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Abstract: Here, we propose a CNN-based infrared image enhancement method to transform pseudo-
realistic regions of simulation-based infrared images into real infrared texture. The proposed algo-
rithm consists of the following three steps. First, target infrared features based on a real infrared image
are extracted through pretrained VGG-19 networks. Next, by implementing a neural style-transfer
algorithm to a simulated infrared image, fractal nature features from the real infrared image are
progressively applied to the image. Therefore, the fractal characteristics of the simulated image are
improved. Finally, based on the results of fractal analysis, peak signal-to-noise (PSNR), structural
similarity index measure (SSIM), and natural image quality evaluator (NIQE) texture evaluations
are performed to know how the simulated infrared image is properly transformed as it contains
the real infrared fractal features. We verified the proposed methodology using a simulation with
three different simulation conditions with a real mid-wave infrared (MWIR) image. As a result, the
enhanced simulated infrared images based on the proposed algorithm have better NIQE and SSIM
score values in both brightness and fractal characteristics, indicating the closest similarity to the given
actual infrared image. The proposed image fractal feature analysis technique can be widely used not
only for the simulated infrared images but also for general synthetic images.

Keywords: neural style transfer; fractal analysis; synthetic infrared image; MWIR; OKTAL-SE; image
quality assessment; image texture enhancement; NIQE; SSIM

1. Introduction

Synthetic Infrared (IR) imaging is widely used in military, medical, and industrial fields
as a substitute for an actual infrared imaging system [1–4]. Today, generation of synthetic
infrared images is commonly performed by commercial software tools such as MuSES [5],
Vega Prime [6], and OKTAL-SE [7]. Moreover, recent texture enhancement techniques such
ray-tracing and anti-aliasing in computer graphics have been adopted to generate realistic
synthetic infrared images [8–10]. Despite the completeness of synthetic infrared images,
the fundamental question of how to depict low-level thermal components, such as rocks
and leaves, without massive computational loads remains. In general, the background
elements are replaced with repetitive texture components instead of direct modeling and
individual material allocation. Therefore, we propose a neural style transfer-based texture
enhancement algorithm for simulated infrared images with a histogram matching technique.
Since this method uses a single real infrared image as a style reference, it can reduce
computational load and acquisition cost for a target infrared image. Specifically, the
proposed stylization technique combines brightness histogram information with the fractal
texture features of a real infrared images.

The main contribution of this paper can be summarized as follows:

• A modified neural style transfer algorithm with a histogram matching technique is
proposed for realistic synthetic infrared image generation.
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• The image quality assessment procedure with a fractal image along with a false-colored
RGB infrared image is suggested.

• The natural image quality index (NIQE) and structural similarity index measure (SSIM)
are proposed as evaluation metrics for synthetic infrared images.

The rest of the paper is organized as follows. Section 2 gives a brief description of the
related work. Section 3 presents the proposed fractal dimension-based image enhancement
for simulated infrared images. Section 4 shows the simulation results according to three
different simulation conditions. Finally, we conclude with a summary in the last section.

2. Related Works
2.1. Simulated Infrared Image

To overcome hardware limitations in infrared imaging, numerical simulations of the
thermal distribution of the aircraft skin and exhaust gases have been widely researched
using commercial CFD software [11] with sophisticated mathematical computer code for
configuring a realistic simulation environment [12]. In recent studies, simulated infrared
imaging using a graphics engine such as Unity 3D has also expanded its scope to a VR/AR
virtual environment [13,14]. In this way, infrared radiation characteristics in various
observation band wavelengths and directions can be easily analyzed in a physics model-
based simulation. However, these physics-based simulations have intrinsic limitations in
that they cannot describe all the various real-world environments due to the constraints of
computation resources.

