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Abstract: The Chinese Remainder Theorem (CRT) based frequency estimation has been widely
studied during the past two decades. It enables one to estimate frequencies by sub-Nyquist sampling
rates, which reduces the cost of hardware in a sensor network. Several studies have been done on the
complex waveform; however, few works studied its applications in the real waveform case. Different
from the complex waveform, existing CRT methods cannot be straightforwardly applied to handle
a real waveform’s spectrum due to the spurious peaks. To tackle the ambiguity problem, in this
paper, we propose the first polynomial-time closed-form Robust CRT (RCRT) for the single-tone real
waveform, which can be considered as a special case of RCRT for arbitrary two numbers. The time
complexity of the proposed algorithm is O(L), where L is the number of samplers. Furthermore, our
algorithm also matches the optimal error-tolerance bound.

Keywords: robust Chinese Remainder Theorem; frequency estimation; undersampling; error bound;
sensor network

1. Introduction

Chinese Remainder Theorem (CRT) is a fundamental number theory result, which
shows the reconstruction of a single integer X from its residues modulo multiple co-prime
moduli. It has been extensively used in various applications, such as wireless sensor
networks [1,2], coding theory [3–7], phase unwrapping [8,9], and frequency estimation
from undersampled waveforms [10–17]. In particular, the CRT-based method enables one
to estimate frequencies with exponentially smaller sub-Nyquist rates in a distributed setup.
This could significantly reduce hardware cost [18,19]. In practice, errors may occur in the
spectrum measurement, while CRT is known highly sensitive to residue perturbation [20].
Moreover, in some applications of multiple parameter estimation, we may need to recover
multiple real numbers simultaneously. To this end, many works have been proposed
during the last two decades to solve the two issues, which can be summarized as follows.

(i) Robustness: On the one hand, to make CRT robust against small errors in residues,
Wang et al. introduced a common factor Γ as redundancy to the co-prime moduli
{M1, M2, . . . , ML} in a form {ml = MlΓ|l = 1, 2, . . . , L}. This forms the foundation
of the first closed-form Robust CRT (RCRT) for a single real number [20]. RCRT can
recover the folding number bX/Γc once the error in each residue is upper bounded
by Γ/4. Hence, one can ensure the reconstruction error is upper bounded by Γ/4. The
Γ/4 error tolerance bound is also proved to be tight in the follow-up works [21].

(ii) Residue Ambiguity: On the other hand, since the observed residues are unordered,
there is no clear correspondence between N numbers {Xi|i = 1, 2, . . . N} and residues
in each residue set Rl = {ri,l |i = 1, 2, . . . , N}, l = 1, 2, . . . , L. Here, ri,l denotes the
residue of Xi modulo ml . Thus, the residue ambiguity makes reconstruction much
more complicated for multiple numbers. When N = 2, Xiao et al. proposed a robust
generalized CRT, addressing the residue ambiguity by carefully-designed quadratic
symmetric polynomials [22]. It is shown that the correspondence between these two
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numbers and residues can be uniquely determined while the error bound is sacrificed
to Γ/8 [23]. As shown in recent works [24,25]; theoretically, one can approach the
optimal error bound Γ/4 independent of N when the least common multiple of
moduli is sufficiently large. However, to the best of our knowledge, no existing
polynomial-time algorithm matches the optimal bound.

In this paper, we focus on CRT based algorithm for frequency determination from the
undersampled real waveform. The proposed method can be applied in a sensor network
with low power and low transmission rates sensors [26,27] or Synthetic Aperture Radar
(SAR) imaging of moving targets [28]. However, in the real waveform scenario, the CRT-
based method encounters both the above-mentioned challenges, robustness, and residue
ambiguity, simultaneously.

Notably, the real waveform sampling needs less hardware, i.e., only one Analog-to-
Digital Converter (ADC) per sampling frequency is required in real waveform sampling
rather than two ADCs in complex waveform [29]. However, existing CRT methods for the
complex waveform cannot be applied to the real waveform directly due to the existence of
the spurious peak [24]. In this paper, we set out to solve these mentioned issues. Our main
contributions can be concluded as follows.

• We present the first polynomial-time closed-form RCRT for frequency determination
from undersampled single-tone real waveform, which provides a feasible and efficient
solution. Moreover, the proposed method fixes the gap in the CRT-based method for
frequency determination for the real waveform case.

• By fully utilizing the prior knowledge of the real waveform, we reach the optimal
error tolerance bound, i.e., Γ/4, which is twice better than the best-known robust
generalized CRT proposed in [23].

The remaining content is organized as follows. In Section 2, we give an overview of the
problem formulation. Section 3 details our closed-form reconstruction for the real waveform.
In Section 4, we present some simulation results to support the theory. In Section 5, we
discuss and interpret the simulation results. The conclusion is drawn in Section 6.

2. Problem Formulation

We first describe the frequency estimation model from the undersampled real waveforms.

2.1. Signal Model and Sampling

A sinusoidal waveform is defined as

x(t) = A cos(2πXt) =
1
2
(Ae(2π jXt) + Ae(−2π jXt)), (1)

where A denotes the amplitude, X represents the frequency. Sampling x(t) with L ADCs at
frequency rates of {ml |l = 1, 2, . . . , L} [24,30], where maxl ml < 2X, i.e., the sampling rates
are below the Nyquist rate, we have

xml [u] =
1
2
(Ae

2π jXu
ml + Ae

−2π jXu
ml ), u ∈ Z. (2)

Applying the ml-point Discrete Fourier Transform (DFT) to xml [u] [31,32], we obtain

DFTxml [u]
[k] =

A
2

δ(k− 〈X〉ml ) +
A
2

δ(k− 〈−X〉ml ). (3)

Here, δ(∗) is the the Kronecker delta function, i.e., δ(k−〈X〉ml ) equals 1 when k = 〈X〉ml

or 0 otherwise, where k represents a frequency bin and 〈X〉ml denote the residue of X
modulo ml . Clearly, the locations of the spectrum peaks correspond to the residues 〈X〉ml

and 〈−X〉ml , which leads to two symmetric peaks over the frequency spectrum domain in
the noiseless case. Thus, one can recover the frequency X with sampling rates (moduli) ml
and the locations of the spectrum peaks (residues) 〈X〉ml via CRT.
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2.2. Noise Model and RCRT Procedure

In the following, we further consider the noisy case and review RCRT. Still, let
Xi ∈ {X1, X2} represent the real number to be recovered, where X1 > 0 and X2 = −X1.
The moduli are in a form {ml = MlΓ|l = 1, 2, . . . L}, where {Ml} are pairwise co-prime.
r̃i,l = 〈Xi + ∆i,l〉ml denotes the erroneous residue of Xi modulo ml , where ∆i,l represents
the underlying error such that |∆i,l | < Γ/4. Moreover, rc

i = 〈Xi〉Γ denotes the com-
mon residue of Xi. r̃c

i,l = 〈Xi + ∆i,l〉Γ = 〈rc
i + ∆i,l〉Γ denotes the erroneous common

residue. In practical cases, r̃c
i,l is calculated from r̃i,l based on the number theory, i.e.,

r̃c
i,l = 〈Xi + ∆i,l〉Γ = 〈〈Xi + ∆i,l〉Ml Γ〉Γ = 〈r̃i,l〉Γ, which ensures that r̃c

i,l and r̃i,l share the
same ∆i,l . For clarity, all the notations are listed in Table 1. In the following, we aim to
estimate the real number X1 with known erroneous residues r̃i,l and moduli ml .

