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Abstract: Remaining useful life (RUL) of cutting tools is concerned with cutting tool operational
status prediction and damage prognosis. Most RUL prediction methods utilized different features
collected from different sensors to predict the life of the tool. To increase the prediction accuracy,
it is often necessary to mount a great deal of sensors on the machine in order to collect more types
of signals, which can heavily increase the cost in industrial applications. To deal with this issue,
this study, for the first time, proposed a new feature network dictionary, which can enlarge the
number of candidate features under limited sensor conditions, and the developed dictionary can
potentially contain as much useful information as possible. This process can replace the installation
of more sensors and incorporate more information. Then, the sparse augmented Lagrangian (SAL)
feature selection method is proposed to reduce the number of candidate features and select the
most significant features. Finally, the selected features are input to the Gaussian Process Regression
(GPR) model for the RUL estimation. Extensive experiments demonstrate that our proposed RUL
estimation framework output performs traditional methods, especially for the cost savings for on-line
RUL estimation.

Keywords: remaining useful life estimation; cutting tools; advanced manufacturing; sparse augmented
lagrangian; gaussian process regression

1. Introduction

In recent years, the fourth industrial revolution (Industry 4.0) has brought about an
increase in demand for precision machining and production manufacturing. As one of
the typical manufacturing machines, high-speed computer numerically controlled (CNC)
milling machines are widely used in industry [1]. Statistics show that CNC milling machines
now account for approximately 46% or more of the total modern industrial machining
cluster [2]. In order to ensure the safe operation of CNC machines and the quality of the
products, cutting tools have a crucial role in the overall CNC machine system. However,
cutting tools are usually operated in high-pressure and harsh environments, which can
result in wear and tear on the tools. Some of the studies show that the failure rate of
cutting tools is higher than 38% among all mechanical failures of CNC machines. When
tool wear exceeds a certain threshold, the machined part no longer meets the machining
requirements, which in turn causes losses to the plant. Drawing on these insights, there is
an urgent need for researchers to develop efficient and cost-effective approaches to estimate
the real-time remaining useful life (RUL) of tools in order to free up sufficient time to plan
replacements and repairs, which can prevent potential unscheduled machine downtime
and shorten the manufacturing cycle time of products [3,4].
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At present, a variety of active achievements have been made to estimate the RUL
predictions of cutting tools including direct and indirect techniques [5]. Direct methods
basically use machine vision systems to capture the images of the cutting cools by means of
digital cameras or optical sensors [6–8]. For example, Prasad et al. [9] used a pair of stereo
images taken from two different locations to measure the depth of wear. Then the measured
wear was used as test data to predict flank wear using a back propagation neural network.
Lanzetta [10] measured and classified various categories of wear (e.g., flank wear, crater
wear, fracture, and breakage) of cutting tool inserts using a vision sensor approach. The
approach comprised a camera, an autofocus zoom lens, and different types of illumination.
A resolution enhancement algorithm was used by the author which can enhance the
resolution of the measured picture to 40 µm/pixel. The advantages of direct methods are
that they can provide high identification accuracy for the tool wear measurement. However,
they are essentially off-line techniques that often result in unnecessary machine downtime
and increased costs due to lost productivity. To address this issue, indirect methods have
been extensively investigated which are conducted by measuring parameters that are
related to the condition of the cutting tool, i.e., acoustic, vibration, force, and sound [11–13].
Compared with direct approaches, indirect methods facilitate the processing of different
types of signals and can easily be applied to on-line monitoring, and, therefore, have been
a popular topic for estimating the RUL of cutting tools.

The application of indirect methods is based on two stages containing feature extraction
and feature-based RUL estimation [1]. In regard to feature extraction, the significant features
are extracted from the candidate feature dictionary developed from the collected signals
in order to represent the status of the cutting tool. With respect to the feature-based RUL
estimation, the relationship between the extracted features and the status of the cutting
tool is established to predict the life of the cutting tool. For example, Liu et al. [14]. utilized
14 signal features developed from the collected acoustic emission (AE) signals during the
feature extraction stage and input the features to the support vector regression (SVR) for
the life prediction during the RUL estimation stage. The results show that the method
can achieve a prediction accuracy of up to 94.35%. Hu et al. [15] extracted time-domain
features, such as mean, variance, and kurtosis; frequency-domain features, such as spectral
kurtosis and spectral skewness; and time-frequency domain features, such as wavelet
energy as the significant features; and the Long Short-term Memory (LSTM) network was
applied to conduct tool wear prediction. Li et al. [16] utilized 16 features from the force
signals during the feature extraction stage and applied a fuzzy neural network for the RUL
estimating stage. Wang et al. [17] proposed a multisensory data fusion approach for the
feature extraction and SVR for the RUL estimation. As can be seen from the aforementioned
literature, to deliver the desired RUL estimation performance of indirect methods, the
feature extraction that converts the raw signal into useful knowledge about the health
status of cutting tools plays a fundamental role [1]. To extract significant features, the size of
the candidate feature dictionary is required large enough to contain sufficient information
about the tool state. Nevertheless, this process gives rise to a significant challenge which
requires more sensors to be fitted on the machine which can heavily increase the cost.