2.2. Neural Style Transfer

Recently, generative model-based approaches such as CycleGAN have been researched
for texture enhancement of simulated infrared images [15,16]. However, the generative
models have a high risk of distorting the physical context of the original images. In addition,
it requires many sample datasets to train the neural networks. On the other hand, a neural
style transfer can reduce computational load as it does not require prior knowledge in both
domains [17]. Since the seminal work of neural style transfer [18], there have been many
recent studies showing that style transfer methods based on convolutional neural network
(CNN) are biased toward texture rather than shape [19]. According to the Markov random
field theory, traditional texture synthesis is characterized by statistical interactions within
local neighborhoods [20]. These statistical interactions are determined according to the
oriented linear kernels at multiple spatial scales. The style transfer algorithm matches the
content and style representation in the intermediate layers of the images. Therefore, the
style of the reference image can be transferred directly to the target image. This process is
implemented by optimizing the statistics of the output image according to the statistics of
the style image and content image.

2.3. Fractal-Based Image Analysis

A fractal is defined as a repetitive pattern of self-similarity found in nature, such as
trees, lightning, and rivers, which follows the law of power series. The fractal concept
was first studied by mathematician Mandelbrot in 1975 [21]. Fractal structures are used in
various fields, such as science, engineering, and computer graphics, as a method of synthe-
sizing nature images or classifying a segment of textures [22]. For example, Pentland [23]
modeled the surface of natural structures found in mountains, trees, and clouds as fractals
by using computer graphic tools. To distinguish natural images and artificial images,
Pentland [23] also defined the fractal dimension that changes according to scale size as a
fractal signature used for texture classification. The fractal dimension (FD) is an important
characteristic parameter of fractal structures that measures the level of self-similarity of
patterns. This quantitative fractal information tells us about how much the geometric
structure follows the power law of scale invariance. In practice, the fractal dimensions
are used to measure the pavement surface resistance evaluation [24]. Moreover, the value
of the fractal dimension can be used as a fractal signature for the classification of image
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textures [25,26]. Therefore, we use this idea as a key characteristic that distinguishes the
simulated infrared image from the actual infrared image.

3. The Proposed Algorithm

In this paper, we propose the neural style transfer algorithm using histogram matching,
which matches the infrared characteristics of the real infrared image in the perspective of
both thermal signature and texture. Therefore, the overall brightness of the real infrared
image with fractal characteristics can be transmitted to the simulated infrared image.
The generated style-transferred simulated infrared images, as a result of the statistical
correlations, were evaluated using both the full-reference image quality metrics and the
no-reference image quality metrics. A diagram of the proposed algorithm is given in
Figure 1.
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Figure 1. Flow chart of the proposed texture enhancement process of a simulated infrared image.

The algorithm uses three infrared images to calculate the total loss: the histogram-
matched simulated IR image X′ (input), the style-transferred simulated infrared image
Y (output), and the real infrared image R (style). First, the input histogram-matched
simulated infrared image (X′) and the style-transferred infrared image (X′Y) are passed to
the pretrained VGG-19 networks, and the multi-layered features are extracted. Because
CNNs are successively located in each block of the VGG-19 networks, it has the advantage
of preventing loss of information of the image. The content loss is calculated by using
the spatial features of the input image (X′) and the output image (X′Y). In addition, style
loss is calculated by using the style characteristics of the output image (X′Y) and the real
infrared image (R). Therefore, the total loss can be calculated by the weighted sum of those
loss terms.

• Content loss, L(X′, X′Y): Content loss is a measure of the difference in spatial struc-
ture between the histogram-matched simulated infrared image (X′) and the style-
transferred simulated infrared image (X′Y).

• Style loss, L(R, X′Y): Style loss is a measure of similarity in the stylistic features
between the real infrared image (R) and the style-transferred infrared image (X′Y).
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The infrared image quality assessment process can be divided into three steps. First,
both the actual infrared image and the generated output infrared image are converted to
false-colored infrared RGB images in order to utilize the enhanced feature information in
each scene. Next, the fractal RGB images are generated to check the spurious simulation-like
regions from the infrared images. Finally, a quantitative evaluation using the full-reference
image quality metrics is conducted based on the peak signal-to-noise (PSNR) and structural
similarity index measure (SSIM) of both the generated infrared RGB images and fractal
RGB images, as depicted in Figure 1. Moreover, no-reference based image assessment using
natural image quality evaluator (NIQE) is performed for the output images to check natural
scene statistics. From the results of evaluation in the last phase, it can be decided whether
the style-transferred infrared images correctly reflect the infrared features of the given true
infrared image. The following subsections describe each of these phases in detail.