Table 1. List of Notations.

Notations Explanation

Ml Co-prime moduli
ml Moduli selected
Xi Number to be recovered
X̂i Estimation of Xi
bXi/Γc The folding number of Xi
qi Estimation of bXi/Γc
r̃i,l = 〈Xi + ∆i,l〉ml Erroneous residue of Xi modulo ml
rc

i = 〈Xi〉Γ Common residue of Xi
r̃c

i,l = 〈r
c
i + ∆i,l〉Γ Erroneous common residue of Xi

r̂c
i,l Shifted common residue of Xi

d(r̃c
i,l1

, r̃c
i,l2

) Minimum circular distance between r̃c
i,l1

and r̃c
i,l2

on the circle of length Γ
I(r̃c

i,l1
, r̃c

i,l2
) Interval between r̃c

i,l1
and r̃c

i,l2

Since Xi = bXi/ΓcΓ + rc
i , we recover Xi by estimating the folding number bXi/Γc and

common residue rc
i successively. We adopt the reconstruction framework proposed in [24],

which consists of three steps:

(i) Estimate the folding number: Based on the fact that Xi = kiml + ri,l = ki MlΓ + ri,l ,
where ki ∈ Z, we have bXi/Γc = ki Ml + bri,l/Γc = ki Ml + (ri,l − 〈ri,l〉Γ)/Γ. Clearly,
〈ri,l〉Γ = 〈〈Xi〉Ml Γ〉Γ = 〈Xi〉Γ = rc

i . Thus, we have bXi/Γc = ki Ml + (ri,l − rc
i )/Γ. By

taking the modulo arithmetic, one can obtain

bXi
Γ
c ≡

ri,l − rc
i

Γ
mod Ml , (4)

From (4), the folding number bXi/Γc is estimated by the equation below via CRT [24],

qi ≡
r̃i,l − r̃c

i,l

Γ
mod Ml , (5)

where qi denotes the estimation of bXi/Γc.
(ii) Estimate the common residues: Calculate ∑L

l=1 r̃c
i,l/L as the estimation of the common

residue rc
i .

(iii) Estimate the number: Based on Xi = bXi/ΓcΓ + rc
i , Xi is reconstructed by

X̂i = qiΓ +
∑L

l=1 r̃c
i,l

L
, (6)

where X̂i represents the estimation of Xi.
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2.3. Key Issues in Real Waveform

(i) Robustness: Trivially estimating the folding number by (5) may lead to large errors
due to the ambiguity of (r̃i,l − r̃c

i,l)/Γ. In other words, since rc
i ∈ [0, Γ) and |∆i,l | < Γ/4,

(r̃i,l − r̃c
i,l)/Γ must satisfy one of the three subcases below based on (4) [33],

r̃i,l − r̃c
i,l

Γ
≡


bXi/Γc mod Ml , if rc

i + ∆i,l ∈ [0, Γ)
bXi/Γc − 1 mod Ml , if rc

i + ∆i,l ∈ (−Γ/4, 0)
bXi/Γc+ 1 mod Ml , if rc

i + ∆i,l ∈ [Γ, 5Γ/4)
(7)

If rc
i + ∆i,l1 and rc

i + ∆i,l2 fall into different subcases in (7), where l1, l2 ∈ {1, 2, . . . , L},
simply aggregating them via CRT will bring unpredictable reconstruction errors.
Thus, we need to unify (r̃i,l − r̃c

i,l)/Γ such that all of them fall into one subcase in (7)
to ensure robustness. This can be achieved by sorting r̃c

i,l , where r̃c
i,l = 〈r

c
i + ∆i,l〉Γ,

in the order such that the corresponding ∆i,l are in an ascending order for each i.
However, the above operation is only implementable when |∆i,l | < Γ/8 [34], while it
still remains open in the generic setup |∆i,l | < Γ/4.

(ii) Residue Ambiguity: Due to the loss of the correspondence between Xi and r̃i,l , we
cannot cluster r̃i,l corresponding to Xi to calculate qi from (5) for each i.

3. Robust Reconstruction for Frequency Estimation of Single-Tone Real Waveform

This section presents the polynomial-time RCRT-based frequency estimation for a
noisy single-tone real waveform. Before proceeding, the following notations are introduced.

We first define a metric to represent the minimum circular distance between r̃c
i,l1

and
r̃c

i,l2
on the circle of length Γ, i.e.,

d(r̃c
i,l1 , r̃c

i,l2) = min
z
|r̃c

i,l1 − r̃c
i,l2 + zΓ|, z ∈ {−1, 0, 1}. (8)

For example, if Γ = 12, d(1, 11) = 2. Let I(r̃c
i,l1

, r̃c
i,l2

) denote the interval between r̃c
i,l1

and r̃c
i,l2

on the circle (such as I(r̃c
1,1, r̃c

1,3) shown in Figure 1), whose length is d(r̃c
i,l1

, r̃c
i,l2

).
maxl I(r̃c

i,l1
, r̃c

i,l2
) represents the interval whose length is maximal. As shown in Figure 1,

when i = 1, the maximum interval is I(r̃c
1,1, r̃c

1,3); when i = 2, I(r̃c
2,1, r̃c

2,3) is the maximum one.

Figure 1. Illustration of the intervals.

3.1. The Order of Residues

Now, we consider the first key issue stated in Section 2.3, i.e., sorting r̃c
i,l in the

order such that the corresponding errors ∆i,l are in ascending order for each i, where
r̃c

i,l = 〈r
c
i + ∆i,l〉Γ. According to [21], sorting is equivalent to finding a cutting point ξ on

the circle of length Γ and stretching it to a real axis. If ξ 6∈ maxl I(r̃c
i,l1

, r̃c
i,l2

) for each i, the
shifted common residues r̂c

i,l on the real axis are sorted in ascending order of ∆i,l .
For example, in Figure 1, Γ/2 is not in the maximum intervals, i.e., I(r̃c

1,1, r̃c
1,3) and

I(r̃c
2,1, r̃c

2,3). Then, cutting the circle at Γ/2 leads to r̂c
2,3 < r̂c

2,2 < r̂c
2,1 and r̂c

1,1 < r̂c
1,2 < r̂c

1,3
sorted in ascending order of ∆i,l, i.e., ∆2,3 < ∆2,2 < 0 < ∆2,1 and ∆1,1 < ∆1,2 < 0 < ∆1,3
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shown in Figure 2a. On the contrary, if we cut the circle at 0, where 0 ∈ I(r̃c
1,1, r̃c

1,3), ∆1,1 breaks
the ascending order, as shown in Figure 2b. Here, r̂c

1,2 < r̂c
1,3 < r̂c

1,1, but ∆1,2, ∆1,3, ∆1,1 are in
non-ascending order.

