale networks that are difficult and
costly to physically emulate just for testing purposes. Therefore, one preferred approach in
SDN testing is to use dedicated software simulators [3]. In the context of SDN, a simulator
must provide the possibility to implement simulation scenarios in all the planes of the SDN
architecture. The SDN architecture divides the network functions into three major planes:
the data plane, control plane and applications plane. The data plane consists of devices for-
warding traffic through the network and can contain desktop computers or wireless sensor
nodes connected to a wireless access point which, in turn, is connected to a switch. The
control plane consists of controlling devices governing the rules by which the data plane
operates. Finally, the applications plane usually consists of end-user applications which
benefit from data originating from the lower layers. Figure 1 showcases the separation
between the SDN layers.

Sensors 2023, 23, 490. https://doi.org/10.3390/s23010490 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23010490
https://doi.org/10.3390/s23010490
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2529-2092
https://orcid.org/0000-0002-7247-469X
https://orcid.org/0000-0002-5577-7517
https://orcid.org/0000-0001-9412-0705
https://doi.org/10.3390/s23010490
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23010490?type=check_update&version=2


Sensors 2023, 23, 490 2 of 16Sensors 2023, 23, x FOR PEER REVIEW 2 of 16 
 

 

 
Figure 1. SDN architecture. 

The main objective of the current work is to provide technical solutions on how to 
create a simulation testbed that can accommodate the various applicability domains of the 
SDN architecture. Thus, the proposed simulation testbed implements a hybrid testing en-
vironment capable of simultaneously combining software generated traffic with real time 
sensor traffic captured using real hardware components. The main domains addressed by 
this simulation testbed are performance enhancement and measurement, data processing, 
security and protocol testing. 

Software simulation is of great interest in the research community [4]. The Mininet 
[5,6] and Mininet-WiFi [7] network emulators, which are widely used in SDN research, 
were the basis of the currently implemented simulations, relying on the software written 
with a design for testability principle. The resulting hybrid testbed is relevant in the net-
work research community because Mininet-based solutions combined with real hardware 
data can easily replicate a large-scale network where traffic patterns and traffic data vol-
umes can be monitored before deploying the solution in a production environment. 

The complexity of the proposed solution is given by the heterogeneity of the entire 
ecosystem. The solutions that were implemented in the development of the simulation 
testbed address the following applications: traffic engineering in software defined wire-
less sensor networks (SDWSN), algorithms for Quality of Service (QoS) improvements, 
network security and network management. Besides the business logic constraints of 
these application domains, the work is also performed at different layers in the ISO/OSI 
model, processing different network protocols and even implementing new communica-
tion protocols or extending existing ones, such as OpenFlow. The complexity of the work 
also increases from a software engineering point of view, as the developed testbed solu-
tion uses and combines several programming languages (e.g., Bash, Python and C) and 
different hardware sensors are used to retrieve real time sensor data (Libelium Waspmote 

Figure 1. SDN architecture.

The main objective of the current work is to provide technical solutions on how to
create a simulation testbed that can accommodate the various applicability domains of
the SDN architecture. Thus, the proposed simulation testbed implements a hybrid testing
environment capable of simultaneously combining software generated traffic with real time
sensor traffic captured using real hardware components. The main domains addressed by
this simulation testbed are performance enhancement and measurement, data processing,
security and protocol testing.

Software simulation is of great interest in the research community [4]. The Mininet [5,6]
and Mininet-WiFi [7] network emulators, which are widely used in SDN research, were
the basis of the currently implemented simulations, relying on the software written with
a design for testability principle. The resulting hybrid testbed is relevant in the network
research community because Mininet-based solutions combined with real hardware data
can easily replicate a large-scale network where traffic patterns and traffic data volumes
can be monitored before deploying the solution in a production environment.

The complexity of the proposed solution is given by the heterogeneity of the entire
ecosystem. The solutions that were implemented in the development of the simulation
testbed address the following applications: traffic engineering in software defined wire-
less sensor networks (SDWSN), algorithms for Quality of Service (QoS) improvements,
network security and network management. Besides the business logic constraints of
these application domains, the work is also performed at different layers in the ISO/OSI
model, processing different network protocols and even implementing new communication
protocols or extending existing ones, such as OpenFlow. The complexity of the work also
increases from a software engineering point of view, as the developed testbed solution uses
and combines several programming languages (e.g., Bash, Python and C) and different
hardware sensors are used to retrieve real time sensor data (Libelium Waspmote [8] and



Sensors 2023, 23, 490 3 of 16

Ubertooth One [9]). Thus, this approach allows hiding the software development and
hardware integration complexity and allows developers and researchers to accelerate their
work and generate more realistic results.

The main contributions and originality aspects of the current work are summarized below:

• A hybrid software and hardware simulation testbed was used to generate realistic
simulations by integrating simulated data with real-time sensor data. To the best of the
authors’ knowledge, this is one of the first attempts to integrate real-time sensor data
(from hardware devices) in an SDN-based Mininet simulation. A network simulator
allows simulation of delay, throughput, jitter and other network specific parameters;
however, it can only simulate real sensors’ data to a certain degree. Thus, simulations
can be designed to be more application specific;

• The heterogeneous nature of the SDN deployment environments was addressed by
the hybrid testbed, and three software design concepts are proposed, namely design
for scalability, design for parallel computations and design for portability. Therefore,
the proposed hybrid testbeds allow for improved quality of experiments;

• This paper presents the technical approach and application implementation details
for hybrid SDN simulations in several use cases: sensor data collection from a WSN,
network security and benchmarking SDN controller location placement;

• New data sets can be easily generated for specific scenarios by saving the captured real-
time sensor data; the newly generated data sets and scenarios can be easily replicated
in other research, thus contributing to the overall body of knowledge.

The remainder of this article is structured as follows: Section 2 reviews the related lit-
erature and explains how the current article relates to the literature; Section 3 provides tech-
nical details regarding the testbed implementation and cases of their use; Section 4 presents
the experimental setup and the performed measurements; Section 5 discusses several
applicability domains of the simulation testbed; and Section 6 concludes the paper and
provides ideas for future research.

2. Literature Review

This section reviews the recent literature that has used similar concepts to the ones
being addressed in the current article. The topics covered in this section are SDN simulation
environments, large-scale SDNs, SDN used in the context of the Internet of Things (IoT)
and hybrid SDN approaches used in research.

Since the SDN paradigm has gained popularity in recent years, many software solu-
tions have been created to aid with SDN simulations and deployments in real production
scenarios. Mininet [6] and its variants Mininet-WiFi [7] and Mininet-Optical [10] help
create a network environment with the aid of various SDN controllers, including POX,
RYU, ONOS or OpenDayLight. The study presented in [11] has explored the various
controllers and tools that are used in SDN experiments. The experimental work measured
TCP and UDP throughput, jitter, latency and stability in three network tree topologies
that have a different number of switches, using different SDN controllers. Explicit details
were provided on how to run the simulations and the results are thoroughly explained
giving a useful insight into the contexts for which each SDN controller would be the right
choice. This study is also useful in the context of our article as it proves that Mininet
is an appropriate environment for large-scale simulations. Another study focusing on
evaluating the performance of SDN controllers is presented in [12]. The article focused on
the performance of POX and RYU controllers using Mininet. Several network topologies
were considered, such as linear, tree and data center. The simulation results favored the
utilization of RYU, concerning the average transmission delay, jitter and throughput. In
our work, we use the throughput metric to measure the controller’s performance when
deployed in several locations inside and outside the network.

