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Abstract: Radio signals are polluted by noise in the process of channel transmission, which will lead
to signal distortion. Noise reduction of radio signals is an effective means to eliminate the impact of
noise. Using deep learning (DL) to denoise signals can reduce the dependence on artificial domain
knowledge, while traditional signal-processing-based denoising methods often require knowledge of
the artificial domain. Aiming at the problem of noise reduction of radio communication signals, a
radio communication signal denoising method based on the relativistic average generative adversarial
networks (RaGAN) is proposed in this paper. This method combines the bidirectional long short-term
memory (Bi-LSTM) model, which is good at processing time-series data with RaGAN, and uses
the weighted loss function to construct a noise reduction model suitable for radio communication
signals, which realizes the end-to-end denoising of radio signals. The experimental results show that,
compared with the existing methods, the proposed algorithm has significantly improved the noise
reduction effect. In the case of a low signal-to-noise ratio (SNR), the signal modulation recognition
accuracy is improved by about 10% after noise reduction.

Keywords: radio communication signal; noise reduction; RaGAN; Bi-LSTM; deep learning;
modulation recognition

1. Introduction

As the premise of signal demodulation, radio signal modulation recognition is an
important research content in the field of communication. It plays an important role in mili-
tary and civil communications, and is of great significance to future 6G communications [1].
However, due to the complexity of the signal transmission environment and the problems
of the receiving equipment, the received signal always has a certain amount of noise, which
brings difficulties to the modulation recognition of the received signal. In recent years,
modulation recognition algorithms have developed rapidly, but there is a common problem
that the recognition accuracy is not ideal in low SNR scenarios [2]. The noise reduction
of the received signal is an effective means to solve this problem. Therefore, it is of great
significance to obtain a noise reduction algorithm that can reduce the signal noise while
maintaining the basic characteristics of the signal for signal modulation recognition.

Signal denoising is to extract clean signals from noisy signals, which has always been
a problem in the field of signal processing. Effective signal denoising is of great signifi-
cance for radio signal communication. The existing signal denoising methods are mostly
based on signal processing methods, such as wavelet transform (WT)-based denoising
methods [3,4], empirical mode decomposition (EMD)-based denoising methods [5], etc.
The denoising effect based on WT is closely related to the number of decomposition layers,
wavelet basis function, threshold selection, etc. Too few decomposition layers affect the
denoising effect, and too many decomposition layers will lead to signal distortion, while
the selection of the wavelet basis function and the optimal threshold is usually determined
by experience. Although the noise reduction algorithm based on EMD has advantages in
dealing with nonlinear and nonstationary signals, there are problems such as mode aliasing
and end effect.
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However, DL can extract the hidden feature values from data relatively accurately and
conveniently, and has efficient data processing capability. In recent years, DL technology
has been widely used in speech processing [6], image processing [7], natural language
processing [8], and other fields. With the development of technology, DL technology is
also used in the field of signal processing. In addition, signal denoising has always been a
difficult problem in the field of signal processing, so some scholars have tried to use DL
to solve this problem. A detailed description of the signal noise reduction method based
on DL will be discussed later in the second section. Although these works have achieved
good results, there are still some drawbacks: (i) The perfect separation of signal and noise
cannot be realized [9–11]; (ii) The existing noise reduction methods based on the generative
adversarial network (GAN) [12] still have the problems of long training time and slow
convergence speed in the training process [13,14]; (iii) The requirements for the number of
signal sampling points are high. When the number of signal sampling points is too small
and the waveform is not obvious, a satisfactory denoising effect cannot be achieved [15].

To solve the above problems, this paper proposes a RaGAN-based radio signal noise
reduction method. This method takes the time-domain waveform of the radio-received
signal as the processing object, uses RaGAN [16] to replace the original GAN to accelerate
the convergence speed of the model, uses Bi-LSTM [17] as the core to build a generator
and discriminator, effectively extracts the time-dimension characteristics of the signal, and
retains the essential feature information of the signal after noise reduction. Compared
with the existing methods, this method has a satisfactory denoising effect and requires
fewer sampling points of target signals. In addition, we use the CNN2 [18], IQCNet [19],
and IQCLNet [19] classification networks for the modulation recognition of noise-reduced
signals, effectively improving the recognition accuracy of low SNR signals by about 10%,
which is of great significance for signal modulation recognition.