To solve this issue, in the present study, a new feature network dictionary is proposed
during the off-line training stage that enlarges the number of candidate features under
limited sensor conditions, and the developed candidate features in the dictionary can
potentially contain as much useful information as possible. After that, the sparse augmented
Lagrangian (SAL) feature selection method is proposed during the feature extraction
stage which can reduce the number of candidate features and select the most significant
features [18]. The characteristics of SAL are that it utilizes Split Augmented Lagrangian
Shrinkage Algorithm (SALSA) to produce some intermediate features with a sub-sampling
technique, and then only the features with high selecting probability are chosen as the
final selected features. Therefore, SAL has a very high sparsity and only a very few
significant features can be selected. These selected features are often associated with some
specific sensors, and only these specific sensors will be used for on-line monitoring. The
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sensors that are not selected can be removed from the machine, which can save costs
for on-line monitoring. Finally, the selected features are input to the Gaussian Process
Regression (GPR) model for the RUL estimation. GPR is a non-parametric Bayesian
regression method that performs well on small datasets and has the capability to produce
uncertainty measurements on the predictions [19]. Promising results have demonstrated
the effectiveness of the newly proposed RUL estimation framework including SAL and GPR
has high prediction accuracy, demonstrating the advantage over many existing methods.

The main contributions of this article can therefore be summarized as follows.

• First, the feature network dictionary is proposed to extend the number of candidate
features under limited sensor conditions in order to contain as much useful information
as possible.

• Second, a SAL feature selection approach is proposed. It has very high sparsity and
only the significant features can be selected.

• Finally, during the on-line monitoring, only the selected sensors will be used, and the
sensors that are not selected can be potentially removed from the machine creating a
favorable opportunity for cost savings in real-world industry applications.

The remainder of this paper is organized as follows. In Section 2, the theoretical
background of the feature network dictionary, SALSA, SAL for feature selection, and GPR
are discussed in detail. Then, Section 3 is dedicated to a description of the first case study
and Section 4 shows the results of the second case study. Section 5 discusses the proposed
method in detail. Finally, Section 6 concludes this study.

2. Theoretical Background
2.1. Feature Network Dictionary

During the machining process, different types of sensors are installed on the machine
to monitor the cutting tool status. Suppose xi,j(t), t = 1, ..., T, i = 1, .., I and j = 1, ..., J is the
measured raw signal responses from the i-th sensor output during the j-th cutting process,
under which the tool wear is denoted as yj. The signal features of xi,j(t) can be used to
assess the tool wear severity and are given by

Pi,j = [P1
i,j, P2

i,j, ..., Pn
i,j], n = 1, ..., N (1)

and
Pn

i,j = f n
i,j(xi,j(t)) (2)

where the notation n represents the n-th signal feature and N represents the number of
signal features for i-th sensor output. Pn

i,j is the generated feature and Pi,j represents the
feature matrix enclosing N signal features. If the features from all I sensor outputs are
combined in a single matrix, the signal feature dictionary during the j-th cutting process is
given by [20]

Pj =[P1,j, P2,j, ..., PI,j]

=[P1
1,j, ..., PN

1,j, P1
2,j, ..., PN

2,j, ..., P1
I,j, ..., PN

I,j], j = 1, ..., J
(3)

From (3), there are a total of NI features in the signal feature dictionary. To extend the
size of the dictionary under the I sensor outputs conditions in order to contain as much
useful information as possible, the feature network dictionary is developed where the
process of the extension of (3) is an iterative process. Support Pl

j is the extended dictionary
after the l-th extension iteration, and the original feature dictionary (3) can be written as

P0
j = Pj =[P1

1,j, ..., PN
1,j, P1

2,j, ..., PN
2,j, ..., P1

I,j, ..., PN
I,j]

=[a1, a2, . . . , aφ], φ = 1, . . . , NI
(4)
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Define A1 as an intermediate matrix during the l-th iteration, which records the result
of the matrix product, providing

A1 = P0
j

T × P0
j =


(a1)

2 a1a2 . . . a1aφ

a2a1 (a2)
2 . . . a2aφ

...
...

. . .
...

aφa1 aφa1 . . . (aφ)2

, (5)

The vectorization of the matrix A1, denoted VEC(A1), is the 1× φ2 row vector:

VEC(A1) = [(a1)
2, a1a2, . . . , a1aφ, a2a1, (a2)

2, . . . , a2aφ, . . . , aφa1, aφa1, . . . , (aφ)
2] (6)

Define D as a process to delete the element which has the same expression of a vector,
so D(VEC(A1)) can be expressed as

D(VEC(A1)) = [(a1)
2, a1a2, . . . , a1aφ, (a2)

2, . . . , a2aφ, . . . , (aφ)
2] (7)

where one of the same expression elements of A1, such as a2a1 and a1a2, will be deleted.
Based on the permutations and combinations formula [21], the number of elements in
D(VEC(A1)) is NI(NI+1)

2! .
Then, the extended dictionary after the first iteration is

P1
j = [P0

j ,D(VEC(A1))]

= [a1, a2, . . . , aφ︸ ︷︷ ︸
1×NI

, (a1)
2, a1a2, . . . , a1aφ, (a2)

2, . . . , a2aφ, . . . , (aφ)
2︸ ︷︷ ︸

1× NI(NI+1)
2!

] (8)

where the size of the dictionary P1
j extends to 1× (NI + NI(NI+1)

2! ).

In the same way, after the l-th extension with l > 0 and l ∈ Z+, the extended dictionary
can be expressed as

Pl
j = [P0

j ,D(VEC(Al))] (9)

where
Al = P0

j
T × Pl−1

j (10)

and the dictionary Pl
j is defined as the feature network dictionary during the j-th cutting

process having the size of 1 ×
(

NI + (NI+1
2 ) + (NI+2

3 ) + · · ·+ (NI+l
l+1 )

)
where (NI+l

l+1 ) =

(NI+l)!
(l+1)!(NI−1)! . To facilitate understanding of the process of feature network dictionary
generation, Figure 1 further demonstrates the procedure.