Besides the general simulation environment, SDN solutions are being deployed in
the context of data centers and WANs. When opting to simulate the environment be-
fore its complex and costly deployment, it is important to consider certain simulation



Sensors 2023, 23, 490 4 of 16

requirements, such as scalability and performance. This section addresses related work
in such SDN environments and points out the specific contributions of our work. The
survey in [13] presented five large-scale SDN testbeds which were deployed in campus
networks or on national backbone networks. The survey advocated for OpenFlow as
the most likely long-term solution for communication between the control and the data
plane. The presented testbeds included both wired and wireless experiments, but they did
not add simulation capabilities. The goal of our paper is to provide the needed technical
details to help simulate such environments. [14] addressed the problem of large scale SDNs
where multiple controllers must be added to accommodate the network needs. The study
employed a heuristic approach to optimize the controller placement in SDN domains.
Experiments were performed on numerical data. Compared to this study, our work com-
bines a Mininet network with an SDN controller running on a separate device which is
placed at various distances (in number of network devices) from the computer hosting
the Mininet network. Our measurements are not performed on numerical data, but on
real network throughput. The study in [15] discussed the controller placement problem in
SDN and highlighted its importance. Metrics were defined which validate the controller
placement options and the introduction of new applicability domains of the SDN was also
discussed. The switch-controller latency was described as being the most common evalua-
tion metric in SDN. Our article also uses this metric to evaluate the portability options of
an SDN controller to serve an OpenFlow-enabled data plane. The study in [16] described
a self-contained simulation tool that allows simulating the YARN big data management
system in a cloud computing environment. The solution addressed the complexity and
costs that a real testbed would impose. This is relevant to our work as it advocates the
simulation approach. The study in [17] discussed the taxonomy of utilizing asymmetric
communication between network nodes with the end goal of improving performance and
reducing the overall power consumption. This study was performed in the context of
cloud and fog computing and several open issues related to SDN use cases were defined
and discussed. Our article attempts to address some of these issues from the simulation
and implementation perspective. The survey in [18] proposed a taxonomy for classifying
different approaches related to large-scale scientific applications and workflows in complex
infrastructures. The heterogeneous nature of the deployment environments was taken
into consideration, which is also a key factor presented in our article. Additionally, it
was highlighted that in such large-scale environments, the implemented solutions must
provide the means for adequately distributing data, which is again a key factor of concern
in our implementations. The study in [19] addressed the SDN paradigm from the security
perspective. It presented the major SDN security challenges and offered several solutions,
highlighting the challenges in programming the data plane. This is relevant in the context
of our work as one of the design ideas for the simulation testbed was created specifically to
address the problem of detecting attacks taking place in the network.

Next, after providing an insight into the general simulation environment and cases of
deployment, several major challenges specific to the IoT domain will be further discussed,
combining technologies and addressing interconnectivity challenges. We also explain how
the proposed simulation testbed addresses these concepts from the implementation and
testing point of view.

The study in [20] presented IoTSim-SDWAN, a simulator that is capable of modelling,
simulating and evaluating new solutions for SD-WAN ecosystems and SDN-enabled cloud
datacenters. The differences between WAN and SD-WAN environments were presented in
terms of performance and energy efficiency. The study concluded that SD-WAN surpasses
the traditional WAN in traffic flow throughput and reduces power consumption. Relating
to our work, we consider SDNs with different controller placements and we measure the
communication time between the data plane switch and the SDN controller. The study
in [21] proposed a deploy mechanism for IoT devices in the network edge using an SDN
approach. In the context of this paper, this allowed BLE devices to be deployed in large-
scale networks where network visibility and control pose a great challenge. In the context



Sensors 2023, 23, 490 5 of 16

of our article, this related study is useful for analyzing practical examples of BLE device
utilization and topology use. The related study relies on adding a programmable switch
between two BLE devices, whereas we passively monitor the BLE traffic with an Ubertooth
One device with the end goal of detecting any malicious data patterns.

The study in [22] highlighted the criticality of the broadcast packets in WiFi links
potentially leading to eavesdropping attacks. Although the network traffic was encrypted,
information regarding application usage could still be deduced, even from encrypted
wireless traffic. A programmable privacy framework was developed with the desire to
transfer the SDN processing capabilities to the network edge. Our article also provides a
technical simulation solution closer to the network end-devices with the purpose of more
rapidly reacting to any ongoing security risk in the network. This simulation is highlighted
in the design for parallel computations described below. The study in [23] presented
the challenges facing large IoT applications. A hybrid simulation testing approach was
proposed that allows for investigation of the local and emerging interaction between people
and large scale IoT applications. A hybrid approach was used to separate the testing
pipeline in several phases, where either simulation or real-life testing was employed. Our
article attempts to perform simulation and real hardware data collection together in a hybrid
test setup. Whereas the related study focused on the methodology, we also introduce some
new technical elements in the simulation environment setup. The study in [24] used the
Cooja software simulator to simulate real weather and soil data transfer in a WSN. The
study used a prerecorded dataset, proving that the Cooja simulator is suitable for such
simulations; however, our article improves upon this study by using real-time data collected
instantaneously from hardware devices. Ref. [25] presented a software-based solution that
compared time sensitive networking features with real SDN development platforms. The
study proved that simulating such behavior also reduces the overall deployment cost.
Time sensitive networking was implemented in both real networking hardware and in a
Mininet environment. The simulations were run separately, and the results were compared
in terms of performance and accuracy. Since our article is addressing the heterogeneous
nature of modern systems, it is important to highlight this research in the literature. The
study presented in [26] focused on coordinating heterogeneous unmanned aerial vehicles
with autonomous control, which had the ability to reallocate resources depending on the
currently given tasks. The study used historical data and different algorithms for task
reallocation. This is relevant to our article as it highlighted the importance of simulating
different algorithms on the same data set, as will be described below in the design of
parallel computations section.

The remainder of our article uses some of the principles described in the related work
with the aim of combining hardware and software in a unified testbed.

3. Testbed Implementation Scenarios

This section presents the implementation of the proposed simulation testbed based on
the Mininet network emulator. This simulation testbed can be used in multiple simulation
scenarios and three software design concepts were taken into consideration when develop-
ing the entire system, namely design for scalability, design for parallel computations and
design for portability. Each design idea is presented in a separate subchapter. Each subchap-
ter is divided in two sections; one that provides the technical details for the implementation
and another section that provides an applicability use case for the design idea.