(a) ξ = Γ/2

(b) ξ = 0

Figure 2. Sketch of the Definition of r̂c
i,l .

However, the key remaining problem is how to find the proper cutting point without
the correspondence between r̃c

i,l and Xi, i.e., maxl I(r̃c
i,l1

, r̃c
i,l2

) is unknown. To this end,
ref. [21] sacrifices the error bound to Γ/8. Nonetheless, we reach the error bound Γ/4 by
using the symmetry of residues, i.e.,

rc
2 = 〈X2〉Γ = 〈−X1〉Γ = Γ− rc

1.

That is to say, rc
1 and rc

2 are axially symmetric about line α shown in Figure 1. Since
|∆i,l | < Γ/4, d(r̃c

i,l1
, r̃c

i,l2
) < d(rc

i − Γ/4, rc
i + Γ/4) = Γ/2, i.e., maxl I(r̃c

i,l1
, r̃c

i,l2
) cannot contain

0 and Γ/2 simultaneously. Based on the symmetry, maxl I(r̃c
1,l1

, r̃c
1,l2

) ∪maxl I(r̃c
2,l1

, r̃c
2,l2

) can-
not contain both 0 and Γ/2. Thus, either 0 or Γ/2 is the cutting point. To figure out the cutting
point, we state Lemma 1, which is proved in Appendix A, that once 0 ∈ maxl I(r̃c

i,l1
, r̃c

i,l2
),

minil d(0, r̃c
i,l) < minil d(Γ/2, r̃c

i,l) holds. Similarly, minil d(0, r̃c
i,l) > minil d(Γ/2, r̃c

i,l) is true
when maxl I(r̃c

i,l1
, r̃c

i,l2
) contains Γ/2. Thus, the unknown maxl I(r̃c

i,l1
, r̃c

i,l2
) problem is con-

verted to distance comparison, i.e., minil d(0, r̃c
i,l) and minil d(Γ/2, r̃c

i,l).
Before giving Lemma 1, we define Operation 1 and 2 corresponding to the cutting

point is 0 and Γ/2, respectively.

• Operations 1:
r̂c

i,l = r̃c
i,l (9)

• Operation 2:

r̂c
i,l = r̃c

i,l if r̃c
i,l ∈ [0,

Γ
2
), otherwise r̂c

i,l = r̃c
i,l − Γ (10)

Lemma 1. If minil d(0, r̃c
i,l) < minil d(Γ/2, r̃c

i,l), where 1 ≤ i ≤ 2 and 1 ≤ l ≤ L, apply
Operation 2 on r̃c

i,l ; otherwise, Operation 1. The resultant r̂c
i,l are sorted in ascending order of ∆i,l

for each i.

For example, as shown in Figure 1, minil d(0, r̃c
i,l) = d(0, r̃c

1,1) < minil d(Γ/2, r̃c
i,l) =

d(Γ/2, r̃c
2,3). Thus, Operation 2 is applied. The resultant r̂c

i,l are sorted in the order that the
corresponding ∆i,l are in ascending order for each i, shown in Figure 2a.

3.2. Residue Ambiguity

With r̂c
i,l sorted in ascending order of ∆i,l , (r̃i,l − r̂c

i,l)/Γ fall into one subcase in (7) [24].
Now, we discuss the second key issue, i.e., residue ambiguity. If we can divide r̃i,l into two
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sets corresponding to X1 and X2, respectively, the folding number bXi/Γc can be estimated
based on (5) [34]:

qi ≡
r̃i,l − r̂c

i,l

Γ
mod Ml . (11)

However, the correspondence between r̃i,l and Xi is unknown. To determine the
correspondence, Li et al. proposed a scheme for positive numbers, which cannot be di-
rectly applied to the real waveform since X2 < 0 [23]. To solve this issue, we form a
quadratic equation by the prior condition X2 = −X1. First, we consider the two residues
{(r̃1,l − r̂c

1,l)/Γ, (r̃2,l − r̂c
2,l)/Γ} as a pair for each l. By multiplying each pair, we can recon-

struct q1q2 via CRT based on (11) [22], i.e.,

q1q2 ≡
r̃1,l − r̂c

1,l

Γ
×

r̃2,l − r̂c
2,l

Γ
mod Ml . (12)

Then, with X2 = −X1, it can be proved that either q2 = −q1 or q2 = −q1 − 1 holds,
which is stated in Lemma 2 and proved in Appendix B. Hence, we can form a quadratic
equation in one unknown by replacing q2 with −q1 or −q1 − 1 in (12) based on Lemma 2.
In a nutshell, the residue ambiguity is addressed by solving one of the two quadratic
equations below via CRT, corresponding to q2 = −q1 and q2 = −q1 − 1, respectively.

q2
1 ≡ Ml −

r̃1,l − r̂c
1,l

Γ
×

r̃2,l − r̂c
2,l

Γ
mod Ml (13)

q2
1 + q1 ≡ Ml −

r̃1,l − r̂c
1,l

Γ
×

r̃2,l − r̂c
2,l

Γ
mod Ml (14)

Lemma 2. If |∆i,l | < Γ/4, {q1, q2} must fall into one of the following two cases:

• q2 = −q1 − 1, when Operation 1 is the appropriate operation and performed on r̃c
i,l , where

q1 = bX1/Γc.
• q2 = −q1, when Operation 2 is the appropriate operation and performed on r̃c

i,l . If rc
1 ∈ [0, Γ/2),

q1 = bX1/Γc. Otherwise, q1 = bX1/Γc+ 1.

3.3. Reconstruction Scheme

With identified q1, we consider the last two steps mentioned in Section 2.2. Clearly,
r̂c

1,l can be distinguished from (11) since q1 is determined. Thus, X1 is estimated based on
Section 2.2:

X̂1 = q1Γ +
∑L

l=1 r̂c
1,l

L
. (15)

With the above understanding, we state the final conclusion, i.e., Theorem 1, that
reconstruction error is bounded by Γ/4, where the proof is in Appendix C.

Theorem 1. If X1 ∈ [0, b
√

McΓ − Γ/2) and |∆i,l | < Γ/4, |X̂1 − X1| < Γ/4 holds, where
M = ∏L

l=1 Ml .