3.1. Style Matching

Gatys et al. [18] first proposed a CNN-based stylization algorithm for any two images.
During the stylization, the correlations between the extracted features defined by the Gram
matrix are matched through the optimization framework. The features of the content
image are projected to the eigenspace of the features of the style image, and the second-
order statistics of each infrared image are matched in the feature space domain. Therefore,
the final stylized infrared image is obtained when the extracted features are sufficiently
saturated at each feature layer (i.e., conv1_x, conv2_x, conv3_x, and conv4_x).

3.2. Content Loss

Content loss is defined as the mean square error (MSE) value of the spatial feature
information including the same content of the input image as the output image. The
content loss compares the features of the simulated infrared image and the style-transferred
infrared image as

Lcontent = E
([

φl
(
X′
)
− φl

(
X′Y

)]2), (1)

where X′ is the histogram-matched simulated infrared image, X′Y is the style transferred
infrared image, and φl(·) represents the extracted feature at layer (l).

3.3. Gram Matrix

According to Gatys et al. [18], the style of an image can be explained by the correlation
between the average of each feature map. It can be obtained by the average of the inner
product of the feature vectors; therefore, the Gram matrix is used as a stylistic representation
for the image and contains information about which features activate together. The size
of the Gram matrix is [C, C] where C is the number of channels. Each entry of the Gram
matrix represents the correlation between channels as

Gl
ij(φl) =

1
H ×W ∑H

h=1 ∑W
w=1 φl(h, w, ci)φl

(
h, w, cj

)
, (2)

where H is the height of an image, and W is the width of an image.

3.4. Style Loss

The role of style loss is to evaluate whether the texture of a style-transferred infrared
image is consistent with the texture of the real infrared image. Therefore, the MSE of Gram
matrices between two infrared images is defined as the style representation distance of
those images. The feature extraction layers can be changed according to the target infrared
image as follows:

Lstyle =
1

4C2 ∑Nl
l=1

∣∣∣Gl
ij(φl(R))− Gl

ij
(
φl
(
X′Y

))∣∣∣2, (3)
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where j is the index of each feature layer, C is the number of channels, Gl
ij(φl(R)) is the

Gram matrix of the real infrared image, and Gl
ij(φl(X′Y)) is the Gram matrix of the style

transferred infrared image.

3.5. Total Loss

Total loss is defined as a weighted sum of the content loss and the style loss. The image
update is performed at every iteration using the L-BFGS-B algorithm [27]. The relative
weight parameters for wc = 1 and ws = 106 were used in the simulation as follows:

Ltotal = wcLcontent + wsLstyle. (4)

3.6. Calculation of Fractal Dimension

Texture is one of main characteristics of infrared images; it defines the particular
patterns between the grayscale values of the pixels in a specific region of the image. A
texture generally refers to simple image elements that are repeated with small arbitrary
changes in color, direction, size, and position throughout the image [28]. Based on the
method proposed by Pentland [29], the fractal dimension is evaluated through the regional
change of the brightness value according to the change of the displacement vector within
the image and used as an index for identifying infrared image traits.

The image intensity difference-based fractal dimension calculation is as follows [23,30].
The intensity of an infrared image of N by M pixels is given by Equation (6), and a
displacement vector (w) is defined as in Equation (7). Then,

I = I(x, y), (5)

where
0 ≤ x ≤ N − 1, 0 ≤ y ≤ M− 1, w = (∆x, ∆y) ∆x, ∆y are integers. (6)

The difference of image intensity at point (x, y) for a displacement vector (w) is defined
as ∆Iw and is given by Equation (8):

∆Iw(x, y) = ∆Iw = I(x, y)− I(x + ∆x, y + ∆y). (7)

Second-order statistics of the image equation are defined as in Equation (8). If the
logarithm of both sides of Equation (8) is taken, Equation (9) can be acquired. Since
the topological dimension of the infrared image is two, the relations between the fractal
dimension (D) and the parameter (r) can be summarized as in Equation (11). Finally, the
fractal dimension of ∆Iw at point (x, y) for a specific displacement vector (w) is given by
Equation (12).