At this point it is important to reiterate the fact that the network is emulated on a single
device and different sensors are attached to this machine running the network environment,
creating the hybrid software and hardware simulation testbed. All the following designs are
hybrid, meaning that they use a Mininet (or Mininet-WiFi) network that can communicate
in real time with a different hardware device. The presented network topologies were
constructed with the MiniEdit tool offered by Mininet-WiFi. It is also important to explicitly
mention that Mininet is a network emulator that basically creates multiple virtual network
adapters running on the same computer that can transmit real traffic between each other.



Sensors 2023, 23, 490 6 of 16

The traffic generated between two Mininet hosts is real network traffic, and this is the
reason for integrating it with other real hardware components that transmit or receive data.
Figure 2 shows the component diagram of the system architecture with the modules which
are needed to allow the creation of the hybrid simulation testbed. The components are a
Linux running environment, Mininet and Mininet-WiFi simulators, the hardware devices
(a Libelium Waspmote sensor, an Ubertooth One device and a Toradex board), a software
serial data reader, a software parser of traffic captures, TCP/UDP sockets module and a
software data processor. As it can be seen in the figure, a Linux environment is necessary to
run the Mininet and Mininet-WiFi network emulators. The hardware devices are connected
to the system and software components that retrieve their data via different interfaces.
These same software components are used in the Mininet and Mininet-WiFi environments,
meaning they retrieve and process the data in real time on the emulated adapters.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 16 
 

 

can communicate in real time with a different hardware device. The presented network 
topologies were constructed with the MiniEdit tool offered by Mininet-WiFi. It is also im-
portant to explicitly mention that Mininet is a network emulator that basically creates 
multiple virtual network adapters running on the same computer that can transmit real 
traffic between each other. The traffic generated between two Mininet hosts is real net-
work traffic, and this is the reason for integrating it with other real hardware components 
that transmit or receive data. Figure 2 shows the component diagram of the system archi-
tecture with the modules which are needed to allow the creation of the hybrid simulation 
testbed. The components are a Linux running environment, Mininet and Mininet-WiFi 
simulators, the hardware devices (a Libelium Waspmote sensor, an Ubertooth One device 
and a Toradex board), a software serial data reader, a software parser of traffic captures, 
TCP/UDP sockets module and a software data processor. As it can be seen in the figure, a 
Linux environment is necessary to run the Mininet and Mininet-WiFi network emulators. 
The hardware devices are connected to the system and software components that retrieve 
their data via different interfaces. These same software components are used in the 
Mininet and Mininet-WiFi environments, meaning they retrieve and process the data in 
real time on the emulated adapters. 

 
Figure 2. Proposed hybrid system architecture. Components diagram. 

3.1. Design for Scalability 
3.1.1. Implementation Details 

The first design concept implemented in the simulation testbed is based on the idea 
of simulating a large-scale wireless sensor network using a combination of a real hardware 
component and simulation software. The real hardware sensor used is a Libelium Wasp-
mote sensor and the simulation software is Mininet-WiFi, which is an extension of Mininet 
that supports wireless transmission protocols. Figure 3 shows the network topology that 
was considered. Each of the stations ranging from sta1–sta6 reads the data from the Wasp-
mote sensor using the software serial data reader. Data are read from the serial connection. 
Each station is configured to read data at a different interval, therefore reading and send-
ing a different current value from the sensor. 

Figure 2. Proposed hybrid system architecture. Components diagram.

3.1. Design for Scalability
3.1.1. Implementation Details

The first design concept implemented in the simulation testbed is based on the idea of
simulating a large-scale wireless sensor network using a combination of a real hardware
component and simulation software. The real hardware sensor used is a Libelium Wasp-
mote sensor and the simulation software is Mininet-WiFi, which is an extension of Mininet
that supports wireless transmission protocols. Figure 3 shows the network topology that
was considered. Each of the stations ranging from sta1–sta6 reads the data from the Wasp-
mote sensor using the software serial data reader. Data are read from the serial connection.
Each station is configured to read data at a different interval, therefore reading and sending
a different current value from the sensor.



Sensors 2023, 23, 490 7 of 16Sensors 2023, 23, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. Design for scalability network topology using the Libelium Waspmote sensor. 

Algorithm 1 below describes the implementation of reading a Waspmote sensor 
value. 

Algorithm 1 Reading Waspmote Sensor Value 
open_serial_connection_to_waspmote(); 
ASSERT (incoming_data_is_valid()); 
FOREACH stationX in [sta1, sta2, …, staN] 
DO: 

stationX.initalize_random_reading_interval(); 
END FOREACH 
 
WHILE (true): // program event loop 
DO: 

FOREACH stationX in [sta1, sta2, …, staN] 
DO: 

stationX.read_data_when_reading_interval_is_reached(); 
stationX.open_socket_for_sending_data_to_access_point(); 

END FOREACH 
END WHILE 

3.1.2. Applicability Use Case 

Figure 3. Design for scalability network topology using the Libelium Waspmote sensor.

Algorithm 1 below describes the implementation of reading a Waspmote sensor value.

Algorithm 1 Reading Waspmote Sensor Value

open_serial_connection_to_waspmote();
ASSERT (incoming_data_is_valid());
FOREACH stationX in [sta1, sta2, . . . , staN]
DO:

stationX.initalize_random_reading_interval();
END FOREACH

WHILE (true): // program event loop
DO:

FOREACH stationX in [sta1, sta2, . . . , staN]
DO:

stationX.read_data_when_reading_interval_is_reached();
stationX.open_socket_for_sending_data_to_access_point();

END FOREACH
END WHILE

3.1.2. Applicability Use Case

The considered specific use was the design for scalability, employed in the application
domain of collecting data from a WSN in a smart city. To better explain how scalability
can be encountered in a smart city context, it is easier to think of a single type of sensor,
e.g., a temperature sensor. Multiple identical sensors can be deployed throughout a city
to measure the temperature in various locations and to accurately report a mean average



Sensors 2023, 23, 490 8 of 16

temperature for the entire area. Cities vary in geographical size and population density;
therefore, a different number of sensors will be installed for different cities where such a
WSN is being deployed. This simulation addresses the challenges in implementing the
needed communication protocols and monitoring the data transmission with a network
traffic analyzer tool, e.g., Wireshark. Furthermore, a database of real data can be gener-
ated and extended to multiple sensors, thus enabling the emulation of a realistic smart
city infrastructure.