For step 4 of Algorithm 1, the time complexity of solving the Equation (13) or (14) via
CRT is O(1). Since we need to process at most 2L r̃c

i,l or r̂c
i,l in each step, the time complexity

of Algorithm 1 is O(L).
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Algorithm 1 Robust frequency estimation for the single-tone real waveform.
Input: Moduli: {ml |ml = MlΓ, l = 1, 2, . . . , L}.
Erroneous residue sets: Sl = {r̃1,l , r̃2,l}, l = 1, 2, . . . , L.

1: Calculate the erroneous common residues r̃c
i,l = 〈r̃i,l〉Γ.

2: Calculate minil d(0, r̃c
i,l) and minil d(Γ/2, r̃c

i,l) from (8).
3: If minil d(0, r̃c

i,l) < minil d(Γ/2, r̃c
i,l), perform (10) on r̃c

i,l to obtain r̂c
i,l . Otherwise,

perform (9).
4: If (9) is applied, solve the Equation (14) via CRT to obtain q1. Otherwise, solve the

Equation (13).
5: Cluster the shifted common residues r̂c

i,l satisfying (11).
6: Calculate X̂1 according to (15).

Output: X̂1

Example 1. Operation 1 is applied. The moduli are ml = MlΓ ∈ {3× 10, 5× 10, 7× 10}, where
the greatest common divisor Γ = 10 and |∆i,l | < Γ/4. If X1 = 94 and X2 = −94, we assume the
erroneous residue sets are S1 = {2, 25}, S2 = {44, 7}, and S3 = {23, 48}. Thus, the erroneous
common residues are {r̃c

1,1, r̃c
2,1} = {2, 5}, {r̃c

1,2, r̃c
2,2} = {4, 7}, and {r̃c

1,3, r̃c
2,3} = {3, 8}. Clearly,

minil d(0, r̃c
i,l) = 2 > minil d(5, r̃c

i,l) = 0, so Operation 1 is performed, i.e., r̂c
i,l = r̃c

i,l . According
to (14), we obtain: (1). q2

1 + q1 ≡ 0 mod 3; (2). q2
1 + q1 ≡ 0 mod 5; (3). q2

1 + q1 ≡ 6 mod 7.
One can obtain q2

1 + q1 = 90 via CRT, which leads to q1 = 9. From (11), the shifted common
residues r̂c

i,l of q1 are {2, 4, 3}. So X̂1 = 9× 10 + (2 + 4 + 3)/3 = 93.

Example 2. Operation 2 is applied. Likewise, the moduli are ml = MlΓ ∈ {3× 10, 5× 10, 7× 10}.
If X1 = 81 and X2 = −81, the erroneous residue sets are assumed as S1 = {20, 11}, S2 = {29, 18},
and S3 = {12, 57}. Correspondingly, the erroneous common residues are {r̃c

1,1, r̃c
2,1} = {0, 1},

{r̃c
1,2, r̃c

2,2} = {9, 8}, and {r̃c
1,3, r̃c

2,3} = {2, 7}. Clearly, minil d(0, r̃c
i,l) = 0 < minil d(5, r̃c

i,l) = 2,
so Operation 2 is applied on r̃c

i,l . Thus, we obtain the shifted residues based on (10): {r̂c
1,1, r̂c

2,1} =
{0, 1}, {r̂c

1,2, r̂c
2,2} = {−1,−2}, and {r̂c

1,3, r̂c
2,3} = {2,−3}. According to (13), one can derive that:

(1). q2
1 ≡ 1 mod 3; (2). q2

1 ≡ 4 mod 5; (3). q2
1 ≡ 1 mod 7. Based on CRT, we have q2

1 = 64,
resulting in q1 = 8. With determined q1, we continue to figure out the corresponding shifted
common residues based on (11), i.e., {0,−1, 2}. As a result, X̂1 = 8× 10+(0− 1+ 2)/3 = 80.33.

4. Simulation Results

In this section, we first present some simulations to verify our proposed theory.
Then the simulation results are shown to demonstrate the performance of the proposed
method compared with that of the robust generalized CRT [23] and searching−based
algorithm [29].

In the following, we first consider the estimation error versus the error upper bound
for our proposed theory, i.e., Theorem 1. To begin with, the simulation setup is given as
follows. The moduli are ml = {11× 80, 13× 80, 17× 80}, where the greatest common factor
Γ = 80 and the maximal error level τ ∈ {1, 2, . . . , 25}. Based on Theorem 1, τ needs to be
bounded by Γ/4 = 20 to ensure robustness.

For a trial, one unknown real number X is chosen randomly, which belongs to the
dynamic range [0, 3880), where the negative duplicate is −X. Moreover, 10,000 trials are
implemented for each τ.

Figure 3 shows the mean absolute error Eτ between the estimate X̂ and the true
number X for each error bound. The mean absolute error Eτ is defined as below,

Eτ = Etrials(|X̂− X|), (16)

where Etrials denotes the mean of all the trials, X̂ and X are the estimate and true number in
a trial, respectively. Clearly, Eτ is less than τ when τ ≤ Γ/4 = 20, which matches well with
our conclusion. Once τ exceeds the error bound, the reconstruction error increases rapidly.
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In Figure 4, we present the curve of the probability of failure Pe versus the error bound
τ, where

Pe = P(|X̂− X| > τ). (17)

One can see that when τ ≤ Γ/4, the probability of failure is zero while non−zero when τ
exceeds the bound. In a word, if τ < Γ

4 , the reconstruction error is linearly bounded by τ,
the probability of which is 1.

Figure 3. Estimation errors versus the maximal error level.

Figure 4. Probability Pe versus the maximal error level.

Next, we compare the performance of the proposed algorithm with that of the robust
generalized CRT for two numbers in [23] and the searching−based algorithm in [29]. We
consider the real sinusoidal waveform case and select L = 3 sampling rates (moduli) in a
form m[1 : L] = Γ× {11, 13, 17}, which share a greatest common factor Γ. We test different
sampling rates where Γ = {40, 80}. The unknown frequency X is randomly selected from
the range [0, 48.5× Γ). Each noise ∆i,l is assumed to be some independent uniform noise
within (−τ, τ), where τ varies from 1 to 25.

We repeat 5000 trials for each selection of Γ and τ. On the on hand, the root mean
square error (RMSE) is investigated, where

RMSE = {E(X̂− X)2}1/2. (18)

Figure 5a,c show that our method outperforms the best known robust generalized CRT,
where the maximal error tolerance is improved from Γ/8 to Γ/4. Morever, our method
performs as well as the best searching−based method when the maximal error level is less
than Γ/4.
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(a) RMSE versus the maximal error level τ, where Γ = 40 (b) TFR versus the maximal error level τ, where Γ = 40

(c) RMSE versus the maximal error level τ, where Γ = 80 (d) TFR versus the maximal error level τ, where Γ = 80

Figure 5. Performance simulation comparison among searching-based method [29], robust general-
ized CRT [23] and proposed RCRT.