E(|∆Iw|)× |w|r−1 = E
(∣∣∣∆Ire f

∣∣∣), (8)

where
r = 1− H,

log(|∆Iw|) + (r− 1)log(|w|) = log
(∣∣∣∆Ire f

∣∣∣), (9)

r = 1 +
{

log
(∣∣∣∆Ire f

∣∣∣)− log(|∆Iw|)
}

/ log(|w|), (10)

D = E + r = 2 + r, (11)

D(w) = 3 +
{

log
(∣∣∣∆Ire f

∣∣∣)− log(|∆Iw|)
}

/ log(|w|). (12)

The pseudocode for the generation of the fractal image is summarized in Algorithm 1:
Pseudocode for the generation of a fractal image [31].
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Algorithm 1 Generate_fractal_image

1: I← input infrared image (N ×M)
2: w← dispacement vector (1× p)
3: d← window size (n× n)
4: IFractal ← output infrared Fractal image (N ×M)
5: procedure Generate_fractal_image(I, w, d)
6: for ε ∈

{
w1, · · ·wp

}
do

7: ∆Iref ← ∑
N×M

|I(x, y)− I(x± 1, y± 1)|

8: ∆Iw ← ∑
N×M

|I(x, y)− I(x± ε, y± ε)|

9: ∆Iref ← conv2d
(

∆Iref, d
)

10: ∆Iw ← conv2d(∆Iw, d)
11: Dw ← 3 +

{
log
(

∆Iref

)
− log(∆Iw)

}
/ log(ε)

12: end for
13: return IFractal ← average(Dw)
14: end procedure

4. Simulation Results
4.1. Dataset Preparation

For the simulation, OKTAL SE-Workbench [7] is used as a tool for modeling the
synthetic environment and generating simulated mid-wave infrared (MWIR) images. The
image generation conditions for the simulations are shown in Table 1 below.

Table 1. Simulated infrared image generation conditions.

Parameter Values

FOV (◦) 3.4 × 2.6 (constant f)
Resolution 640 × 480
Azimuth (◦) 0, 70, 140, 210, 280
Range (m) 1000, 1500
Weather Fine Summer, Cloudy Summer, Fine Fall, Rain Fall
Time (h) 10, 15, 20

The resolution of the generated infrared images is 640 × 480, and the specification of
the infrared camera is set to have a fixed f-value with 3.4◦ × 2.6◦ FOVs. The distance to
the target was assumed to be 1 km and 1.5 km in five different directions: 0◦, 70◦, 140◦,
210◦, and 280◦. In addition, both seasonal effects and weather effects were considered for
making various background texture conditions. Therefore, an example of the simulated
infrared image is shown in Figure 2 below.
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4.2. Implementation Details

In this simulation, a fractal image was generated in the MATLAB R2022a environ-
ment [31]. The window size was set to 13, and the size of the displacement vector varied
from 3 to 11. Both a real infrared image and a simulated infrared image were randomly
selected from the SENSIAC dataset [32] and the aforementioned generated infrared image
dataset from OKTAL-SE [7].

4.3. Results of the Simple Style Transfer

Figure 3 shows the application result of the simple style transfer at each epoch. In
Figure 4, the false-colored infrared RGB images are also displayed with fractal infrared
images. The real IR image of column (a), denoted as a reference, shows a wide fractal
distribution due to various background components and thermal interactions with the
environment. On the other hand, the simulated infrared image of column (b) shows
uniform and high fractal dimension values due to the repetitive random noise patterns on
the texture of trees or grassland.
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Figure 3. Evolving image features of the grayscale infrared image, false-color infrared image, and
fractal image in each of the three simulation conditions: (A) Cloudy summer weather at 20 h; (B) Fine
summer weather at 20 h; (C) Cloudy summer weather at 10 h. Each column shows seven different
infrared image types: (a) Real IR image as a style reference; (b) Simulated IR image as a content
reference; (c) Style-transferred simulated IR image at epoch 1; (d) Style-transferred simulated IR
image at epoch 100; (e) Style-transferred simulated IR image at epoch 200; (f) Style-transferred
simulated IR image at epoch 500; (g) Style-transferred simulated IR image at epoch 1000.
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Figure 4. Results of grayscale infrared image, false-colored infrared RGB image, and fractal RGB
image in each of the three simulation conditions: (A) Cloudy summer weather at 20 h; (B) Fine
summer weather at 20 h; (C) Cloudy summer weather at 10 h with four different image generation
techniques: (a) Real infrared image as a style reference; (b) Simulated IR images; (c) Histogram-
matched (HM) IR images; (d) Neural style transferred IR images; (e) Proposed histogram-matched
neural style transferred IR images.