3.2. Design for Parallel Computations
3.2.1. Implementation Details

The second design concept implemented uses an Ubertooth One device to capture
Bluetooth (BT) and Bluetooth Low Energy (BLE) network traffic in a surrounding area. The
data received by the Ubertooth One device is saved in a pipe file which can be accessed
by any process running in the operating system. The constructed network, as shown in
Figure 4, uses a station to read the pipe file containing the BT and BLE traffic and transmits
it to an OpenVSwitch instance connected to an SDN controller. The traffic is then mirrored
to the other OpenVSwitch instances. The idea is that each of the OpenVSwitch switches
receives the same identical traffic, but they run a different software for analyzing traffic
patterns, utilizing different algorithms or different techniques to detect certain behaviors. It
is important to note that the entire network seen below is generated in Mininet and all the
nodes are run on the same computer, meaning that all the network devices can access the
same files that are present in the operating system’s file system.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 16 
 

 

The considered specific use was the design for scalability, employed in the applica-
tion domain of collecting data from a WSN in a smart city. To better explain how scalabil-
ity can be encountered in a smart city context, it is easier to think of a single type of sensor, 
e.g., a temperature sensor. Multiple identical sensors can be deployed throughout a city 
to measure the temperature in various locations and to accurately report a mean average 
temperature for the entire area. Cities vary in geographical size and population density; 
therefore, a different number of sensors will be installed for different cities where such a 
WSN is being deployed. This simulation addresses the challenges in implementing the 
needed communication protocols and monitoring the data transmission with a network 
traffic analyzer tool, e.g., Wireshark. Furthermore, a database of real data can be generated 
and extended to multiple sensors, thus enabling the emulation of a realistic smart city 
infrastructure. 

3.2. Design for Parallel Computations 
3.2.1. Implementation Details 

The second design concept implemented uses an Ubertooth One device to capture 
Bluetooth (BT) and Bluetooth Low Energy (BLE) network traffic in a surrounding area. 
The data received by the Ubertooth One device is saved in a pipe file which can be ac-
cessed by any process running in the operating system. The constructed network, as 
shown in Figure 4, uses a station to read the pipe file containing the BT and BLE traffic 
and transmits it to an OpenVSwitch instance connected to an SDN controller. The traffic 
is then mirrored to the other OpenVSwitch instances. The idea is that each of the Open-
VSwitch switches receives the same identical traffic, but they run a different software for 
analyzing traffic patterns, utilizing different algorithms or different techniques to detect 
certain behaviors. It is important to note that the entire network seen below is generated 
in Mininet and all the nodes are run on the same computer, meaning that all the network 
devices can access the same files that are present in the operating system’s file system. 

 
Figure 4. Design for parallel computations network topology using the Ubertooth One device. 

Algorithm 2 details the implementation process for processing data received from 
the Ubertooth One device. 

Algorithm 2 Reading Waspmote sensor value 

Figure 4. Design for parallel computations network topology using the Ubertooth One device.

Algorithm 2 details the implementation process for processing data received from the
Ubertooth One device.



Sensors 2023, 23, 490 9 of 16

Algorithm 2 Reading Waspmote sensor value

start_ubertooth_capture();

S1.initialize_brute_force_detection();
S2.initialize_identity_spoofing_detection();
S3.initialize_jamming_detection();

WHILE (true): // program event loop
DO:

FOREACH stationX in [sta1, sta4, sta7]
DO:

stationX.read_ubertooth_data();
stationX.wrap_ubertooth_data_for_sending();
stationX.open_socket_for_sending_data_through_the_switch();

END FOREACH
END WHILE

3.2.2. Applicability Use Case

The specific use considered was designed for parallel computation in the application
domain of anomaly detection and security. The Ubertooth One device that is visible in
Figure 4 above can be used to capture BT and BLE traffic. BT and BLE traffic are susceptible
to many attacks, but the ones that were analyzed in this context were the following three
attacks: brute force, identity spoofing and jamming. Two usability situations are presented,
one that simultaneously runs multiple detection algorithms for different security risks
and another one that simultaneously runs detection algorithms for the same security risk
with the purpose of identifying the solution with optimal performance. This design is
scalable; multiple OpenVSwitch components can be added to run as many traffic processing
algorithms as needed.

The first usability scenario, where multiple security risks are identified, can be setup
in the following way: Switches S1, S2 and S3 from Figure 4 above can each be configured to
run a specific algorithm for detecting the aforementioned attacks. The brute force detection
algorithm, running on switch S1, analyzes the packet transmission frequency. The identity
spoofing detection algorithm, running on switch S2, analyzes the physical address of the
sender together with the signal strength, which is observable in the captured packets. The
jamming attack detection algorithm, running on switch S3, uses a mechanism to analyze
the packet transmission frequency (similar to brute force, but not directed at a single other
network node). It is important to highlight that these algorithms are running in parallel
(i.e., at the same time) and they are processing the same data values that are captured from
the Ubertooth One device; the data values are mirrored from one station to the other.

The second usability scenario, where the optimal solution for a security risk is identi-
fied, is run in a similar manner. Switches S1, S2 and S3 address the same problem, e.g., a
brute force attack, but they use a different method. S1 runs an algorithm which counts the
transmitted packets using a reference value from the literature. S2 runs an algorithm that
uses artificial intelligence techniques to detect a brute force anomaly. S3 runs a heuristic
method for determining when the number of transmitted packets becomes indicative of a
brute force attack.

3.3. Design for Portability
3.3.1. Implementation Details

The third design concept that was implemented uses the portability principle to make
it easier to test various controller placement possibilities. The main working principle in an
OpenFlow-based SDN is that a data plane switch must interact with an SDN controller. The
SDN controller is identifiable by the IP address and it can be placed in various locations.
Three network locations (also highlighted in Figure 5 below) were considered in the
current experimental setup, first: the SDN controller is attached to the same switch as



Sensors 2023, 23, 490 10 of 16

the OpenVSwitch running instance; second: the SDN controller is placed in the same
local area network (LAN) but farther away in terms of number of switches; and third: the
SDN controller is placed outside the LAN. Note that when placing the SDN controller in a
different LAN from the internet, port forwarding must be configured on the gateway device
to allow forwarding the connection to the computing device executing the SDN controller.
To facilitate the portability, this design concept was proven by deploying an SDN controller
on a portable Toradex i.MX6 board. A simple version of an OpenFlow SDN controller was
implemented which supports the following OpenFlow packets PacketIn, PacketOut and
PacketFlowMod. The implementation was carried out in the Qt framework over C++ and
the solution was deployed to the Toradex board by cross compiling the C++/Qt code for
the target Toradex board. After cross compiling the solution, the binaries were transferred
to the Toradex board via an SSH connection and the binaries basically ran a TCP server
waiting for connections on the allocated OpenFlow port number 6653.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 16 
 

 

The third design concept that was implemented uses the portability principle to make 
it easier to test various controller placement possibilities. The main working principle in 
an OpenFlow-based SDN is that a data plane switch must interact with an SDN controller. 
The SDN controller is identifiable by the IP address and it can be placed in various loca-
tions. Three network locations (also highlighted in Figure 5 below) were considered in the 
current experimental setup, first: the SDN controller is attached to the same switch as the 
OpenVSwitch running instance; second: the SDN controller is placed in the same local 
area network (LAN) but farther away in terms of number of switches; and third: the SDN 
controller is placed outside the LAN. Note that when placing the SDN controller in a dif-
ferent LAN from the internet, port forwarding must be configured on the gateway device 
to allow forwarding the connection to the computing device executing the SDN controller. 
To facilitate the portability, this design concept was proven by deploying an SDN control-
ler on a portable Toradex i.MX6 board. A simple version of an OpenFlow SDN controller 
was implemented which supports the following OpenFlow packets PacketIn, PacketOut 
and PacketFlowMod. The implementation was carried out in the Qt framework over C++ 
and the solution was deployed to the Toradex board by cross compiling the C++/Qt code 
for the target Toradex board. After cross compiling the solution, the binaries were trans-
ferred to the Toradex board via an SSH connection and the binaries basically ran a TCP 
server waiting for connections on the allocated OpenFlow port number 6653. 