As a consequence, after a total of J cutting processes, the feature network dictionary
can be rewritten as

P = [Pl
1, ..., Pl

J ]
T (11)

where the feature network dictionary P is a J ×
(

NI + (NI+1
2 ) + (NI+2

3 ) + · · ·+ (NI+l
l+1 )

)
matrix.
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Figure 1. Process of generating the feature network dictionary during the j-th cutting process.

2.2. Split Augmented Lagrangian Shrinkage Algorithm (SALSA)

Assume that the tool wear vector is y = [y1, ..., yJ ]
T, then the tool wear estimation

model can be expressed as
y = PΘ + Ξ (12)

where Θ stands for the model coefficients, and Ξ =
[
ξ1, ..., ξ J

]T is the unmodeled noise.
The feature network dictionary is required to be large enough to contain sufficient

information with the aim of giving an accurate estimation of the tool wear. However, the
features in the dictionary P are usually redundant and may not be necessary for the tool
wear estimation. A sparse model representation is therefore beneficial in this case [22,23].

The sparse solution of y = PΘ + Ξ can be obtained by solving the following l1-norm
optimization problem [24]:

Θ = arg min
Θ

{
1
2
‖PΘ− y‖2

2 + λ‖Θ‖1

}
(13)

SALSA is applied to solve this equation, which is a variable splitting technique converting
the original l1-norm minimization problem into a series of subproblems which can be
solved separately. Equation (13) can be therefore converted as:

min
Θ,v∈RM

f1(Θ) + f2(v) +
µ

2
‖Θ− v‖2

2

s.t. v−Θ = 0
(14)

where f1(Θ) = 1
2‖PΘ− y‖2

2, f2(v) = λ‖v‖1 and µ is the Lagrange multiplier. The solution
of (14) can be approximated to the weighted l1-norm optimization problem (13) with the
increase of µ. By applying the augmented Lagrangian method, the optimization problem
of (14) is then expressed as:

Lµ(Θ, v, u) = f1(Θ) + f2(v)− uT(Θ− v)

+
µ

2
‖Θ− v‖2

2
(15)

where u is a vector of Lagrange multipliers. Substitute d = u/µ into (15), then the problem
is transformed into:

Lµ(Θ, v, d) = f1(Θ) + f2(v) +
µ

2
‖Θ− v− d‖2

2 (16)
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The problem (16) is then solved by converting it into three suboptimization problems:
solving Θ, u and d individually, and in detail:

Θ̂k+1 =
(

PTP + µI
)−1(

PTy + µ(vk + dk)
)

(17)

vk+1 =max
(

0,
(

Θ̂k+1 − dk

)
− µ/λ

)
−max

(
0,−

(
Θ̂k+1 − dk

)
− µ/λ

) (18)

dk+1 = dk −
(

Θ̂k+1 − vk+1

)
(19)

where Θ̂k+1 represents the estimation of Θ and λ is the penalty parameter. It can be seen
that Θ̂k+1 is calculated iteratively and the iteration will stop when the nonzero elements of
Θ̂k+1 and Θ̂k have the same sign and location. Algorithm 1 briefly summarizes the main
procedure of the SALSA algorithm.

Algorithm 1 SALSA Algorithm

Input: Model signal y and dictionary P
Initialization: sets k = 0, the Lagrange multiplier µ = 0.1, penalty parameter λ = 1× 10−3,

v0 = d0 = 0
1: while sign Θ̂k+1 = Θ̂k, lock+1 = lock do
2: Θ̂k+1 =

(
PTP + µI

)−1(PTy + µ(vk + dk)
)

3: vk+1 = max
(

0,
(

Θ̂k+1 − dk

)
− µ/λ

)
−max

(
0,−

(
Θ̂k+1 − dk

)
− µ/λ

)
4: dk+1 = dk − (Θ̂k+1 − vk+1)
5: k← k + 1
6: end while

2.3. Sparse Augmented Lagrangian (SAL) Algorithm for Feature Selection

By applying the SALSA algorithm, the l1-norm optimization problem can be solved.
However, the results are often not sufficiently sparse. To solve this issue, the SAL
algorithm is used to improve the performance of SALSA. Firstly, SAL uses SALSA to
generate a series of intermediate models. Secondly, certain features from the model
series are selected to build the final model. The detailed procedure of the SAL algorithm
is presented as follows:

(1) The downsampling method is repeatedly used to process the tool wear vector y and
the feature network dictionary P. Specifically, some rows are randomly selected from
y to form a new vector as yυ. Similarly, the same rows are also selected from P to form
a new matrix denoted as Pυ. After that, the intermediate models based on yυ and Pυ

can be estimated as
yυ = PυΘυ + Ξυ (20)

where υ indicates the υ-th repetition of the downsampling method with υ = 1, ..., Υ,

and yυ ∈ RJs , Pυ ∈ RJs×
(

NI+(NI+1
2 )+(NI+2

3 )+···+(NI+l
l+1 )

)
and

Js = κ × J, 0 < κ < 1 (21)

where Js is the number of random subsampling, and κ represents the ratio of the
downsampling.