Theoretically, matching the Gram matrix of an image is known as the process of
minimizing the mean discrepancy (MMD) using second-order polynomial kernels [33,34].
Therefore, stylization through the Gram matrix is a process in which the second-order
polynomial kernels of each image become similar. In other words, the fractal image
is consistently related with the Gram matrix minimization process, indicating that the
fractal image is more suitable to be used as a quantitative evaluation index of the texture-
enhanced (or style-transferred) infrared image rather than the infrared image itself. The
qualitative evaluation results in Figure 4 confirm that the background texture of the given
simulated infrared images is improved while keeping the physical contents of the original
simulated infrared image. Even though they show minor changes in brightness of grayscale
infrared images, the fractal images show a clear difference in their distribution and statistics.
Therefore, as the epoch progresses, the fractal property from the real infrared image is
gradually reflected to the stylized infrared images.

4.4. Results of the Proposed Histogram-Matched Style Transfer

Figure 4 show the results of the proposed algorithm compared with other techniques
at epoch 1000. Both the simulated infrared images and the histogram-matched simulated
infrared images are represented in column (b) and column (c). However, the results of
histogram matching in column (c) show that the fractal dimensions are still unchanged
from column (b), although the brightness features are similar to the reference infrared
image. The result of the simple style transfer in column (d) show that the fractal texture has
significantly improved compared to the previous case. Lastly, column (e) shows the result of
the proposed algorithm applying histogram matching before the stylization. The advantage
of using the histogram matching technique is that the target thermal signature features can
be easily transferred. Therefore, by conducting histogram matching, the location of the
tank’s heat source (e.g., engine) can be emphasized.
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For the quantitative evaluation of the results from Figure 5, both SSIM and PSNR
changes in epochs were examined. The formulas for SSIM and PSNR follow Equation (13)
and Equation (14), respectively.

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) , (13)

where µx, µy are local means σ2
x , σ2

y are variance of image X and image Y, and σxy is the
covariance of image X and image Y.

PSNR (dB) = 20log10

( Ipeak√
MSE

)
, (14)

where
MSE =

1
H ×W ∑W−1

i=0 ∑H−1
j=0 I(i, j)− Ire f (i, j)2, Ipeak = 255. (15)
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Figure 5. Results of SSIM and PSNR of false-colored IR RGB image and fractal RGB image in each
of the three simulation conditions: (A) Cloudy summer weather at 20 h; (B) Fine summer weather
at 20 h; (C) Cloudy summer weather at 10 h with the four different image generation techniques
mentioned in Figure 4.

As seen in Figure 5, both the SSIM and PSNR on the infrared RGB image and the
fractal image are significantly improved compared to the simulated IR image for all cases.
In particular, the texture similarity of the style-transferred infrared image can be judged
based on the saturated point in the PSNR and SSIM. In addition, SSIM and PSNR features
of the fractal images show a smoother and more gradual increase compared to the infrared
RGB images, indicating that it can be a stable indicator for checking stylization fidelity.
Moreover, from the results of case (B) and case (C) in Figure 5, applying the histogram
matching before the style transfer showed better performance in both the PSNR and the
SSIM of the fractal RGB images for all cases than the results of applying the histogram
matching after the style transfer.
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Finally, we plot the evolutionary results of NIQE of the grayscale IR image, IR RGB
image, and fractal RGB image to determine the naturalness of the enhanced simulated
infrared image in Figure 6. The NIQE scores were measured by the distance between the
natural scene statistics (NSS) of resulting infrared images with the real infrared images
from the SENSIAC ATR database [32], which was used for training the model. The NSS
features are modeled with a multivariate Gaussian distribution (MVG) [35].