 
Figure 5. Design for the portability network topology using a Toradex i.MX6 board as an SDN con-
troller. 

3.3.2. Applicability Use Case 
The considered use for which portability is required was to successfully evaluate the 

performance and criticality of an SDN environment. Inspecting the above figure, it is im-
portant to note that the following devices were being run on a single server in a Mininet 
emulated network: OVS, sta1, sta2 and sta3. The other devices were part of the University 
campus network where the research was conducted. The internet location was the home 
LAN of one of the researchers. Although the figure shows a path of four switches, in the 
second testing scenario, the University network path had eight switches. It is important 
to note that networks have different purposes, and they have different configurations and 
traffic patterns. This is the reason that a benchmark must be rapidly performed (using a 
portable device) to identify the best SDN controller placement depending on the net-
work’s business application criticality. Such a setup can have an impact on network ad-
ministration tasks as well increasing the security of certain devices (i.e., the SDN control-
ler), having the possibility of placing them in more secure locations. Another use scenario 

Figure 5. Design for the portability network topology using a Toradex i.MX6 board as an SDN controller.

3.3.2. Applicability Use Case

The considered use for which portability is required was to successfully evaluate
the performance and criticality of an SDN environment. Inspecting the above figure, it is
important to note that the following devices were being run on a single server in a Mininet
emulated network: OVS, sta1, sta2 and sta3. The other devices were part of the University
campus network where the research was conducted. The internet location was the home
LAN of one of the researchers. Although the figure shows a path of four switches, in the
second testing scenario, the University network path had eight switches. It is important to
note that networks have different purposes, and they have different configurations and
traffic patterns. This is the reason that a benchmark must be rapidly performed (using a
portable device) to identify the best SDN controller placement depending on the network’s
business application criticality. Such a setup can have an impact on network administration
tasks as well increasing the security of certain devices (i.e., the SDN controller), having the
possibility of placing them in more secure locations. Another use scenario where portability
is desired is when attempting to perform an audit for a recently implemented system.
Using a small and portable device such as the Toradex board allows for convenient location
testing of SDN controller placement inside a network.

4. Experimental Work

This chapter is divided in two sections: the component setup and the experimental
results. At this point it is important to reiterate the fact that this article’s main objective is
to provide architectural and implementation details on how to construct a hybrid software



Sensors 2023, 23, 490 11 of 16

and hardware simulation environment. The experimental work is limited to the design
for portability because this is the only experiment that can provide accurate and relatable
measurement values for the literature. This is because the OpenFlow packets that are
used in this experiment are transmitted over LAN and WAN transmission media that are
commonly used in modern networks. The designs for scalability and parallel computations
strongly depend on the hardware resources of the Linux machine running the Mininet and
Mininet-WiFi, which are subjective from the current work perspective.

4.1. Components Setup

To simulate the above design ideas, the required components are shown in Figure 6.
The setup consists of a PC running Linux OS where Mininet and Mininet-WiFi were in-
stalled, hardware components, which were directly attached to the PC via USB interfaces
(Ubertooth One and Libelium Waspmote sensor) and an Ethernet interface (Toradex i.MX6
board). The advantage of the approach proposed above for traffic duplication and simulta-
neous reading of multiple data from several hardware devices is the possibility to extend
it to large-scale simulations where only one sensor of each type can be used. Thus, the
simulation cost and deployment time decreases drastically.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 16 
 

 

where portability is desired is when attempting to perform an audit for a recently imple-
mented system. Using a small and portable device such as the Toradex board allows for 
convenient location testing of SDN controller placement inside a network. 

4. Experimental Work 
This chapter is divided in two sections: the component setup and the experimental 

results. At this point it is important to reiterate the fact that this article’s main objective is 
to provide architectural and implementation details on how to construct a hybrid software 
and hardware simulation environment. The experimental work is limited to the design 
for portability because this is the only experiment that can provide accurate and relatable 
measurement values for the literature. This is because the OpenFlow packets that are used 
in this experiment are transmitted over LAN and WAN transmission media that are com-
monly used in modern networks. The designs for scalability and parallel computations 
strongly depend on the hardware resources of the Linux machine running the Mininet 
and Mininet-WiFi, which are subjective from the current work perspective. 

4.1. Components Setup 
To simulate the above design ideas, the required components are shown in Figure 6. 

The setup consists of a PC running Linux OS where Mininet and Mininet-WiFi were in-
stalled, hardware components, which were directly attached to the PC via USB interfaces 
(Ubertooth One and Libelium Waspmote sensor) and an Ethernet interface (Toradex 
i.MX6 board). The advantage of the approach proposed above for traffic duplication and 
simultaneous reading of multiple data from several hardware devices is the possibility to 
extend it to large-scale simulations where only one sensor of each type can be used. Thus, 
the simulation cost and deployment time decreases drastically. 

 
Figure 6. Hardware components used in creating the SDN hybrid software and hardware simula-
tion testbed. 

4.2. Experimental Results 
Measurements were collected for the design for the portability scenario where the 

SDN controller, running on the Toradex board, was placed in three different locations. 
The experiments consisted of measuring the transmission time of an OpenFlow PacketIn 
packet from an OpenVSwitch instance to the SDN controller. The OpenVSwitch instance 
was always running in the PC’s Mininet environment. The SDN controller was 

Figure 6. Hardware components used in creating the SDN hybrid software and hardware simula-
tion testbed.

4.2. Experimental Results

Measurements were collected for the design for the portability scenario where the
SDN controller, running on the Toradex board, was placed in three different locations. The
experiments consisted of measuring the transmission time of an OpenFlow PacketIn packet
from an OpenVSwitch instance to the SDN controller. The OpenVSwitch instance was
always running in the PC’s Mininet environment. The SDN controller was continuously
running on the Toradex i.MX6 board, which was connected through an Ethernet connection
in three different locations. The three different locations were the following:

• Connected in the same virtual local area network (VLAN) on the same switch;
• Connected in the same VLAN but at a distance of eight switches apart;
• Connected in a different Layer 3 network.

The measurements were performed 20 times at each location and the average trans-
mission time in milliseconds was computed for each location. Three payload sizes were
considered for each SDN controller location placement of 600, 1000 and 1400 bytes. The
reason these payloads were chosen is due to the fact that the OpenFlow PacketIn packet
contains the Ethernet frame for which the decision has to be made alongside the specific
OpenFlow protocol fields. The Ethernet frame’s size ranged from 512 to 1518 bytes, so this



Sensors 2023, 23, 490 12 of 16

is why the three aforementioned payloads were considered to simulate a small, medium
and large PacketIn packet, that can be encapsulated in the Ethernet frame. Next, the
experimental results are presented in more detail for each payload size.