(2) SALSA is then applied to calculate Θυ from the υ-th intermediate model using the
downsampling data yυ and Pυ.
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(3) The set of the selected features by SALSA for the υ-th intermediate model can be
expressed as

Mυ =
{

pξ |Θξ 6= 0
}

, ξ = 1, ...,
(

NI +
(

NI + 1
2

)
+

(
NI + 2

3

)
+ · · ·+

(
NI + l
l + 1

))
(22)

where pξ ∈ P and Θξ ∈ Θ. The notation ξ is the ξth element of the Θ, and pξ are the
ξth features.

(4) Based on all Mυ, υ = 1, ..., Υ, the frequency of each feature being selected in all sets
can be calculated. Define selection frequency (SF) as

η(pξ) = χ(pξ)/Υ (23)

where χ and η are the select times and the select frequency, respectively, of pξ .
(5) Then, the newly selected dictionary Ps is defined as

Ps =
{

pξ |η(pξ) ≥ δ
}

(24)

where the notation δ indicates a predefined feature selection threshold. This method
can discard certain irrelevant features and only keep the features with high SF. The
newly selected dictionary can be expressed as

Ps = [p1, p2, ..., pϑ], ϑ ≤
(

NI +
(

NI + 1
2

)
+

(
NI + 2

3

)
+ · · ·+

(
NI + l
l + 1

))
(25)

(6) Finally, the location of each selected feature in the feature network dictionary P is
recorded as Λ.

The final implementation of SAL for feature selection can be summarized in Algorithm 2
and Figure 2.

Algorithm 2 SAL for feature selction

Input: Model signal y, dictionary P, downsampling ratio κ and feature selection threshold δ
Output: Selected features Ps and the location Λ.

1: for υ = 1 : Υ do
2: Random downsampling→ yυ and Pυ

3: SALSA algorithm in Algorithm 1
4: Mυ =

{
pξ |Θξ 6= 0

}
5: η(pξ) = χ(pξ)/Υ

6: Ps =
{

pξ |η(pξ) ≥ δ
}
= [p1, p2, ..., pϑ]

7: The location of each selected feature is denoted as Λ.
8: end for

2.4. Gaussian Process Regression (GPR) for the Remain Useful Life (RUL) Estimation

After the features are selected by SAL, GPR is applied to conduct the RUL estimation
of the cutting tool. Assume the selected features Ps and the measured tool wear vector
y can be divided into two datasets which are the training datasets used for GPR model
training and the validation/testing dataset used for model evaluation. The training datasets
are denoted as Pα

s and yα, respectively, where Pα
s indicates the selected dictionary and yα

indicates the measured tool wear vector. Similarly, the validation/testing datasets are
denoted as Pβ

s and yβ, respectively.
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Figure 2. The implementation of SAL for feature selection.

The first step for the RUL estimation is to define a Gaussian kernel by using the
training datasets. In the present study, the radial basis function (RBF) is selected as the
kernel function because it has outstanding nonlinear ability and infinitely differentiable
characteristics [19]. The RBF kernel is defined as [25]

K(Pα
s , Pα

s ) = σ2
f exp(− 1

2l
‖Pα

s − Pα
s ‖) (26)

where σf and l are hyperparameters.
After that, the predictive mean of the RUL of the validation/testing dataset denoted

as ȳβ can be derived
ȳβ = K(Pα

s , Pβ
s )

TLT\(L\y) (27)

with
L = C(K(Pα

s , Pα
s ) + σ2

yI) (28)

where
K(Pα

s , Pβ
s ) = σ2

f exp(− 1
2l

∥∥∥Pα
s − Pβ

s

∥∥∥) (29)

The function C represents the Cholesky decomposition, and the notation σy presents
the noise estimation parameter relating to the noise level of y.

Then, the predictive variance of the RUL of the validation/testing dataset is represented
as

V(yβ) = K(Pβ
s , Pβ

s )− vTv, v = L\K(Pα
s , Pβ

s )
T (30)

where V(.) indicates the variance function.
Finally, the log marginal likelihood can be calculated as

log p(y|Pα
s ) = −

1
2

yTΓ−∑
i

log Lii −
J
2

log 2π (31)

where the notation Γ = LT\(L\y).

2.5. RUL Estimation of the Cutting Tool

The cutting tool RUL estimation can be performed using the following algorithm,
which has two parts, including off-line training and on-line RUL estimation.
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Firstly, off-line training will extract the significant features from the proposed feature
network dictionary, and train the GPR model off-line. The detailed process is as follows:

(1) The collected raw signals from different sensor outputs are used to generate a feature
network dictionary denoted as P, and the features inside the dictionary P are normalized
by using min-max normalization.

(2) The normalized feature network dictionary P and the measured tool wear vector y are
divided into two parts which are the training datasets and validation datasets. The
training datasets are denoted as Pα and yα, respectively, and the validation datasets
are denoted as Pβ and yβ, respectively.

(3) The generated dictionary Pα and the measured tool wear vector yα are used to train the
SAL feature selection model, and the selected dictionary is denoted as Pα

s , where the
location of each selected feature in the dictionary Pα is recorded as Λ. Based on Λ, the
significant features from the validation dataset denoted as Pβ

s can be directly selected.
(4) GPR is conducted to estimate the RUL of the cutting tools. First, Pα

s is applied to define

the Gaussian kernel. Then, the predictive mean denoted as ȳβ
s and the predictive

variance denote as V(yβ) of the validation dataset can be estimated.
(5) Mean square error (MSE) shown below is used to evaluate the predictive results.