D(ν1, ν2, Σ1, Σ2) =

√
(ν1 − ν2)

T
(

Σ1 + Σ2

2

)−1

(ν1 − ν2), (16)

where ν1, ν2 and Σ1, Σ2 are the mean vectors and covariance matrices of the natural MVG
model and the distorted image’s MVG model.
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Figure 6. Results of NIQE of grayscale IR image, false-colored IR RGB image, and fractal RGB
image in each of the three simulation conditions: (A) Cloudy summer weather at 20 h; (B) Fine
summer weather at 20 h; (C) Cloudy summer weather at 10 h with the four different image generation
techniques mentioned in Figure 4.

In Figure 6, the resulting infrared image applying the histogram matching before the
style transfer showed the lowest NIQE scores during 1000 epochs. This means that the
natural statistical characteristics of the resulting infrared images are most similar to the
natural image statistical characteristics of the actual infrared image of all the techniques. In
addition, the enhancement in NIQE was more evident in the grayscale IR image than in the
false-colored IR RGB image. We think that this may be because NIQE strongly measures the
naturalness of the undistorted infrared image. The fractal image of column (c) in Figure 6
also shows that the results from the proposed algorithm are most similar to the results of
the real infrared image.
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5. Conclusions

In a rendering pipeline of infrared imaging, natural elements that cause a high com-
putational load, such as tree leaves, pebbles, and bushes are commonly replaced with
repetitive textures with random noise. These pseudo-realistic texture elements show high
and uniform fractal dimensions unlike the natural background on a real infrared image;
therefore, we proposed a CNN-based style transfer algorithm, which matches both fractal
and brightness characteristics of the real infrared image to a simulated infrared image
through a histogram matching technique.

There are three major contributions of the proposed simulated infrared image enhance-
ment technique. First, to the best of our knowledge, this is a seminal work for evaluating
the compatibility of style-transferred simulated infrared images using fractal analysis. Sec-
ond, we propose using histogram matching, which matches the brightness characteristics
in both the style-transferred infrared image and the real infrared image. Therefore, the
overall brightness histogram of the real infrared image can be successfully reflected on
the style-transferred infrared image without losing physical context and fractal features.
Third, the uniform and high-level fractal dimension values of background textures in the
simulated infrared image can be regarded as a ‘simulated infrared signature’, which can be
used to distinguish natural infrared scenery from the simulated infrared images generated
in the virtual-reality environment.

In summary, the proposed algorithm can enhance the simulation-like background
texture of simulated infrared images. Specifically, the low-level infrared characteristic
drastically improved during stylization. Therefore, both SSIM and NIQE, which are known
to be similar to human cognitive appraisal, were greatly improved compared to the results
of the naïve simulated infrared images in both infrared and fractal texture characteristics.
By utilizing this proposed background texture enhancement method, a limited number
of real infrared images can be easily augmented based on an abundance of simulated
infrared images.

Author Contributions: Conceptualization, T.K.; Methodology, T.K.; Data curation, T.K.; Writing—original
draft, T.K.; Writing—review & editing, T.K.; Visualization, T.K.; Supervision, H.B.; Funding acquisi-
tion, H.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the AI based Flight Control Research Laboratory funded by
the Defense Acquisition Program Administration under Grant UD200045CD.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, R.; Mu, C.; Yang, Y.; Xu, L. Research on simulated infrared image utility evaluation using deep representation. J. Electron.

Imag. 2018, 27, 013012. [CrossRef]
2. Sa, I.; Lim, J.Y.; Ahn, H.S.; MacDonald, B. DeepNIR: Datasets for Generating Synthetic NIR Images and Improved Fruit Detection

System Using Deep Learning Techniques. Sensors 2022, 22, 4721. [CrossRef] [PubMed]
3. Alvey, B.; Anderson, D.T.; Buck, A.; Deardorff, M.; Scott, G.; Keller, J.M. Simulated photorealistic deep learning framework and

workflows to accelerate computer vision and unmanned aerial vehicle research. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021. [CrossRef]

4. Yu, G.; Zhang, G. Real-time simulation of airborne FLIR sensor. In Proceedings of the 2016 IEEE Chinese Guidance, Navigation
and Control Conference (CGNCC), Nanjing, China, 12–14 August 2016. [CrossRef]

5. MuSES EO/IR Signature Simulation Software. Available online: http://www.thermoanalytics.com/products/muses (accessed
on 30 September 2022).