To summarize, the main contributions of our work are:

• A noise reduction algorithm based on RaGAN is proposed for time-series data of radio
communication signals;

• Our method preserves the essential characteristics of the signal after noise reduction
of the radio signal;

• The experimental results show that the accuracy of modulation recognition is im-
proved by about 10% after using this method to denoise the signal with low SNR
compared with the signal before noise reduction.

The remainder of this paper is organized as follows. The second section describes
the related work; the third section introduces the background, including the definition of
the problem, the system model, and the theory of GAN; in the fourth section, the noise
reduction model, dataset, network structure, and loss function are described; the fifth
section shows the experimental process and discusses the results; finally, the paper is
summarized in the sixth section, and further work is pointed out. Table 1 provides the
abbreviations that appear in the paper.

Table 1. List of abbreviations.

Abbreviation Definition

DL Deep learning
RaGAN Relativistic average generative adversarial network
Bi-LSTM Bidirectional long short-term memory

SNR Signal-to-noise ratio
WT Wavelet transform

EMD Empirical mode decomposition
GAN Generative adversarial network

AWGN Additive white Gaussian noise
CNN Convolutional neural networks
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Table 1. Cont.

Abbreviation Definition

ECG Electrocardiogram
LSGAN Least-square generative adversarial networks
CGAN Conditional generative adversarial networks
TEM Transient electromagnetic
ANN Artificial neural network

RF Radio frequency
D Discriminator
G Generator

LSTM Long short-term memory
LN Layer normalization

2. Related Work

In the past few years, research based on DL has become an active topic in the field of
signal processing [20]. Many scholars have proposed some signal denoising methods based
on DL. These methods use a DL framework to extract signal features for signal denoising
in an end-to-end manner. Wang et al. preprocessed a signal with impulse noise before
signal modulation recognition [21]. In the case of fewer labeled samples, the modulation
recognition accuracy of the underwater acoustic signal was improved by more effective
extraction of signal features through denoising and task driving. However, this method is
only suitable for the underwater impulsive noise environment, and is not suitable for the
additive white Gaussian noise (AWGN) channel. In References [13,14], the authors used
the convolutional neural network (CNN) as the core to build a generation countermeasure
network to denoise electrocardiogram (ECG) signals. Although the least-squares gener-
ative adversarial network (LSGAN) [22], the conditional generative adversarial network
(CGAN) [23], and other methods were used to improve the model and achieved a better
denoising effect than traditional methods, there are still problems such as slow model
convergence. In References [9–11], the authors transformed the problem of signal denoising
into that of image denoising, processed the image with CNN, and achieved good results
in the field of seismic signal and transient electromagnetic (TEM) signal denoising. This
method will not cause large deviation in amplitude, time, and phase information after sig-
nal denoising, but it cannot achieve perfect separation of signal and noise. Soltani et al. [15]
used the artificial neural network (ANN) to denoise the measured radio frequency (RF)
signal sent by the local discharge source, and converted the denoising problem into a curve-
fitting problem. However, this method can achieve the denoising effect only when there
are enough sampling points and the waveform is obvious, while when there are too few
sampling points and the waveform is not obvious, it cannot achieve a good denoising effect.

3. Background

In this section, we describe the problem definition and system model. In addition,
since the method we use is based on GAN, we also briefly explain its basic principle and
an improved training method, namely RaGAN.

3.1. Problem Definition and System Model

The signal in the wireless channel is transmitted through the propagation of electro-
magnetic waves in space, while there are some unwanted signals in the channel, which are
collectively called noise. Noise is a kind of interference in the channel. Since the noise is
superimposed on the signal, it is also called additive interference. Noise will have adverse
effects on signal transmission. It not only limits the transmission rate of information, but
also leads to signal distortion.

Gaussian white noise reflects the additive noise in the actual channel, and can nearly
represent the characteristics of channel noise [24]. Therefore, the proposed method is
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applied to the AWGN channel. In the AWGN channel, the output signal y is expressed as
the superposition of input signal m and Gaussian noise signal n:

y = m + n (1)

where n ∼ N
(
µ, σ2). The purpose of denoising is to filter the noise from the signal polluted

by noise as much as possible (i.e., denoised signal), ŷ, so as to minimize the expected error
between the input signal and the denoised signal:

error = E‖ŷ− y‖2
2 (2)

where E represents the expectation operator.