4.2.1. Small Packet Payload

The constructed small packet payload for the PacketIn request was 600 bytes. When
the computer running Mininet and the Toradex board were connected to the same switch,
the average packet transmission time was 219 ms. When the computer and the Toradex
board were at a distance of eight switches, the average transmission time was 222 ms. When
the Toradex board was placed in a different Layer 3 network, the average transmission
time was 261 ms. The time difference (1.8%) when the SDN controller was placed in the
same LAN was negligible, even if it was placed at various distances; however, the time
difference increased when the controller was placed in a different Layer 3 network, rising
to 19% depending on the packet transmission attempt. Figure 7 below shows the results.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 16 
 

 

continuously running on the Toradex i.MX6 board, which was connected through an 
Ethernet connection in three different locations. The three different locations were the fol-
lowing: 
 Connected in the same virtual local area network (VLAN) on the same switch; 
 Connected in the same VLAN but at a distance of eight switches apart; 
 Connected in a different Layer 3 network. 

The measurements were performed 20 times at each location and the average trans-
mission time in milliseconds was computed for each location. Three payload sizes were 
considered for each SDN controller location placement of 600, 1000 and 1400 bytes. The 
reason these payloads were chosen is due to the fact that the OpenFlow PacketIn packet 
contains the Ethernet frame for which the decision has to be made alongside the specific 
OpenFlow protocol fields. The Ethernet frame’s size ranged from 512 to 1518 bytes, so this 
is why the three aforementioned payloads were considered to simulate a small, medium 
and large PacketIn packet, that can be encapsulated in the Ethernet frame. Next, the ex-
perimental results are presented in more detail for each payload size. 

4.2.1. Small Packet Payload 
The constructed small packet payload for the PacketIn request was 600 bytes. When 

the computer running Mininet and the Toradex board were connected to the same switch, 
the average packet transmission time was 219 ms. When the computer and the Toradex 
board were at a distance of eight switches, the average transmission time was 222 ms. 
When the Toradex board was placed in a different Layer 3 network, the average transmis-
sion time was 261 ms. The time difference (1.8%) when the SDN controller was placed in 
the same LAN was negligible, even if it was placed at various distances; however, the time 
difference increased when the controller was placed in a different Layer 3 network, rising 
to 19% depending on the packet transmission attempt. Figure 7 below shows the results. 

 
Figure 7. Experimental results of running the design for portability in case of a PacketIn packet with 
a payload of 600 bytes, considered a small payload. 

4.2.2. Medium Packet Payload 
The constructed medium packet payload for the PacketIn request was 1000 bytes. In 

the scenario when the Mininet network and the Toradex board were connected to the 
same switch, the average packet transmission time was 222 ms. When the computer and 
the Toradex board were eight switches apart, the average transmission time was 225 ms. 
When the Toradex board was placed in a different Layer 3 network, the average transmis-
sion time was 260 ms. Similar to the previous payload scenario, the time difference when 
using the same LAN was negligible at various distances; a difference of 1.3%. However, 
the time difference increased when the controller was placed in a different Layer 3 

Figure 7. Experimental results of running the design for portability in case of a PacketIn packet with
a payload of 600 bytes, considered a small payload.

4.2.2. Medium Packet Payload

The constructed medium packet payload for the PacketIn request was 1000 bytes. In
the scenario when the Mininet network and the Toradex board were connected to the same
switch, the average packet transmission time was 222 ms. When the computer and the
Toradex board were eight switches apart, the average transmission time was 225 ms. When
the Toradex board was placed in a different Layer 3 network, the average transmission
time was 260 ms. Similar to the previous payload scenario, the time difference when using
the same LAN was negligible at various distances; a difference of 1.3%. However, the time
difference increased when the controller was placed in a different Layer 3 network, at 17%
slower depending on the packet transmission attempt. Figure 8 below shows the results.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 16 
 

 

network, at 17% slower depending on the packet transmission attempt. Figure 8 below 
shows the results. 

 
Figure 8. Experimental results of running the design for portability in case of a PacketIn packet 
having a payload of 1000 bytes, considered a medium payload. 

4.2.3. Large Packet Payload 
The large packet payload that was constructed for the PacketIn request was 1400 

bytes. The results are similar; when the Mininet network on the computer and the Toradex 
board were connected to the same switch, the average packet transmission time was 222 
ms. When the computer and the Toradex board were at a distance of eight switches, the 
average transmission time was 226 ms. When the Toradex board was placed in a different 
Layer 3 network, the average transmission time was 263 ms. Again, the time difference 
when using the same LAN was negligible at various distances, with a difference of 1.8%. 
Additionally, again, the time difference was significantly higher when the controller was 
placed in a different Layer 3 network, at 18% slower depending on the packet transmis-
sion attempt. Figure 9 below shows the results. 

 
Figure 9. Experimental results of running the design for portability in case of a PacketIn packet 
having a payload of 1400 bytes, considered a large payload. 

5. Discussion 
The limitations for the work presented in this article are related to the maximum 

number of hardware devices that can be connected to Mininet in real-time and to the 
OpenFlow protocol benchmarking. The proposed novelty to introduce the real-time 

Figure 8. Experimental results of running the design for portability in case of a PacketIn packet
having a payload of 1000 bytes, considered a medium payload.



Sensors 2023, 23, 490 13 of 16

4.2.3. Large Packet Payload

The large packet payload that was constructed for the PacketIn request was 1400 bytes.
The results are similar; when the Mininet network on the computer and the Toradex board
were connected to the same switch, the average packet transmission time was 222 ms.
When the computer and the Toradex board were at a distance of eight switches, the average
transmission time was 226 ms. When the Toradex board was placed in a different Layer 3
network, the average transmission time was 263 ms. Again, the time difference when using
the same LAN was negligible at various distances, with a difference of 1.8%. Additionally,
again, the time difference was significantly higher when the controller was placed in a
different Layer 3 network, at 18% slower depending on the packet transmission attempt.
Figure 9 below shows the results.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 16 
 

 

network, at 17% slower depending on the packet transmission attempt. Figure 8 below 
shows the results. 

 
Figure 8. Experimental results of running the design for portability in case of a PacketIn packet 
having a payload of 1000 bytes, considered a medium payload. 

4.2.3. Large Packet Payload 
The large packet payload that was constructed for the PacketIn request was 1400 

bytes. The results are similar; when the Mininet network on the computer and the Toradex 
board were connected to the same switch, the average packet transmission time was 222 
ms. When the computer and the Toradex board were at a distance of eight switches, the 
average transmission time was 226 ms. When the Toradex board was placed in a different 
Layer 3 network, the average transmission time was 263 ms. Again, the time difference 
when using the same LAN was negligible at various distances, with a difference of 1.8%. 
Additionally, again, the time difference was significantly higher when the controller was 
placed in a different Layer 3 network, at 18% slower depending on the packet transmis-
sion attempt. Figure 9 below shows the results. 