MSEβ =
1
ς

∥∥∥yβ
s − ȳβ

s

∥∥∥2
(32)

where the notation ς indicates the length of yβ
s . If the MSEβ is greater than a predefined

threshold Tβ, the corresponding parameters of the SAL feature selection procedure
need to be re-tuned, and (4) and (5) need to be repeated until MSEβ ≤ Tβ.

The second part is the on-line RUL estimation using the on-line extracted features and
off-line trained SAL and GPR models to conduct the on-line RUL prediction. The procedure
is as follows:

(1) Based on the location Λ, the significant features can be directly selected from the
on-line collected signals.

(2) The selected features are input to the off-line trained GPR model for the on-line RUL
estimation.

Figure 3 presents a schematic flowchart of the proposed off-line training and on-line
RUL estimation.

Figure 3. The process of off-line training and on-line RUL estimation of the Cutting Tool.
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3. Case Study 1: PHM Data Challenge Datasets
3.1. Experiment Setup

To demonstrate the effectiveness of the proposed SAL and GPR framework, the down
milling operation experiment conducted by the PHM society in 2010 is employed as shown
in Figure 4 [26]. As can be seen, different types of sensors including the dynamometer,
accelerometer, and acoustic emission (AE) sensor are used to mount on the different
places of the machine with the aim of collecting sensor signals to conduct the RUL of the
cutting tools. First, a Kistler quartz 3-component dynamometer is installed between the
workpiece and the machining table in order to measure the cutting forces in X, Y, and
Z directions during machining. The collected signals are denoted as forcex, forcey, and
forcez, respectively. Then, three Kistler piezo accelerometers denoted as accex, accey, and
accez, respectively, are mounted in the X, Y, and Z directions of the workpiece in order to
measure the vibrations in each of these directions. Furthermore, a Kistler AE sensor denoted
as AERMS is used, which can measure high-frequency energy signals generated during
material removal from the workpiece in the machining process. As a consequence, seven
sensor outputs which are forcex, forcey, forcez, accex, accey, accez, and AERMS, respectively,
are collected from the applied sensors, and these sensor outputs are sampled by a NI DAQ
PCI 1200 board with 12 kHz sampling rate.

Figure 4. Illustration of the test rig.

During the experiment, the cutting tool with three flute cutters was utilized to cut
the workpiece in order to machine a sloping surface [16]. The cutting speed is set up
to 4.7 m/min and the spindle speed is set to 23,600 rpm. After each cutting process,
the machine will stop to measure the flank wear of the cutter, which was conducted by
employing the LEICA MZ12 microscopy system. At the end of the experiment, a total of
three cutting tools denoted as T1, T2, and T3, respectively, were used to machine three
aluminium workpieces, and each cutting tool made a total of 300 cutting processes so
as to produce 300 datasets enclosing 7 columns sensor outputs and 1 column tool wear
measurements.

3.2. Off-Line Training and Validation
3.2.1. Sparse Augmented Lagrangian (SAL) Algorithm for the Feature Selection

To conduct the SAL-based feature selection, as can be seen in Figure 5, the original
datasets collected from T1 and T2 were first used as the training and validation datasets and
the rest dataset collected from T3 was used as the testing dataset. As shown in Table 1, this
experimental design for data partitioning is denoted as E1 where the training and validation
datasets contain 600 (=300× 2) datasets and the testing dataset contains 300 datasets.
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Figure 5. Design of the dataset partitioning of E1.

Table 1. Experimental design for data partitioning.

Symbol Training/Validation Testing

E1 T1 and T2 T3
E2 T1 and T3 T2
E3 T2 and T3 T1

During the off-line training and validation stage, 90% of the training and validation
datasets (540 datasets) were randomly selected as the training dataset and the rest 10% of
the datasets (60 datasets) were used as the validation dataset. Then, the training datasets
were used to generate a feature network dictionary, and the features utilized in the current
study are presented in Table 2. Based on the utilized features, a feature dictionary can be
generated according to Equation (11). As can be seen in the equation, the critical parameter
for the feature network dictionary is the extension iteration l. The ideal value of l can
help in producing the gratifying size of the feature dictionary to contain as much useful
information as possible. However, the increase of l will greatly expand the size of the initial
dictionary matrix which heavily increases the computational load. For the current study,
the initial extension iteration l is set to 1 for the SAL-based feature selection. According
to Equation (11), the feature network dictionary of the training dataset is a 540 × 5670
matrix, meaning that the number of the designed features in the dictionary is extended to
5670. In a similar way, the validation dataset can also be used to generate a feature network
dictionary where the size of the dictionary is 60 × 5670.

After the feature dictionary is generated, the SAL algorithm was applied to select
the significant features from the candidate 5670 features. Based on the algorithm
introduced in Section 2.3, only 8 features denoted as Pα

s were finally selected among
the 5670 candidate features, where the selected features are AERMS, forcex × forcex,
forcex × forcey, forcex × forcez, forcey × forcey, forcey × forcez, forcez × forcez, and
AERMS × forcez. The location of these selected features is recorded as Λ. As can be
seen from the selected features, they are only related to the AE signal and the force
signals, and there is no dependence on the vibration signals. Therefore, for the future
on-line RUL estimation, there will be no need to install vibration sensors, which is
very promising for industrial applications because the combination of feature network
dictionary and SAL can be effective in cost saving. Finally, according to the location Λ of
the selected features in the dictionary, the selected features of the validation dataset can
be represented as Pβ

s .
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Table 2. List of the utilized features.