On the other hand, we compare the test fail rate (TFR). We say that the test fails when

TFR = P(|X̂− X| > Γ/4). (19)

As shown in Figure 5b,d, if τ ≤ Γ/4, the estimation error is bounded by Γ/4, the
probability of which is one. Once the maximal error level exceeds Γ/4, the reconstruction
error is almost unpredictable. In a word, our method outperforms the robust generalized
CRT while slightly worse than the searching−based algorithm when τ > Γ/4. However,
it’s worth pointing out that our method provides a closed−form solution that cannot
be realized by the searching−based method. Then, we consider the real running time
consumption, where the computing equipment is Lenovo xiaoxin Pro 13. The real running
time of our method that runs for 125,000 times is about 7.96 s, while the robust generalized
CRT proposed in [23] requires about 86.05 s since the algorithm involves a lot of loops. The
searching-based method proposed in [29] sightly outperforms our method, which only
needs about 5.75 s.

5. Discussion

The experiment results in Figure 5 suggest a clear improvement in the error bound
from Γ/8 to Γ/4 compared with the method proposed in [23]. The reason why we can
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improve the error bound is that we fully utilized the prior knowledge of the real waveform,
i.e., symmetry. For the real waveform, the real peak and the corresponding spurious peak
are symmetric at about 0 points in the spectrum. Thus, the frequency determination from
undersampled single-tone real waveform can be formulated as RCRT for two numbers
{X1, X2}, where these two numbers are in a form X1 = −X2. Based on this symmetry, the
corresponding error-free common residues {rc

1, rc
2} are symmetric on the circle of length

Γ. The geometric property of symmetry ensures that even if the error bound is improved
to Γ/4, we can still shift the erroneous common residues correctly to obtain a robust
reconstruction. In addition, our algorithm is also highly efficient according to the real
running time and the theoretical analysis. We use the prior condition of the real waveform
to form a quadratic equation in one unknown to determine the folding numbers, which
realizes the high efficiency of the algorithm.

In summary, our proposed method provides a feasible solution for the frequency
determination from the undersampled single-tone real waveform. In addition, we complete
the study of CRT-based frequency determination from undersampled waveform, which
shows that the optimal error tolerance bound can be achieved in the real waveform case.
The limitation of our proposed method is that since it is based on the prior knowledge of the
real waveform and the prior condition is invalid; it cannot handle the complex waveform.
In addition, this algorithm cannot deal with the case of multiple frequency estimation from
undersampled real waveforms. We will investigate these problems in our future studies.

6. Conclusions

We proposed the first polynomial-time RCRT-based frequency estimation for a noisy
single-tone real waveform, which matches the optimal error bound. The proposed method
can be applied in SAR imaging of moving targets or sensor networks where the sampling
rate may be lower than the Nyquist rate of the input signal. The time complexity of the
proposed method is linear to the number of samplers. Moreover, the proposed method
can estimate the frequency from the real waveform by sub-Nyquist rates, which reduces
the cost and system size, especially in sensor networks that require noticeable sensors. We
believe the method can be further extended to the multiple frequencies case.
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Appendix A. Proof of Lemma 1

Proof. For brevity, we only consider the case when rc
1 ≤ rc

2, i.e., rc
1 is on the right half of the

circle Γ. For the case rc
1 ≥ rc

2, which is obviously symmetric with rc
1 ≤ rc

2, one can obtain the
same conclusion based on the following idea.

Since maxl I(r̃c
1,l1

, r̃c
1,l2

) ∪maxl I(r̃c
2,l1

, r̃c
2,l2

) can not contain 0 and Γ/2 simultaneously,
the intervals must satisfy one of the three cases:

(1) 0 ∈ maxl I(r̃c
i,l1

, r̃c
i,l2

)

(2) Γ/2 ∈ maxl I(r̃c
i,l1

, r̃c
i,l2

)

(3) maxl I(r̃c
i,l1

, r̃c
i,l2

) contains neither 0 nor Γ/2

Case (1): 0 ∈ maxl I(r̃c
1,l1

, r̃c
1,l2

) or maxl I(r̃c
2,l1

, r̃c
2,l2

).
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If 0 ∈ maxl I(r̃c
1,l1

, r̃c
1,l2

), there must exist at least one r̃c
1,k to the left of the point 0, and

another r̃c
1,l to the right of the point 0, where k, l ∈ {1, 2, . . . , L}. Since rc

1 is on the right half
of the circle Γ while r̃c

1,k = 〈r
c
1 + ∆1,k〉Γ is to the left of the point 0 and |∆1,k| < Γ/4, we have

rc
1 ∈ [0, Γ/4). Based on the fact that rc

2 = Γ− rc
1, rc

2 ∈ (3Γ/4, Γ]. The same conclusion can
be derived if 0 ∈ maxl I(r̃c

2,l1
, r̃c

2,l2
). Since rc

1 ∈ [0, Γ/4) and r̃c
1,k is to the left of the point 0,

we obtain
min

il
d(0, r̃c

i,l) ≤ d(0, r̃c
1,k) < d(0, rc

1 −
Γ
4
) =

Γ
4
− rc

1. (A1)

Now, we calculate minil d( Γ
2 , r̃c

i,l). When i = 1, since rc
1 ∈ [0, Γ/4) and |∆i,l | < Γ/4,

it’s clear that minl d( Γ
2 , r̃c

1,l) > d( Γ
2 , rc

1 +
Γ
4 ) =

Γ
4 − rc

1. When i = 2, replacing rc
2 with Γ− rc

1,
we have minl d( Γ

2 , r̃c
2,l) > d( Γ

2 , rc
2 −

Γ
4 ) =

Γ
4 − rc

1. In conclusion, when 0 ∈ maxl I(r̃c
i,l1

, r̃c
i,l2

),
we have

min
il

d(0, r̃c
i,l) <

Γ
4
− rc

1 < min
il

d(
Γ
2

, r̃c
i,l). (A2)

Since Cases (1) and (2) cannot hold simultaneously, we have Γ
2 6∈ maxl I(r̃c

i,l1
, r̃c

i,l2
) for

each i. Thus, cutting the circle at Γ/2, i.e., applying Operation 2 on r̃c
i,l leads to r̂c

i,l sorted in
ascending order of ∆i,l .