3.2. Generative Adversarial Network

GAN was put forward by Goodfellow et al. in 2014 [12] and soon became a research
hotspot. GAN mainly includes two parts, discriminator (D) and generator (G), which solve
the minimum and maximum problem of antagonism through alternate training. The idea
of this model is that D tries to distinguish whether the input data are real data or data
generated by G, and the distribution of data generated by G pG(x) is as close to the real data
distribution as possible pdata(x). In this way, G can learn to create solutions that are highly
close to real data, and it is difficult to distinguish them by D. The objective optimization
function of GAN is as follows:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log(D(x))] +Ez∼pz(z)[log(1− D(G(z)))] (3)

In the above formula, z is the input following the random distribution pz(z), V(G, D)
is the combined loss function of GAN, G(z) represents the data generated by G, and D(x)
and D(G(z)) represent the probability that D gives correct discrimination to real data and
generated data.

Although GAN has achieved great success, there are some problems in training
stability, and the emergence of RaGAN has solved this problem well. The D of standard
GAN will estimate the probability of whether an input data is generated data x f or real
data xr, while the relative discriminator of RaGAN will average the probability that the
real data xr is more real than the generated data x f , so that G can generate higher-quality
samples and accelerate the model convergence. We define the relative D as DRaGAN , as
shown below:

DRaGAN

(
xr, x f

)
= σ

(
C(xr)−E

[
C
(

x f

)])
(4)

In the above formula, x f = G(z), σ represents sigmoid function, and C(s) represents
the output of the discriminator without transformation, i.e., D(x) = σ(C(x)). The loss
functions LRaGAN

G and LRaGAN
D of RaGAN G and D are, respectively, expressed as:

LRaGAN
G = −E

[
log
(

1− DRaGAN

(
xr, x f

))]
−E

[
log
(

DRaGAN

(
x f , xr

))]
(5)

LRaGAN
D = −E

[
log
(

DRaGAN

(
xr, x f

))]
−E

[
log
(

1− DRaGAN

(
x f , xr

))]
(6)

4. Signal Denoising Method Based on RaGAN

In this section, the noise reduction model and dataset details used are described, and
the design of the network structure is given in detail. Finally, the design of the loss function
is given.

4.1. Denoising Model

The noise in the wireless channel can interfere with the radio signal transmission.
By reducing the noise component in the received signal, the original useful signal can be
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further restored. Using traditional signal denoising methods to separate signal from noise
usually requires a lot of artificial knowledge. Noise reduction through deep DL technology
can reduce the dependence on artificial domain knowledge. Therefore, a noise reduction
algorithm based on RaGAN for radio communication signals is proposed in this paper. The
noise reduction model and its training and testing process are shown in Figure 1.
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Figure 1. Signal noise reduction model based on RaGAN and training and testing process.

First, the model is trained, and the signal of superimposed noise is taken as the input
of the generator. The generator generates the signal by extracting the characteristics of
the input signal. Then, the generated signal and the corresponding clean signal are input
into the discriminator in turn. The discriminator judges the input signal and determines
whether the input signal is generated by the generator or a clean signal without noise. After
iterative training, the error backpropagation algorithm is used to optimize the model itself.
The final discriminator cannot determine whether the input signal is the signal generated
by the generator or the clean signal without noise. After the model training is completed,
the generator has the ability to map the input noisy signal to the corresponding clean signal.
At this time, the generator can be used to restore the noisy signal to a clean signal. This is
the principle of RaGAN noise reduction in this paper.

4.2. Dataset

This paper adopts the public dataset RML2016.10a [25]. Since this dataset was origi-
nally used for signal modulation recognition, in order to make this dataset more suitable for
signal noise reduction training, signals with SNR of 18 dB of eight modulation methods in
the RML2016.10a dataset were selected for wavelet denoising and smoothing to form clean
signal samples. We randomly add Gaussian white noise with different SNRs to the clean
signal samples, and finally generate the corresponding noisy signal samples. In practice, if
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the signal SNR is too high, it will be too ideal, while if the SNR is too low, the characteristics
of the signal will be completely covered by noise. Therefore, the SNR of the noisy signal is
between −8 dB and 10 dB, with an interval of 2 dB. The visual image of the signal is shown
in Figure 2. There are 80,000 signal samples in total. The details of the dataset are shown
in Table 2.
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Table 2. Dataset details.