Features Expression

mean µ = 1
n ∑n

i=1 x
variance σ2 = 1

n ∑n
i=1(x− µ)2

standard deviation σ =
√

1
n ∑n

i=1(x− µ)2

skewness γ1 =
1
n ∑n

i=1(x−µ)3

( 1
n ∑n

i=1(x−µ)2)
3
2

kurtosis K =
1
n ∑n

i=1(x− µ)4

( 1
n ∑n

i=1(x− µ)2)2

root mean square Xrms =

√
∑n

i=1 x2

n
root mean square amplitude Xr = ( 1

n ∑n
i=1
√
|x|)2

rectification average Xarv = 1
n ∑n

i=1|x|
peak to peak value Xp = xmax − xmin
waveform factor k f =

Xrms
Xarv

margin factor k f =
Xmax
Xrms

peak factor ka =
xp
xr

median Q 1
2
(x) =


x
′
n+1

2
, n is odd

x
′
1
2 n

+x
′
1
2 n+1

2 , n is even
maximum Xmax = max(x)
sum µ = ∑n

i=1 x

3.2.2. Gaussian Process Regression (GPR) for the RUL Estimation

After the features were selected via the SAL algorithm, they were then input to GPR
for the RUL estimation. First, based on the algorithm introduced in Section 2.4, 8 selected
features Pα

s from the training dataset were used to train the GPR model. After that, the
8 selected features Pβ

s from the validation dataset were input to the trained GPR model
in order to predict the RUL of the validation dataset. To estimate the performance of the
prediction results, the mean square error (MSE) and the area of uncertainty (AoU) are used.
The equation of the MSE is computed as

MSE =
1
ς

Ξ

∑
ς=1

(yv
ς−ŷv

ς)
2 (33)

where yβ
ς and ŷβ

ς are the measured tool wear of the validation dataset and the GPR predicted

tool wear, respectively. The notation Ξ indicates the length of the predicted tool wear ŷβ
ς ,

and ς indicates the index of the dataset. The smaller the MSE, the more accurate the model’s
predictions will be. Furthermore, the area of uncertainty (AoU) is proposed to measure the
uncertainty of the prediction results, which can be expressed as

AoU =
1
Ξ

Ξ

∑
ς=1

(4× σς) (34)

where the notation σς = sqrt(V(ŷβ
ς )) represents the standard deviation of the prediction

results at the ς-th dataset. The smaller the AoU, the higher the reliability of the model’s
prediction will be. Figure 6a shows the validation result where the red dash line indicates
the mean value of the estimation and the gray color represents the uncertainty of the
estimation which is plotted by ŷv

ς ± 2× σς. As can be seen, the MSE is 39.84 and the AoU
is 0.12.
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(a) (b)

Figure 6. RUL prediction resultsof the experiment E1 of (a) the validation dataset and (b) the testing
dataset.

3.3. On-Line RUL Estimation

After the SAL-based feature selection model and GPR model were trained by using
the data from T1 and T2, they were then applied to the testing dataset acquired from T3
with the aim of conducting the on-line RUL estimation. First, the dataset from T3 was used
to generate a feature network dictionary where the size of the dictionary is 300 × 5670.
Second, based on the off-line trained location Λ, the features of the test dataset were selected
which can be expressed as Pβ∗

s . Finally, the selected features were input into the GPR model
for the RUL estimation. Figure 6b shows the predicted RUL on the test dataset producing
an MSE of 192.65 and an AoU of 0.41.

3.4. Additional Experiment Designs

To validate our proposed RUL estimation framework, as can be seen in Table 1, two
additional experimental designs denoted as E2 and E3 were carried out. In the case of E2,
the training and validation datasets are from T1 and T3, and the testing dataset is from T2;
while for E3, the datasets acquired from T2 and T3 were used as the training and validation
datasets, and the dataset collected from T1 was utilized as the testing dataset. For both
experiments, 7 features were selected from 5670 candidate features during the training and
validation stage. Similar to E1, the selected features are also associated with AE and force
signals only, with no dependence on vibration signals. The validation results of E2 and E3
were presented in Figures 7a and 8a, respectively. Finally, after applying testing datasets to
the trained SAL and GPR model, the RUL testing results are presented in Figures 7b and 8b.
Tables 3 and 4 summarized the validation and testing results of E1, E2, and E3.

(a) (b)

Figure 7. RUL predictionresults of the experiment E2 of (a) the validation dataset and (b) the
testing dataset.
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(a) (b)

Figure 8. RUL predictionresults of the experiment E3 of (a) the validation dataset and (b) the testing
dataset.

Table 3. Summary of the validation results of E1, E2, and E3.

Algorithms
MSE AoU

E1 E2 E3 E1 E2 E3

SAL and GPR 39.84 17.26 50.15 0.12 0.07 0.10
LASSO 145.84 170.80 217.50 Non Non Non
SAL 123,45 89.74 67.31 Non Non Non
GPR 673.08 147.62 1192.31 0.12 5.15 0.08

Table 4. Summary of the testing results of E1, E2, and E3.