Case (2): Γ/2 ∈ maxl I(r̃c
1,l1

, r̃c
1,l2

) or maxl I(r̃c
2,l1

, r̃c
2,l2

). Case (2) is obviously symmetric
with case (1) on the circle of length Γ. The conclusion can be derived based on the same
idea. If Γ/2 ∈ maxl I(r̃c

1,l1
, r̃c

1,l2
), there must exist at least one r̃c

1,k to the left of the point Γ/2,
and another r̃c

1,l to the right of the point Γ/2. Likewise, since r̃c
1,k = 〈rc

1 + ∆1,k〉Γ is to the
left of the point Γ/2 while rc

1 is on the right half and |∆1,k| < Γ/4, we have rc
1 ∈ (Γ/4, Γ/2]

and rc
2 ∈ [Γ/2, 3Γ/4). The same conclusion can be derived if Γ/2 ∈ maxl I(r̃c

2,l1
, r̃c

2,l2
). Since

rc
1 ∈ (Γ/4, Γ/2] and r̃c

1,k is to the left of the point Γ/2, we obtain

min
il

d(
Γ
2

, r̃c
i,l) ≤ d(

Γ
2

, r̃c
1,k) < d(

Γ
2

, rc
1 +

Γ
4
) = rc

1 −
Γ
4

. (A3)

Then, we discuss minil d(0, r̃c
i,l). When i = 1, since rc

1 ∈ (Γ/4, Γ/2] and |∆i,l | < Γ/4,
one can obtain minl d(0, r̃c

1,l) > d(0, rc
1 −

Γ
4 ) = rc

1 −
Γ
4 . When i = 2, replacing rc

2 with Γ− rc
1,

we have minl d(0, r̃c
2,l) > d(0, rc

2 +
Γ
4 ) = rc

1 −
Γ
4 . Based on the discussion above, when

Γ/2 ∈ maxl I(r̃c
i,l1

, r̃c
i,l2

), we have

min
il

d(
Γ
2

, r̃c
i,l) < rc

1 −
Γ
4
< min

il
d(0, r̃c

i,l). (A4)

Since Cases (1) and (2) cannot hold simultaneously, we have 0 6∈ maxl I(r̃c
i,l1

, r̃c
i,l2

) for
each i. Thus, cutting the circle at 0, i.e., applying Operation 1 on r̃c

i,l leads to r̂c
i,l sorted in

ascending order of ∆i,l . Case (3): Since neither 0 nor Γ
2 is covered by maxl I(r̃c

i,l1
, r̃c

i,l2
) for

each i, we can implement either of the two operations on r̃c
i,l . Q.E.D.

Appendix B. Proof of Lemma 2

Proof. The proof has two parts to handle the following two cases, respectively.

(1) min d(0, r̃c
i,l) ≥ min d( Γ

2 , r̃c
i,l)

(2) min d(0, r̃c
i,l) < min d( Γ

2 , r̃c
i,l)

Case (1): Since Operation 1 is the appropriate operation based on Lemma 1, we have
r̂c

i,l = r̃c
i,l based on (9). Therefore, replacing r̂c

i,l with r̃c
i,l , (11) is equal to

qi ≡
r̃i,l − r̃c

i,l

Γ
mod Ml . (A5)

Then, we discuss rc
i + ∆i,l , which determines qi in (A5). With rc

i ∈ [0, Γ) and |∆i,l | < Γ
4 ,

rc
i + ∆i,l must fall into one of the three subcases:
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(a) rc
i + ∆i,l ∈ (0, Γ)

(b) rc
i + ∆i,l ∈ (− Γ

4 , 0)
(c) rc

i + ∆i,l ∈ (Γ, 5Γ
4 )

If rc
i + ∆i,l satisfy subcase (b), it leads to minil d(0, r̃c

i,l) < Γ
4 < minil d( Γ

2 , r̃c
i,l), a con-

tradiction to minil d(0, r̃c
i,l) ≥ minil d( Γ

2 , r̃c
i,l). Similarly, if rc

i + ∆i,l satisfy subcase (c), we
have minil d(0, r̃c

i,l) <
Γ
4 < minil d( Γ

2 , r̃c
i,l), a contradiction to minil d(0, r̃c

i,l) ≥ minil d( Γ
2 , r̃c

i,l).

Consequently, only subcase (a), i.e., rc
i + ∆i,l ∈ (0, Γ) holds, leading to

r̃i,l−r̃c
i,l

Γ satisfying

subcase (1) in (7). Thus, (
r̃1,l−r̃c

1,l
Γ ,

r̃2,l−r̃c
2,l

Γ ) are residues of (bX1
Γ c, b

X2
Γ c) modulo Ml , where

bX2
Γ c = b

−X1
Γ c = −b

X1
Γ c − 1. Therefore, when Operation 1 is the appropriate operation,

q2 = −q1 − 1 and q1 = bX1
Γ c.

Case (2): In this case, Operation 2 is the appropriate operation based on Lemma 1.
Then, based on (10), r̂c

i,l = r̃c
i,l when r̃c

i,l ∈ [0, Γ/2); otherwise, r̂c
i,l = r̃c

i,l − Γ. Thus, replacing
r̂c

i,l with r̃c
i,l , (11) is equal to

qi ≡
{ r̃i,l−r̃c

i,l
Γ mod Ml , if r̃c

i ∈ [0, Γ/2)
r̃i,l−r̃c

i,l
Γ + 1 mod Ml , otherwise

(A6)

Likewise, we discuss rc
i + ∆i,l in the following to figure out qi, where rc

i + ∆i,l must fall
into one of the five subcases:

(a) rc
i + ∆i,l ∈ ( Γ

4 , 3Γ
4 )

(b) rc
i + ∆i,l ∈ [0, Γ

4 ]

(c) rc
i + ∆i,l ∈ [ 3Γ

4 , Γ)
(d) rc

i + ∆i,l ∈ (− Γ
4 , 0)

(e) rc
i + ∆i,l ∈ (Γ, 5Γ

4 )

If rc
i + ∆i,l satisfies subcase a), we have minil d(0, r̃c

i,l) >
Γ
4 > minil d( Γ

2 , r̃c
i,l), a contra-

diction to minil d(0, r̃c
i,l) ≤ minil d( Γ

2 , r̃c
i,l). Consequently, subcase (a) cannot happen. Next,

we set out to figure out qi corresponding to subcases (b), (c), (d), and (e).
Subcase (b): Since rc

i + ∆i,l ∈ [0, Γ
4 ], we have r̃c

i,l = 〈r
c
i + ∆i,l〉Γ ∈ [0, Γ

4 ]. Thus, based on

(A6), we have qi ≡
r̃i,l−r̃c

i,l
Γ . Moreover, it is clear that

r̃i,l−r̃c
i,l

Γ are residues of bXi
Γ cmodulo Ml

based on (7). So qi = bXi
Γ c.

Subcase (c): Likewise, since rc
i + ∆i,l ∈ [ 3Γ

4 , Γ), we have r̃c
i,l = 〈r

c
i + ∆i,l〉Γ ∈ [ 3Γ

4 , Γ).

Therefore, based on (A6), we have qi ≡
r̃i,l−r̃c

i,l
Γ + 1. From (7), one can obtain

r̃i,l−r̃c
i,l

Γ are
residues of bXi

Γ cmodulo Ml , which leads to qi = bXi
Γ c+ 1.