Dataset Information

Modulation 8PSK, BPSK, CPFSK, GFSK, PAM4,
16QAM, 64QAM, and QPSK

Length per Sample 128
Sampling Frequency 1 MHz

SNR Range [−8 dB, −6 dB, . . . , 10 dB]
Total Number of Samples 80,000 vectors

4.3. Network Structure

Extracting time-dimension information is a key step in radio signal processing. Bi-
LSTM [17] is composed of forward long short-term memory (LSTM) [26] and backward
LSTM, which makes up for the defect that one-way LSTM cannot encode backward to
forward information. It can effectively extract the time-dimension features of signals, and
has a good performance in processing time-series data. So, we build generators and
discriminators with Bi-LSTM as the core.

4.3.1. Generator Network Structure

As shown in Figure 3, the generator is composed of two full connection layers and two
layers of Bi-LSTM. The input and output dimensions of the generator are 128. The input
dimension of the Bi-LSTM layer is 1, the number of hidden layer nodes is 128, and the
output dimension is 128. After the full connection layer output, Dropout [27] and Leaky
ReLU are used to activate the output nonlinearly. Therefore, after the generator inputs the
signal, it performs layer normalization (LN) [28], and then extracts the waveform features
and time-dimension features of the noisy signal through full connection mapping and the
Bi-LSTM layer to achieve the purpose of signal denoising. Before outputting the data, it
performs normalization restoration to ensure the generalization ability of the model, and
finally outputs the denoised signal.
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4.3.2. Discriminator Network Structure

The discriminator network structure is shown in Figure 4, which is also composed of
two layers of a full connection layer and two layers of Bi-LSTM. The discriminator input
dimension is 128, and the output dimension is 1. The input dimension in the Bi-LSTM layer
is 1, the number of hidden layer nodes is 128, and the output dimension is 128. After the
full connection layer is output, Leaky ReLU and Dropout are introduced to prevent the
model from overfitting. Therefore, after the discriminator inputs the signal data, it performs
LN on the input, extracts the difference between the real signal data and the waveform in
the generated signal data through the Bi-LSTM layer, and then outputs the decision result
through the mapping of the full connection layer.
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4.4. Loss Function

The definition of the loss function is very important for model performance. In this
paper, the relative discriminator is used. Compared with the standard discriminator, which
will judge whether the input signal is clean signal sr or generated signal s f , the relative
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discriminator will estimate the relatively more true probability of clean signal sr than
generated signal s f . The loss function of discriminator LRa

D is defined as follows:

LRa
D = −E

[
log
(

DRaGAN

(
sr, s f

))]
−E

[
log
(

1− DRaGAN

(
s f , sr

))]
(7)

The counter loss function of the generator LRa
G is expressed as:

LRa
G = −E

[
log
(

1− DRaGAN

(
sr, s f

))]
−E

[
log
(

DRaGAN

(
s f , sr

))]
(8)

where s f = G(s). By using a relative discriminator to accelerate the model convergence,
the generator can produce a higher-quality denoising signal.

Inspired by [29,30], we express the overall loss function of the generator as the
weighted sum of content loss and confrontation loss, so that the generator is affected
by both content loss and confrontation loss, as shown below:

LG = Lcon + λLRa
G (9)

where Lcon represents the content loss, LRa
G represents the confrontation loss, and λ is the

coefficient to balance different loss items. Through the common constraint of content loss
and confrontation loss, the generator can better restore noisy signals s to clean signals sr.
LMSE and L1 are used to construct the content loss function.

LMSE =
1
n

n

∑
i=1

(sri − G(s)i)
2 (10)

L1 =
1
n

n

∑
i=1
|sri − G(s)i| (11)

In the above formula, LMSE represents the mean square error between the denoised
signal G(s) and the clean signal sr, and L1 represents the absolute value error between the
denoised signal G(s) and the clean signal sr, where G(s) is the output of the generator and
n is the length of a single sample. The content loss function Lcon is expressed as:

Lcon = (LMSE + L1)/2 (12)

5. Experiments

In this section, the method proposed in this paper is applied to wireless signal noise
reduction, and the training details and parameters are described. In order to verify the
effectiveness of the proposed method, we compare it with the existing algorithm and
make a comparative analysis. Finally, a Bi-LSTM analysis experiment was conducted. The
hardware and software environment of the experiment are shown in Table 3.