Algorithms
MSE AoU

E1 E2 E3 E1 E2 E3

SAL and GPR 192.65 487.44 216.46 0.41 0.08 0.32
LASSO 2103.42 419.67 279.72 Non Non Non
SAL 458.65 254.36 222.79 Non Non Non
GPR 372.16 202.71 313.83 0.15 5.18 0.08

Furthermore, the parameter l is also set to 0 to evaluate the RUL predictions in order
to highlight the advantages of the feature extension in the feature network dictionary. For
E1, based on Equation (11), with a non-extended dictionary, the number of features in the
dictionary is only 105 which contains less useful information than the extended feature
network dictionary. After applying SAL, the number of selected features is 39, which
corresponds to the whole 7 sensor outputs. Compared to Figure 6, which utilizes the
extended feature network dictionary, the prediction results of the non-extended dictionary
(see Figure 9) show an inferior performance and use more sensors. In the same way, E2 and
E3 also show poorer performance when l = 0. As a result, the extended feature network
dictionary can potentially contain as much useful information as possible which can replace
the installation of more sensors and incorporate more information meaning that the cost
relating to sensor installation can be saved.
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(a) (b)

Figure 9. RUL predictionresults of the experiment E1 under the non-extended dictionary condition
(l = 0) of (a) the validation dataset and (b) the testing dataset.

3.5. Comparative Study

Since our method has two parts containing the SAL-based feature selection method
and GPR prediction method, some comparisons are made in terms of RUL predictions by
using a Least Absolute Shrinkage and Selection Operator (LASSO) approach [27], a pure
SAL algorithm, and a pure GPR algorithm:

• First, with respect to the LASSO approach, as can be seen in Tables 3 and 4, the
prediction results are promising and are close to that of our proposed method. However,
the number of selected features exceeds 1000 in terms of E1, E2, and E3, which far
exceeds the SAL-based feature selection method.

• Second, for the pure SAL algorithm, it can produce a very sparse solution with
an adequate prediction performance (see Tables 3 and 4), but it cannot output the
uncertainty of the model which limits the ability of engineers/researchers to have an
evaluation of the reliability of the prediction results.

• Last, for the pure GPR method, as presented in Tables 3 and 4, it can output the
uncertainty of the model, but the method is not sparse, i.e., it exploits the overall
feature information for RUL prediction, which loses efficiency in high-dimensional
spaces, especially when the number of features is tremendous.

As a result, the combination of SAL and GPR can take full advantage of the benefits of
uncertainty estimation and overcome the drawbacks due to oversized features.

4. Case Study 2: NASA Ames Milling Datasets

To further demonstrate the effectivenss of the proposed RUL estimation framework, a
second case study was conducted by analysing the NASA milling dataset [28]. Figure 10
depicts the setup of the experiment. As can be seen, AE sensors, vibration sensors, and
motor current sensors are mounted to the table and the spindle of the Matsuura machining
center MC-510V; moreover, six signal outputs which are represented as AEtable (AEtable
indicates AE signals at table), AEspindle (AEspindle indicates AE signals at spindle), VBtable
(VBtable indicates table vibration signals), VBspindle (VBspindle indicates spindle vibration
signals), smcAC (smcAC indicates AC spindle motor current), and smcDC (smcDC indicates
DC spindle motor current), respectively, are collected for estimating the RUL of the cutting
tools. During the experiment, the cutting speed was set to 200 m/min, and two different
depths of cut (DoC), namely, 1.5 mm and 0.75 mm, and two different feed rates, namely,
413 mm/min and 206.5 mm/min, were designed for the experiments. Furthermore, the
workpieces for the experiments have two materials, which are cast iron and stainless steel
J45 having the size of 483 mm × 178 mm × 51 mm. All experiments were performed
a second time with the same parameters and a second cutting tool. The tools used
for this case study are KC710-type carbide insets. Table 5 summarized the conducted
experiments under different process parameter conditions. As can be seen from the table, it
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contains 8 pairs of experiments with the same 8 different parameter settings. For example,
Experiment 9 is a repeat experiment of Experiment 1. Therefore, the dataset acquired from
Experiment 1 can be considered as the training/validation dataset and the dataset collected
from Experiment 9 can be used as the testing dataset, and this pair of experiments can be
denoted as P1. Similarly, the rest of the datasets can be named in the same way. Table 6
summarizes these experimental pairs.

Figure 10. Experimental setup of the NASA Ames milling datasets [28].

Table 5. Experimental conditions of NASA milling datasets.

Experiment DoC Feed Material Experiment DoC Feed Material

1 1.5 0.5 castiron 9 1.5 0.5 castiron
2 0.75 0.5 casetsiron 10 1.5 0.25 castiron
3 0.75 0.25 castiron 11 0.75 0.25 castiron
4 1.5 0.25 castiron 12 0.75 0.5 castiron
5 1.5 0.5 steel 13 0.75 0.25 steel
6 1.5 0.25 steel 14 0.75 0.5 steel
7 0.75 0.25 steel 15 1.5 0.25 steel
8 0.75 0.5 steel 16 1.5 0.5 steel

Table 6. Experimental pairs of NASA milling datasets.