Subcase (d): Since rc
i + ∆i,l ∈ (− Γ

4 , 0), we have r̃c
i,l = 〈r

c
i + ∆i,l〉Γ ∈ ( 3Γ

4 , Γ). Therefore,

based on (A6), we have qi ≡
r̃i,l−r̃c

i,l
Γ + 1. From (7), one can obtain

r̃i,l−r̃c
i,l

Γ are residues of
bXi

Γ c − 1 modulo Ml . Thus, we have qi = bXi
Γ c.

Subcase (e): Since rc
i + ∆i,l ∈ (Γ, 5Γ

4 ), we have r̃c
i,l = 〈r

c
i + ∆i,l〉Γ ∈ (0, Γ

4 ). Therefore,

based on (A6), we have qi ≡
r̃i,l−r̃c

i,l
Γ . From (7), one can obtain

r̃i,l−r̃c
i,l

Γ are residues of bXi
Γ c+ 1

modulo Ml , which results in qi = bXi
Γ c+ 1.

Since |∆i,l | < Γ/4, only subcases (b) and (d) or subcases (c) and (e) can occur simul-
taneously. Clearly, subcases (b) and (d) result in the same qi, i.e., qi = bXi

Γ c. Similarly,
subcases c) and e) lead to the same qi, where qi = bXi

Γ c+ 1. Based on the discussions above,
we start to consider the residue pair {rc

1, rc
2}. Since rc

2 = Γ− rc
1, {rc

1, rc
2}must fall into one

the four subcases:

(1) rc
1 ∈ (0, Γ

4 ), rc
2 ∈ ( 3Γ

4 , Γ)
(2) rc

1 ∈ ( 3Γ
4 , Γ), rc

2 ∈ (0, Γ
4 )

(3) rc
1 ∈ ( Γ

4 , Γ
2 ), rc

2 ∈ ( Γ
2 , 3Γ

4 )
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(4) rc
1 ∈ ( Γ

2 , 3Γ
4 ), rc

2 ∈ ( Γ
4 , Γ

2 )

Subcase (1): Since rc
1 ∈ (0, Γ

4 ) and |∆i,l | < Γ
4 , rc

1 + ∆i,l may fall into subcases (b) and
(d), leading to q1 = bX1

Γ c. In the same way, since rc
2 ∈ ( 3Γ

4 , Γ), rc
2 + ∆i,l can fall into

subcases (c) and (e), resulting in q2 = bX2
Γ c+ 1. Based on the fact that x1 = −x2, we have

q2 = bX2
Γ c+ 1 = −bX1

Γ c, i.e., q1 = −q2 = bX1
Γ c.

Subcase (2): Subcase (2) is obviously symmetric with subcase (1) on the circle of length
Γ. The proof is very similar to that of subcase (1). It is clear that rc

1 + ∆i,l can fall into
subcases (c) and (e), leading to q1 = bX1

Γ c+ 1. rc
2 + ∆i,l may fall into subcases (b) and (d),

leading to q2 = bX2
Γ c. Replacing x2 with −x1, we have q2 = bX2

Γ c = −b
X1
Γ c − 1. Thus,

q1 = −q2 = bX1
Γ c+ 1.

Subcase (3): Since rc
1 ∈ ( Γ

4 , Γ
2 ) and |∆i,l | < Γ

4 , rc
1 + ∆i,l may fall into subcases (b)

and (d). Then, we have q1 = bX1
Γ c. For rc

2 ∈ ( Γ
2 , 3Γ

4 ), rc
2 + ∆i,l can fall into subcases (c)

and (e), resulting in q2 = bX2
Γ c + 1. Therefore, we have q2 = bX2

Γ c + 1 = −bX1
Γ c, i.e.,

q1 = −q2 = bX1
Γ c.

Subcase (4): Subcase (4) is clearly symmetric with subcase 3) on the circle of length Γ.
Clearly, rc

1 + ∆i,l can fall into subcases (c) and (e), leading to q1 = bX1
Γ c+ 1. rc

2 + ∆i,l may
fall into subcases (b) and (d), which means q2 = bX2

Γ c. Replacing x2 with −x1, we have
q2 = bX2

Γ c = −b
X1
Γ c − 1. Thus, q1 = −q2 = bX1

Γ c+ 1.
In a nutshell, when Operation 2 is the appropriate operation, q2 = −q1. If rc

1 ∈ [0, Γ/2),
q1 = bX1

Γ c. Otherwise, q1 = bX1
Γ c+ 1. Q.E.D.

Appendix C. Proof of Theorem 1

Proof. At a high level, the proof is developed in two parts. First, we verify that q1 has a
unique solution when X1 ∈ [0, b

√
McΓ− Γ

2 ). Second, the reconstruction error is discussed
under Operations 1 and 2, respectively.

Now, we discuss the uniqueness of the solution to qi. If Operation 1 is implemented,
we have q1 = bX1

Γ c based on Lemma 2. Since x1 < b
√

McΓ− Γ
2 , we have

q1 = bX1

Γ
c < b

b
√

McΓ− Γ
2

Γ
c = b

√
Mc − 1. (A7)

From Algorithm 1, q1 is determined by (14) when Operation 1 is implemented. Clearly,
q2

1 + q1 in (14) satisfies q2
1 + q1 < M, which guarantees that q2

1 + q1 can be uniquely de-
termined via CRT. Once q2

1 + q1 is known, q1 can be uniquely determined by solving a
quadratic equation.

If Operation 2 is applied on r̃c
i,l and rc

1 ∈ [0, Γ
2 ), we have q1 = bX1

Γ c based on Lemma 2,
where X1 ≤ (b

√
Mc − 1)Γ + rc

1, .i.e.,

q1 = bX1

Γ
c ≤ b

(b
√

Mc − 1)Γ + rc
1

Γ
c = b

√
Mc − 1. (A8)

If rc
1 ∈ ( Γ

2 , Γ) and Operation 2 is applied, we obtain q1 = bX1
Γ c+ 1 based on Lemma 2.

Correspondingly, X1 ≤ (b
√

Mc − 2)Γ + rc
1, which leads to

q1 = bX1

Γ
c+ 1 ≤ b

(b
√

Mc − 2)Γ + rc
1

Γ
c+ 1 = b

√
Mc − 1. (A9)

From Algorithm 1, q1 is calculated by (13) when Operation 2 is implemented. Since
q1 ≤ b

√
Mc − 1, we obtain q2

1 < M in (13), which means q1 can be uniquely recovered.
In the following, we continue to the second part of the proof, i.e., we discuss the

robustness of reconstruction using the unique q1, where q1 6= q2. Once q1 is determined,
we can obtain the corresponding r̂c

1,l from (11) and further reconstruct X̂1 from (15). There
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are two scenarios for the reconstruction error: (i) Operation 1 is the appropriate operation
and applied; (ii) Operation 2 is the appropriate operation and implemented.