 
Figure 9. Experimental results of running the design for portability in case of a PacketIn packet 
having a payload of 1400 bytes, considered a large payload. 

5. Discussion 
The limitations for the work presented in this article are related to the maximum 

number of hardware devices that can be connected to Mininet in real-time and to the 
OpenFlow protocol benchmarking. The proposed novelty to introduce the real-time 

Figure 9. Experimental results of running the design for portability in case of a PacketIn packet
having a payload of 1400 bytes, considered a large payload.

5. Discussion

The limitations for the work presented in this article are related to the maximum
number of hardware devices that can be connected to Mininet in real-time and to the
OpenFlow protocol benchmarking. The proposed novelty to introduce the real-time sensor
data reading can only accommodate a number of sensors equal to the number of interfaces
available on the computer. These interfaces include USB, serial, Bluetooth, to name a few.
The number of available interfaces can be increased to some degree by adding external
adapters or USB hubs which allows connecting multiple devices. Nevertheless, this number
remains limited and data reading from multiple interfaces also consumes other hardware
resources (CPU processing power and memory) which are needed for the simulation
computations. Regarding the measurements which were performed on the OpenFlow
packets, they were only made on the PacketIn packet which has an approximate size in
the range of 600–1400 bytes. The PacketIn OpenFlow packet contains the Ethernet packet
for which the request is being made, plus some additional protocol bytes belonging to
the actual OpenFlow specification. With a small packet size, transmission times will have
approximately similar values. For a more complete measurement benchmark, the entire
OpenFlow list of packet types could be measured for data transmission. Interpreting the
presented results, the duration variation is small, and this is due to the fact that OpenFlow
is an application layer protocol running over TCP. The establishment of a connection
takes a considerable portion of this transmission time with the TCP 3-way handshake and
additionally, the transmitted payload is relatively small.

For future research ideas, the increased scalability feature can be studied depending
on the computational abilities of the computer running the Mininet network. A Mininet
network requires both memory and CPU processing power. If the computer used for
generating the network runs low on hardware resources, then the data plane can be
extended on a different machine, i.e., two computers can be used to configure data plane



Sensors 2023, 23, 490 14 of 16

environments, and both PCs point to the same SDN controllers, which are identifiable by
their IP addresses. Hence, the base assumption here is that the same SDN controller can
be used by multiple data plane networks. Having such an environment would further
increase and benefit the system’s scalability and testing capabilities.

When working with network traffic, the utilization of a network traffic monitoring
tool (Wireshark, tcpdump or any programmatic pcap-based frameworks) is paramount.
Considering this from a system testing point of view, one disadvantage of running the
network simulation in Mininet is that each network device is virtualized and a monitoring
tool (e.g., Wireshark) will only capture the traffic of that specific device. Therefore, to
inspect all the network traffic flow in the network, a separate Wireshark window must be
opened for each network node. A solution to this problem on a large scale is to implement
a logging system where each network device writes its activity in its own log file with any
desired precision (e.g., millisecond or microsecond), and after the end of the simulation, a
utility tool can be used to aggregate the logs.

6. Conclusions

In conclusion, a hybrid software and hardware simulation testbed was created for
network testing. Three main design ideas were employed, namely design for scalability,
design for parallel computations and design for portability. These design ideas increase the
quality of the system testing in various use cases. The use cases presented in the paper are
sensor data collection from a WSN, network security and benchmarking SDN controller
location placement. The SDN test system that was implemented contains work that was
performed in the data plane and the control plane; however, the end goal of using the
SDN paradigm is to benefit the applications plane; therefore, any improvement that is
done in the SDN lower planes will affect the software applications running all over the
network. For validating the proposed software hardware hybrid simulation approach,
measurements were performed in the scenario designed for portability. The goal was to
study the placement of an SDN controller at different locations in the LAN containing the
data plane, but also in a different location on the internet. Results showed that the impact
of the data transfer between the data plane switch and the SDN controller is negligible
when the SDN controller is in the same LAN (regardless of the number of intermediate
switches), but the data transfer is significantly higher when the SDN controller resides in a
different Layer 3 network.

Given the wide range of SDN domain applicability and large-scale environments,
creating a real test environment is a complex and costly task. To overcome this limitation, a
hybrid software and hardware simulation testbed was proposed. By integrating simulated
data with real-time sensor data (from hardware devices) in an SDN-based Mininet simulator,
realistic simulations were generated and validated in different contexts. Furthermore, new
data sets can be easily generated for specific scenarios by saving the captured real-time
sensor data. The newly generated data sets and scenarios can be easily replicated in other
research, thus contributing to the overall body of knowledge.

Author Contributions: S.B. proposed the design ideas, implemented the test cases and contributed
to writing the manuscript. A.P. offered technical support for the implementation and contributed
to writing the manuscript. B.I. contributed to writing the manuscript and offered ongoing support
during the research. E.C. helped configure the University network to allow running the testbed across
multiple network devices, he also proofread the manuscript. V.D. identified measurement metrics
and proofread the manuscript. R.K. assisted in verifying the testbed functionality and reviewed the
implementation. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Sensors 2023, 23, 490 15 of 16

Acknowledgments: We acknowledge the help offered by Claudiu Iakkel in setting up the University
campus network infrastructure to allow performing the experimental work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kobo, H.I.; Abu-Mahfouz, A.M.; Hancke, G.P. A Survey on Software-Defined Wireless Sensor Networks: Challenges and Design

Requirements. IEEE Access 2017, 5, 1872–1899. [CrossRef]
2. Benzekki, K.; El Fergougui, A.; Elbelrhiti Elalaoui, A. Software-Defined Networking (SDN): A Survey. Secur. Commun. Netw. 2016,

9, 5803–5833. [CrossRef]
3. Yang, H.; Ivey, J.; Riley, G.F. Scalability Comparison of SDN Control Plane Architectures Based on Simulations. In Proceedings of

the 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC), San Diego, CA, USA, 10–12
December 2017; pp. 1–8. [CrossRef]

4. García-García, J.A.; Enríquez, J.G.; Ruiz, M.; Arévalo, C.; Jiménez-Ramírez, A. Software Process Simulation Modeling: Systematic
Literature Review. Comput. Stand. Interfaces 2020, 70, 103425. [CrossRef]

5. De Oliveira, R.L.S.; Schweitzer, C.M.; Shinoda, A.A.; Rodrigues Prete, L. Using Mininet for Emulation and Prototyping Software
Defined Networks. In Proceedings of the 2014 IEEE Colombian Conference on Communications and Computing (COLCOM),
Bogota, Colombia, 4–6 June 2014; pp. 1–6. [CrossRef]

6. Mininet Simulator. Available online: http://mininet.org (accessed on 11 June 2022).
7. Fontes, R.R.; Afzal, S.; Brito, S.H.B.; Santos, M.A.S.; Rothenberg, C.E. Mininet-WiFi: Emulating Software-defined Wireless Net-

works. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), Barcelona, Spain,
9–13 November 2015; pp. 384–389. [CrossRef]