Table 3. Configuration of hardware and software.

Hardware or Software Technical Parameter

Operation System Windows 10 Home Chinese
CPU Intel Xeon Silver 4212R
GPU NVIDIA GeForce 3090

Memory 128 G
Python Python 3.8.12
Pytorch Pytorch 1.11.0

5.1. Training Details and Parameters

We divide the dataset into a training set and a test set according to 4:1. The training
set contains 64,000 signal data, and the test set contains 16,000 signal data. Because there
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are few hyperparameters, we use grid search to select hyperparameters. First, define
the traversal interval λ = {0.5, 0.05, 0.005, 0.0005}, batch size = {256, 512, 1024, 2048},
learning rate = {0.0001, 0.001,0.01, 0.1}, and optimizer = {Adam}, and then calculate the cost
function of all hyperparametric combinations on the validation set to obtain the optimal
hyperparametric set in the interval. The epoch is determined by observing the convergence
of the loss function. The final hyperparameters are shown in Table 4:

Table 4. Hyperparameter of model.

Hyperparameter

λ 0.005
Batch size 2048

Epochs 100
Learning rate 0.001

Optimizer Adam [31]

The initial learning rate of the generator and discriminator is set to 0.001, and the
learning rate is halved after 50 times of training. During the training process, the model is
iteratively optimized by calculating the loss function. After the model training is completed,
the final weight model of the generator and discriminator is saved.

5.2. Experimental Result

In order to verify the noise reduction performance of this method, the test set is tested
on the trained generator, and the signal noise reduction performance is compared with
WT, EMD, and standard GAN noise reduction models under different input signal-to-noise
ratios. The output SNR is used as the evaluation standard of noise reduction performance.

SNR = 10 log10

(
Ps

Pn

)
(13)

where Ps and Pn are the effective power of signal and noise, respectively. The input signal-
to-noise ratio of the noisy signal test set is within the range of [−8, 10] dB, and the step size
is 2 dB. The comparison diagram of time-domain waveforms of 8PSK signals before and
after noise reduction by different methods is shown in Figure 5.

It can be seen from Figure 6 and Table 5 that the noise reduction performance of this
method is significantly improved compared with the two traditional methods. The SNR is
improved by about 10 dB for signals with an input of −8 dB to 0 dB, and the SNR increases
by about 8 dB for signals with an input of 0 dB to 10 dB. The noise reduction performance is
also improved compared with the standard GAN when the input signal is more than−2 dB.
Compared with the WT and EMD noise reduction methods, the output signal-to-noise ratio
is improved by about 4dB under the condition of 0 dB signal-to-noise ratio. This shows
that the method has significantly improved the performance of signal noise reduction.

Table 5. Specific data of noise reduction performance comparison of different methods.

SNR/dB RaGAN
(dB)

GAN
(dB)

WT
(dB)

EMD
(dB)

−8 3.58 3.30 0.83 −0.16
−6 5.01 4.73 2.13 1.46
−4 6.47 6.21 3.55 3.31
−2 8.16 7.85 5.00 4.45
0 10.12 9.64 6.65 6.41
2 11.96 11.33 8.25 6.21
4 13.65 13.01 9.96 8.07
6 15.24 14.58 11.61 10.14
8 16.65 16.08 13.39 12.07
10 17.96 17.38 15.19 13.96
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Figure 5. Time-domain waveform comparison of 8PSK signal before and after noise reduction:
(a) original clean signal waveform; (b) noisy signal waveform; (c) time-domain waveform of signal
after RaGAN noise reduction; (d) time-domain waveform of signal after GAN noise reduction;
(e) time-domain waveform of signal after WT noise reduction; (f) time-domain waveform of signal
after EMD noise reduction.

In order to verify that the model can retain the original features of the signal after
signal noise reduction, we use the RaGAN noise reduction model to reduce the noise of
the signal in the original RML2016.10a data set, and use CNN2, IQCNet and IQCLNet
classification networks to classify the modulation recognition of the signal before and after
noise reduction. By comparing the recognition rate of the signal modulation classification
before and after noise reduction with the RaGAN noise reduction algorithm, we can judge
the degree of the original features of the signal after noise reduction. The hyperparameter
of the classification network model is shown in Table 6.
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Table 6. Hyperparameter of the classification network model.