When Operation 1 is applied: In this case, r̂c
1,l = r̃c

1,l based on (9). Then, we discuss
r̃c

1,l = 〈r
c
1 + ∆1,l〉Γ, where rc

1 + ∆1,l must fall into one of the three subcases:

(a) rc
1 + ∆1,l ∈ (0, Γ)

(b) rc
1 + ∆1,l ∈ (− Γ

4 , 0)
(c) rc

1 + ∆1,l ∈ (Γ, 5Γ
4 )

If rc
1 + ∆1,l satisfies subcase (b), we have minil d(0, r̃c

i,l) <
Γ
4 < minil d( Γ

2 , r̃c
i,l), a contra-

diction to the fact that Operation 1 is the appropriate operation. Likewise, when rc
1 + ∆1,l

falls into subcase (c), we have minil d(0, r̃c
i,l) <

Γ
4 < minil d( Γ

2 , r̃c
i,l), which contradicts the

fact that Operation 1 is the appropriate operation. Therefore, only subcase a) can happen,
i.e., rc

1 + ∆1,l ∈ (0, Γ). Thus,

r̃c
1,l = 〈r

c
1 + ∆1,l〉Γ = rc

1 + ∆1,l .

Since Operation 1 is applied on r̃c
1,l , we have q1 = bX1

Γ c based on Lemma 2. Then,
reconstructing X1 from (15), we have |X̂1 − X1| is equal to

|bX1

Γ
cΓ +

∑L
l=1 r̂c

1,l

L
− X1| = |b

X1

Γ
cΓ +

∑L
l=1(r

c
1 + ∆1,l)

L
− X1| = |

∑L
l=1 ∆1,l

L
| < Γ

4
. (A10)

When Operation 2 is applied: In this case, r̂c
1,l = r̃c

1,l when r̃c
1,l ∈ [0, Γ/2); otherwise

r̂c
1,l = r̃c

1,l − Γ based on (9). Similarly, we discuss r̃c
1,l = 〈r

c
1 + ∆1,l〉Γ, where rc

1 + ∆1,l must
fall into one of the five subcases:

(a) rc
1 + ∆1,l ∈ ( Γ

4 , 3Γ
4 )

(b) rc
1 + ∆1,l ∈ [0, Γ

4 ]

(c) rc
1 + ∆1,l ∈ [ 3Γ

4 , Γ)
(d) rc

1 + ∆1,l ∈ (− Γ
4 , 0)

(e) rc
1 + ∆1,l ∈ (Γ, 5Γ

4 )

If rc
1 + ∆1,l satisfies subcase (a), we have minil d(0, r̃c

i,l) > Γ
4 > minil d( Γ

2 , r̃c
i,l), a con-

tradiction to that Operation 2 is the appropriate operation, which means that subcase (a)
cannot happen. As proved in Appendix B, when rc

1 + ∆1,l falls into subcase (b) or (d), we
have q1 = bX1

Γ c. When rc
1 + ∆1,l falls into subcase (c) or (e), we obtain q1 = bX1

Γ c+ 1. Based
on these conclusions, we discuss the reconstruction error: (i). only one subcase occurs; (ii).
subcases (b) and (d) or subcases (c) and (e) happen simultaneously.

Subcase (b): Since rc
1 + ∆1,l ∈ [0, Γ

4 ] and Operation 2 is applied, we have r̂c
1,l = r̃c

1,l =

〈rc
1 + ∆1,l〉Γ = rc

1 + ∆1,l . Since q1 = bX1
Γ c, |X̂1 − X1| is equal to

|bX1

Γ
cΓ +

∑L
l=1 r̂c

1,l

L
− X1| = |b

X1

Γ
cΓ +

∑L
l=1(r

c
1 + ∆1,l)

L
− X1| = |

∑L
l=1 ∆1,l

L
| < Γ

4
. (A11)

Subcase (c): Since rc
1 + ∆1,l ∈ [ 3Γ

4 , Γ) and Operation 2 is applied, we have r̂c
1,l =

r̃c
1,l − Γ = 〈rc

1 + ∆1,l〉Γ − Γ = rc
1 + ∆1,l − Γ. Since q1 = bX1

Γ c+ 1, |X̂1 − X1| is equal to

|(bX1

Γ
c+1)Γ+

∑L
l=1 r̂c

1,l

L
−X1| = |b

X1

Γ
cΓ+Γ+

∑L
l=1(r

c
1+∆1,l−Γ)

L
−X1| = |

∑L
l=1 ∆1,l

L
| < Γ

4
. (A12)

Subcase (d): Since rc
1 + ∆1,l ∈ (− Γ

4 , 0) and Operation 2 is applied, we have r̂c
1,l =

r̃c
1,l − Γ = 〈rc

1 + ∆1,l〉Γ − Γ = rc
1 + ∆1,l . Since q1 = bX1

Γ c, |X̂1 − X1| is equal to

|bX1

Γ
cΓ +

∑L
l=1 r̂c

1,l

L
− X1| = |b

X1

Γ
cΓ +

∑L
l=1(r

c
1 + ∆1,l)

L
− X1| = |

∑L
l=1 ∆1,l

L
| < Γ

4
. (A13)
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Subcase (e): Since rc
1 + ∆1,l ∈ (Γ, 5Γ

4 ) and Operation 2 is applied, we have r̂c
1,l = r̃c

1,l =

〈rc
1 + ∆1,l〉Γ = rc

1 + ∆1,l − Γ. Since q1 = bX1
Γ c+ 1, |X̂1 − X1| is equal to

|(bX1

Γ
c+ 1)Γ+

∑L
l=1 r̂c

1,l

L
−X1| = |b

X1

Γ
cΓ+Γ+

∑L
l=1(r

c
1+∆1,l−Γ)

L
−X1| = |

∑L
l=1 ∆1,l

L
| < Γ

4
. (A14)

Subcase (b) and (d) happen simultaneously: Based on the discussions above, we have
q1 = bX1

Γ c and r̂c
1,l = rc

1 + ∆1,l . Therefore, |X̂1 − X1| is equal to

|bX1

Γ
cΓ +

∑L
l=1 r̂c

1,l

L
− X1| = |b

X1

Γ
cΓ +

∑L
l=1(r

c
1 + ∆1,l)

L
− X1| = |

∑L
l=1 ∆1,l

L
| < Γ

4
. (A15)

Subcase (c) and (e) happen simultaneously: Likewise, based on the discussions above,
we have q1 = bX1

Γ c+ 1 and r̂c
1,l = rc

1 + ∆1,l − Γ. As a result, |X̂1 − X1| is equal to

|(bX1

Γ
c+1)Γ+

∑L
l=1 r̂c

1,l

L
−X1| = |b

X1

Γ
cΓ+Γ+

∑L
l=1(r

c
1+∆1,l−Γ)

L
−X1| = |

∑L
l=1 ∆1,l

L
| < Γ

4
. (A16)

Thus, the reconstruction error is bounded by Γ
4 . Q.E.D.
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