8. Libelium Waspmote. Available online: https://www.libelium.com/iot-products/waspmote/ (accessed on 11 June 2022).
9. Ubertooth One. Available online: https://greatscottgadgets.com/ubertoothone/ (accessed on 11 June 2022).
10. Mininet Optical. Available online: https://mininet-optical.org/ (accessed on 11 June 2022).
11. Lunagariya, D.; Goswami, B. A Comparative Performance Analysis of Stellar SDN Controllers using Emulators. In Proceedings

of the 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies
(ICAECT), Bhilai, India, 19–20 February 2021; pp. 1–9. [CrossRef]

12. Kazi, N.M.; Suralkar, S.R.; Bhadade, U.S. Evaluating the Performance of POX and RYU SDN Controllers Using Mininet. In
Communications in Computer and Information Science Book Series (CCIS, Volume 1483); Venugopal, K.R., Shenoy, P.D., Buyya, R.,
Patnaik, L.M., Iyengar, S.S., Eds.; Springer: Cham, Switzerland, 2021; Volume 1483, pp. 181–191. [CrossRef]

13. Huang, T.; Yu, F.R.; Zhang, C.; Liu, J.; Zhang, J.; Liu, Y. A Survey on Large-Scale Software Defined Networking (SDN) Testbeds:
Approaches and Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 891–917. [CrossRef]

14. Zhao, Z.; Wu, B. Scalable SDN Architecture with Distributed Placement of Controllers for WAN. Concurr. Comput. Pract. Exp.
2017, 29, e4030. [CrossRef]

15. Das, T.; Sridharan, V.; Gurusamy, M. A Survey on Controller Placement in SDN. IEEE Commun. Surv. Tutor. 2020, 22, 472–503.
[CrossRef]

16. Alwasel, K.; Calheiros, R.N.; Garg, S.; Buyya, R.; Pathan, M.; Georgakopoulos, D.; Ranjan, R. BigDataSDNSim: A Simulator for
Analyzing Big Data Applications in Software-Defined Cloud Data Centers. Softw. Pract. Exp. 2020, 51, 893–920. [CrossRef]

17. Alomari, A.; Subramaniam, S.K.; Samian, N.; Latip, R.; Zukarnain, Z. Resource Management in SDN-Based Cloud and SDN-Based
Fog Computing: Taxonomy Study. Symmetry 2021, 13, 734. [CrossRef]

18. Gonzalez, N.M.; Carvalho, T.C.M.D.B.; Miers, C.C. Cloud Resource Management: Towards Efficient Execution of Large-Scale
Scientific Applications and Workflows on Complex Infrastructures. J. Cloud Comput. 2017, 6, 1–20. [CrossRef]

19. Hegazy, A.; El-Aasser, M. Network Security Challenges and Countermeasures in SDN Environments. In Proceedings of the 2021
Eighth International Conference on Software Defined Systems (SDS), Gandia, Spain, 6–9 December 2021; pp. 1–8. [CrossRef]

20. Alwasel, K.; Jha, D.N.; Hernandez, E.; Puthal, D.; Barika, M.; Varghese, B.; Garg, S.K.; James, P.; Zomaya, A.; Morgan, G.;
et al. IoTSim-SDWAN: A Simulation Framework for Interconnecting Distributed Datacenters over Software-Defined Wide Area
Network (SD-WAN). J. Parallel Distrib. Comput. 2020, 143, 17–35. [CrossRef]

21. Uddin, M.; Mukherjee, S.; Chang, H.; Lakshman, T.V. SDN-Based Service Automation for IoT. In Proceedings of the 2017 IEEE
25th International Conference on Network Protocols (ICNP), Toronto, ON, Canada, 10–13 October 2017; pp. 1–10. [CrossRef]

22. Uddin, M.; Nadeem, T.; Nukavarapu, S. Extreme SDN Framework for IoT and Mobile Applications Flexible Privacy at the Edge.
In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom), Kyoto, Japan,
11–15 March 2019; pp. 1–11. [CrossRef]

23. Bosmans, S.; Mercelis, S.; Denil, J.; Hellinckx, P. Testing IoT Systems Using a Hybrid Simulation Based Testing Approach.
Computing 2018, 101, 857–872. [CrossRef]

24. Bumb, A.; Iancu, B.; Cebuc, E. Extending Cooja Simulator with Real Weather and Soil Data. In Proceedings of the 17th RoEduNet
Conference: Networking in Education and Research (RoEduNet), Cluj-Napoca, Romania, 6–8 September 2018; pp. 1–5. [CrossRef]

http://doi.org/10.1109/ACCESS.2017.2666200
http://doi.org/10.1002/sec.1737
http://doi.org/10.1109/pccc.2017.8280465
http://doi.org/10.1016/j.csi.2020.103425
http://doi.org/10.1109/ColComCon.2014.6860404
http://mininet.org
http://doi.org/10.1109/CNSM.2015.7367387
https://www.libelium.com/iot-products/waspmote/
https://greatscottgadgets.com/ubertoothone/
https://mininet-optical.org/
http://doi.org/10.1109/ICAECT49130.2021.9392391
http://doi.org/10.1007/978-3-030-91244-4_15
http://doi.org/10.1109/COMST.2016.2630047
http://doi.org/10.1002/cpe.4030
http://doi.org/10.1109/COMST.2019.2935453
http://doi.org/10.1002/spe.2917
http://doi.org/10.3390/sym13050734
http://doi.org/10.1186/s13677-017-0081-4
http://doi.org/10.1109/SDS54264.2021.9732104
http://doi.org/10.1016/j.jpdc.2020.04.006
http://doi.org/10.1109/ICNP.2017.8117555
http://doi.org/10.1109/PERCOM.2019.8767413
http://doi.org/10.1007/s00607-018-0650-5
http://doi.org/10.1109/roedunet.2018.8514130


Sensors 2023, 23, 490 16 of 16

25. Ulbricht, M.; Acevedo, J.; Krdoyan, S.; Fitzek, F.H.P. Emulation vs. Reality: Hardware/Software Co-Design in Emulated and Real
Time-sensitive Networks. In Proceedings of the European Wireless 2021 26th European Wireless Conference, Verona, Italy, 10–12
November 2021; pp. 1–7.

26. Tang, J.; Chen, X.; Zhu, X.; Zhu, F. Dynamic Reallocation Model of Multiple Unmanned Aerial Vehicle Tasks in Emergent
Adjustment Scenarios. IEEE Trans. Aerosp. Electron. Syst. 2022, 1–43. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TAES.2022.3195478

	Introduction 
	Literature Review 
	Testbed Implementation Scenarios 
	Design for Scalability 
	Implementation Details 
	Applicability Use Case 

	Design for Parallel Computations 
	Implementation Details 
	Applicability Use Case 

	Design for Portability 
	Implementation Details 
	Applicability Use Case 


	Experimental Work 
	Components Setup 
	Experimental Results 
	Small Packet Payload 
	Medium Packet Payload 
	Large Packet Payload 


	Discussion 
	Conclusions 
	References