6. Vega Prime. Available online: http://www.presagis.com/products_services/products/modeling-simulation/visualization/
vega_prime (accessed on 30 September 2022).

7. Oktal-SE. Available online: http://www.oktal-se.fr/ (accessed on 30 September 2022).

http://doi.org/10.1117/1.JEI.27.1.013012
http://doi.org/10.3390/s22134721
http://www.ncbi.nlm.nih.gov/pubmed/35808218
http://doi.org/10.1109/ICCVW54120.2021.00435
http://doi.org/10.1109/CGNCC.2016.7829057
http://www.thermoanalytics.com/products/muses
http://www.presagis.com/products_services/products/modeling-simulation/visualization/vega_prime
http://www.presagis.com/products_services/products/modeling-simulation/visualization/vega_prime
http://www.oktal-se.fr/


Sensors 2023, 23, 422 13 of 13

8. Richter, S.R.; Al Haija, H.A.; Koltun, V. Enhancing Photorealism Enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 2022; in
press. [CrossRef]

9. Auer, S.; Hinz, S.; Bamler, R. Ray-Tracing Simulation Techniques for Understanding High-Resolution SAR Images. IEEE Trans.
Geosci. Remote Sens. 2010, 48, 1445–1456. [CrossRef]

10. Valoroso, A.A.; White, B.C.; Ballard, J.R., Jr.; Hunter, R.H.; Patel, R.R. Massively parallel synthetic sensor-based infrared image
generation for object detection. In Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXV; SPIE: Bellingham, IL,
USA, 2020; p. 11418. [CrossRef]

11. Willers, M.S.; Willers, C.J. Key considerations in infrared simulations of the missile-aircraft engagement. In Technologies for Optical
Countermeasures IX; SPIE: Bellingham, IL, USA, 2012; Volume 8543. [CrossRef]

12. MODTRAN®(MODerate Resolution Atmospheric TRANsmission). Available online: http://modtran.spectral.com/ (accessed on
1 October 2022).

13. Lahoud, F.; Susstrunk, S. Ar in VR: Simulating Infrared Augmented Vision. In Proceedings of the 25th IEEE International
Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3893–3897. [CrossRef]

14. Tran, N.C.; Wang, J.H.; Vu, T.H.; Tai, T.C.; Wang, J.C. Anti-aliasing convolution neural network of finger vein recognition for
virtual reality (VR) human–robot equipment of metaverse. J. Supercomput. 2022, 78, 1–16. [CrossRef]

15. Yun, K.; Yu, K.; Osborne, J.; Eldin, S.; Nguyen, L.; Huyen, A.; Lu, T. Improved visible to IR image transformation using synthetic
data augmentation with cycle-consistent adversarial networks. In Pattern Recognition and Tracking XXX; SPIE: Bellingham, IL,
USA, 2019; p. 10995. [CrossRef]

16. Zhang, R.; Mu, C.; Xu, M.; Xu, L.; Shi, Q.; Wang, J. Synthetic IR Image Refinement Using Adversarial Learning With Bidirectional
Mappings. IEEE Access 2019, 7, 153734–153750. [CrossRef]

17. Gatys, L.A.; Ecker, A.S.; Bethge, M. Image style transfer using convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

18. Gatys, L.; Ecker, A.S.; Bethge, M. Texture synthesis using convolutional neural networks. Adv. Neural Inf. Process. Syst. 2015, 28,
262–270.

19. Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.A.; Brendel, W. ImageNet-Trained CNNs Are Biased towards
Texture; Increasing Shape Bias Improves Accuracy and Robustness. arXiv 2018, arXiv:1811.12231.