Symbol Training/Validation Testing

P1 Experiment 1 Experiment 9
P2 Experiment 2 Experiment 12
P3 Experiment 3 Experiment 11
P4 Experiment 4 Experiment 10
P5 Experiment 5 Experiment 16
P6 Experiment 6 Experiment 15
P7 Experiment 7 Experiment 13
P8 Experiment 8 Experiment 14
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Figure 11a shows the RUL estimation results of the validation dataset of the experiment
pair P1. During the off-line training/validation stage, the number of the candidate features
in the feature network dictionary is 4185, and only 9 features related to 3 sensors, namely,
AEtable, AEspindle, and VBspindle, were selected. This process can result in considerable cost
savings in industrial applications because unselected sensors will not be used during the
on-line test. After that, for the on-line estimation, as can be seen in Figure 11b, the testing
results are consistent with the validation results in terms of MSE and AoU, which implies
that our proposed RUL estimation framework inherits some robustness. Furthermore, the
traditional LASSO approach, SAL approach, and GPR approach were also used to analyze
the dataset for comparison with our method. As can be seen from the pictures shown in
Figures 12–14, they have higher MSE and AoU in comparison to our method. This means
that the proposed framework has higher accuracy compared to other methods. Furthermore,
Tables 7 and 8 present the validation results and testing results of the 8 experiment pairs.
As can be seen, LASSO can have promising results on validations datasets but has poor
results on testing datasets meaning that this method is not robust. In terms of the proposed
SAL and GPR method, for the majority of cases of the testing dataset, the performance of
the proposed method has higher accuracy than the traditional methods in terms of the MSE
and AoU demonstrating the superiority of our proposed RUL estimation framework over
traditional techniques.

(a) (b)

Figure 11. RUL prediction results of the proposed method of the experiment pair P1: (a) the validation
dataset; (b) the testing dataset.

0 5 10 15

Cutting Process

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
B

 [
m

m
]

MSE = 3.27 10
-4

Test Real

Test estimate

(a)

0 10 20 30 40 50 60 70 80 90

Cutting Process

-0.2

0

0.2

0.4

0.6

0.8

1

V
B

 [
m

m
]

MSE = 1.61 10
-2

Test Real

Test estimate

(b)

Figure 12. RUL prediction results of the LASSO method of the experiment pair P1: (a) the validation
dataset; (b) the testing dataset.
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Figure 13. RUL prediction results of the SAL method of the experiment pair P1: (a) the validation
dataset; (b) the testing dataset.

(a) (b)

Figure 14. RUL prediction results of the GPR method of the experiment pair P1: (a) the validation
dataset; (b) the testing dataset.

Table 7. Summary of the validation results of NASA milling datasets (a) MSE and (b) AoU.

(a)

Algorithms
MSE×10−4

E1 E2 E3 E4 E5 E7 E8

SAL and GPR 3.82 179.00 8.03 26.10 49.70 5.34 43.00
LASSO 3.27 0.15 0.02 0.01 0.03 0.02 0.04
SAL 1010 189.00 45.00 8.00 5.00 40.00 25.00
GPR 20.70 195.82 594.62 7.61 4.88 63.82 5.74

(b)

Algorithms
AoU

E1 E2 E3 E4 E5 E7 E8

SAL and GPR 0.10 0.06 0.16 0.71 0.53 0.21 0.16
LASSO Non Non Non Non Non Non Non
SAL Non Non Non Non Non Non Non
GPR 2.01 0.06 0.17 1.87 1.52 2.64 1.73
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Table 8. Summary of the testing results of NASA milling datasets, (a) MSE and (b) AoU.

(a)

Algorithms
MSE ×10−2

E1 E2 E3 E4 E5 E7 E8

SAL and GPR 1.26 2.14 3.36 0.74 1.02 31.31 3.08
LASSO 1.61 2.26 3.73 1.14 1.27 1.09 4.99
SAL 16.20 68.72 2.21 0.78 1.89 10.90 5.30
GPR 14.00 1.33 7.91 11.83 3.07 28.02 6.88

(b)

Algorithms
AoU

E1 E2 E3 E4 E5 E7 E8

SAL and GPR 0.13 0.47 0.06 0.52 0.26 0.31 0.36
LASSO Non Non Non Non Non Non Non
SAL Non Non Non Non Non Non Non
GPR 7.52 0.06 0.08 3.00 0.13 0.71 1.19

5. Discussion

To better understand the advantages of the proposed SAL and GPR-based RUL
estimation framework, some discussions are summarized as follows:

(1) Sparsity: This study proposed a novel feature network dictionary which can extend
the number of candidate features under limited sensor conditions with the aim of
containing as much useful information as possible. However, the features in the
dictionary are usually redundant and may not be necessary for the RUL estimation
of cutting tools. The proposed SAL feature selection method can reduce the number
of candidate features and select the most significant features. Compared with the
conventional feature selection method, such as LASSO, SAL has a very high sparsity
and only a very few significant features can be selected.

(2) Cost saving: For traditional feature selection methods, they have low sparsity. Therefore,
they lead to the selection of features associated with more sensors. In contrast, the
high sparsity of SAL leads to the selection of fewer sensors, which can save costs for
online monitoring.

(3) Limitations: The process of feature network dictionary extension can enlarge the
number of candidate features but increase a significant amount of computation to
select the features. Therefore, a more efficient optimization algorithm is needed to
reduce the computational requirements, which will be studied in the future research.

6. Conclusions

In this paper, an innovative feature network dictionary was proposed to enlarge the
number of candidate features under limited sensor conditions, and the developed dictionary
can potentially contain as much useful information as possible. As demonstrated by the
experiments, this process can replace the installation of more sensors and incorporate more
information. After that, the Sparse Augmented Lagrangian (SAL) feature selection method
was applied to select the significant features and the Gaussian Process regression (GPR)
algorithm was applied to estimate the Remaining Useful Life (RUL) of cutting tools. The
results from several case studies demonstrated the effectiveness of the proposed technique.

This study can be treated as the initial research for RUL estimation of cutting tools
because it mainly focuses on simple machining processes and strategies. In future research
activities, more experimental cases including different cutting processes and machining
strategies can be tested to validate our proposed methods. Furthermore, we plan to use
different materials in the training and testing stages for evaluating the RUL prediction results.
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