Hyperparameter

Training set:Test set:Verification set 6:2:2
Batch size 1024

Epochs 32
Learning rate 0.001

Optimizer Adam

It can be seen from Figure 7 that the accuracy of signal modulation recognition is
effectively improved after noise reduction of the signal through this model, especially in
the low SNR range. In (a), the CNN2 classification network is used for the modulation
recognition of signals. The recognition accuracy is improved by nearly 10% when the input
signal SNR is between −14 dB and −20 dB. In (b), the IQCNet classification network is
used for signal modulation recognition. The recognition accuracy is improved by nearly
10% when the input signal SNR is between −4 dB and −12 dB, and by nearly 5% when
the SNR is between −12 dB and −20 dB. In (c), the IQCLNet classification network is used
for the modulation recognition of signals. The recognition accuracy is improved by nearly
10% when the input signal SNR is between −8 dB and −14 dB, and by nearly 6% when
the SNR is between −14 dB and −20 dB. However, in the range of high SNR, since the
signal features are obvious, the feature prominence effect of a high SNR signal after noise
reduction is not as good as that of the low SNR signal, so the improvement of the high SNR
signal recognition accuracy is not high.
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Figure 7. Comparison of recognition rate before and after RaGAN noise reduction: (a) CNN2
recognition comparison; (b) IQCNet recognition comparison; (c) IQCLNet recognition comparison.

Because the algorithm is used for communication applications, the complexity of a
large number of calculations and algorithms should also be considered. A total of 1024 noisy
signals are processed by the algorithm, WT, and EMD in this paper, and the processing
time comparison is shown in Table 7. It can be seen from Table 7 that when processing the
same number of noisy signals, the algorithm proposed in this paper takes the least time,
which is more conducive to the application of the algorithm in practice.

Table 7. Comparison of time spent in processing 1024 noisy signals.

WT EMD RaGAN

Time (s) 2.113 9.848 0.767

5.3. Exploration of Bi-LSTM in the Model

During the experiment, we found that the number of hidden layer nodes used in
the Bi-LSTM layer will affect the noise reduction effect of the model. In order to find the
optimal number of solution points, we made an experimental comparison of the number of
hidden layer nodes used by Bi-LSTM.

It can be seen from Figure 8 and Table 8 that the noise reduction performance of
the model is closely related to the number of hidden layer nodes in Bi-LSTM. With the
increase in the number of nodes used, the noise reduction performance of the model is also
improved. When the number of hidden layer nodes is 128, the noise reduction performance
of the model is the highest. However, when the number of hidden layer nodes exceeds
128, due to the large number of model parameters, the performance of the model cannot be
improved by increasing the number of nodes.
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Table 8. Specific data of noise reduction performance Comparison of different number of hidden
layer nodes.

SNR/dB 32
(dB)

64
(dB)

128
(dB)

256
(dB)

−8 3.44 3.53 3.58 3.44
−6 4.80 4.90 5.01 4.99
−4 6.19 6.30 6.47 6.43
−2 7.66 7.80 8.16 8.12
0 9.30 9.505 10.12 10.04
2 10.87 11.15 11.96 11.81
4 12.52 12.82 13.65 13.51
6 14.05 14.39 15.24 15.10
8 15.52 15.85 16.65 16.58
10 16.86 17.15 17.96 17.96

6. Conclusions

Aiming at the degradation of radio communication signal reception quality, this paper
proposes a RaGAN-based radio communication signal noise reduction model. This model
uses Bi-LSTM as the core to build a generator and discriminator. Through Bi-LSTM, signal
features are effectively extracted, the time dependence of data is learned, and the weighted
loss function is used to train the model to achieve end-to-end denoising of radio signals.
Compared with several signal noise reduction methods, this method has significantly
improved the signal noise reduction performance, and has been verified on the public
dataset RML2016.10a, which proves the effectiveness of this model.

However, in this experiment, we only processed the signal from the perspective of the
time domain, which has certain limitations. Therefore, it is the work we need to conduct in
the future to use deep learning technology combined with signal frequency domain and
other aspects to process signals. In addition, our method is mainly applicable to signal
propagation in the AWGN channel. In future research, we will apply the proposed method
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to Rayleigh fading to further verify the feasibility of this method, so as to improve the
generalization ability of the model.
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