20. Bela, J. Experiments in the visual perception of texture. Sci. Am. 1975, 232, 34–43.
21. Mandelbrot, B.B. Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area

rule for islands. Proc. Natl. Acad. Sci. USA 1975, 72, 3825–3828. [CrossRef]
22. Barnsley, M.F.; Devaney, R.L.; Mandelbrot, B.B.; Peitgen, H.O.; Saupe, D.; Voss, R.F.; Fisher, Y.; McGuire, M. The Science of Fractal

Images; Springer: New York, NY, USA, 1988; Volume 1.
23. Pentland, A.P. Fractal-Based Description of Natural Scenes. IEEE Trans. Pattern Anal. Mach. Intell. 1984, PAMI-6, 661–674.

[CrossRef] [PubMed]
24. Liu, C.; Zhan, Y.; Deng, Q.; Qiu, Y.; Zhang, A. An improved differential box counting method to measure fractal dimensions for

pavement surface skid resistance evaluation. Measurement 2021, 178, 109376. [CrossRef]
25. Nirupam, S.; Chaudhuri, B.B. An efficient approach to estimate fractal dimension of textural images. Pattern Recognit. 1992, 25,

1035–1041.
26. Chinmaya, P.; Seal, A.; Mahato, N.K. Image texture surface analysis using an improved differential box counting based fractal

dimension. Powder Technol. 2020, 364, 276–299.
27. Zhu, C.; Byrd, R.H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained

optimization. ACM Trans. Math. Softw. 1997, 23, 550–560. [CrossRef]
28. Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef]
29. Pentland, A.P. Shading into texture. Artif. Intell. 1986, 29, 147–170. [CrossRef]
30. Dennis, T.J.; Dessipris, N.G. Fractal modelling in image texture analysis. IEE Proc. F-Radar Signal Process. 1989, 136, 227–235.

[CrossRef]
31. Noah, M. Create, Measure, Characterize, Visualize 1D, 2D, 3D Fractals. MATLAB Central File Exchange. 2022. Available

online: https://www.mathworks.com/matlabcentral/fileexchange/71774-create-measure-characterize-visualize-1d-2d-3d-
fractals (accessed on 1 October 2022).

32. Military Sensing Information Analysis Center (SENSIAC). 2008. Available online: https://www.sensiac.org/ (accessed on
1 October 2022).

33. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2008.
34. Li, Y.; Wang, N.; Liu, J.; Hou, X. Demystifying Neural Style Transfer. arXiv 2017, arXiv:1701.01036.
35. Anish, M.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012, 20,

209–212. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TPAMI.2022.3166687
http://doi.org/10.1109/TGRS.2009.2029339
http://doi.org/10.1117/12.2558107
http://doi.org/10.1117/12.974801
http://modtran.spectral.com/
http://doi.org/10.1109/ICIP.2018.8451811
http://doi.org/10.1007/s11227-022-04680-4
http://doi.org/10.1117/12.2519121
http://doi.org/10.1109/ACCESS.2019.2947657
http://doi.org/10.1073/pnas.72.10.3825
http://doi.org/10.1109/TPAMI.1984.4767591
http://www.ncbi.nlm.nih.gov/pubmed/22499648
http://doi.org/10.1016/j.measurement.2021.109376
http://doi.org/10.1145/279232.279236
http://doi.org/10.1109/TIP.2003.819861
http://doi.org/10.1016/0004-3702(86)90017-2
http://doi.org/10.1049/ip-f-2.1989.0036
https://www.mathworks.com/matlabcentral/fileexchange/71774-create-measure-characterize-visualize-1d-2d-3d-fractals
https://www.mathworks.com/matlabcentral/fileexchange/71774-create-measure-characterize-visualize-1d-2d-3d-fractals
https://www.sensiac.org/
http://doi.org/10.1109/LSP.2012.2227726

	Introduction 
	Related Works 
	Simulated Infrared Image 
	Neural Style Transfer 
	Fractal-Based Image Analysis 

	The Proposed Algorithm 
	Style Matching 
	Content Loss 
	Gram Matrix 
	Style Loss 
	Total Loss 
	Calculation of Fractal Dimension 

	Simulation Results 
	Dataset Preparation 
	Implementation Details 
	Results of the Simple Style Transfer 
	Results of the Proposed Histogram-Matched Style Transfer 

	Conclusions 
	References

