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Abstract: This paper presents a novel approach for directly hiding the pixel values of a small color
watermark in a carrier color image. Watermark embedding is achieved by modulating the gap of
paired coefficient magnitudes in the discrete cosine transform domain according to the intended pixel
value, and watermark extraction is the process of regaining and regulating the gap distance back
to the intensity value. In a comparison study of robustness against commonly encountered attacks,
the proposed scheme outperformed seven watermarking schemes in terms of zero-normalized
cross-correlation (ZNCC). To render a better visual rendition of the recovered color watermark,
a generative adversarial network (GAN) was introduced to perform image denoising and super-
resolution reconstruction. Except for JPEG compression attacks, the proposed scheme generally
resulted in ZNCCs higher than 0.65. The employed GAN contributed to a noticeable improvement in
perceptual quality, which is also manifested as high-level ZNCCs of no less than 0.78.

Keywords: blind color image watermarking; discrete cosine transform; magnitude gap adjustment;
super-resolution; generative adversarial network

1. Introduction

Nowadays, multimedia data are stored in a digital form suitable for access and distri-
bution on the Internet. Among the available types of multimedia (e.g., text, images, audio,
and video), color images are the most frequently used data on openly accessible network
platforms [1,2]. While an extensive amount of image data is continuously transmitted over
networks, illicit usage of color images has resulted in problems such as unauthorized or unli-
censed copying, intellectual property infringements, and malicious tampering. The issue of
copyright violation has drawn considerable attention from researchers and content providers
who continuously seek feasible countermeasures to protect their ownership and copyright
material. To this end, digital watermarking is an effective means of securing data content [3–5].
It plays a pivotal role in information security and has broad application prospects.

Image watermarking is the process of embedding proprietary information into carrier
images via the use of specific data processing algorithms. The embedded information (or
simply a watermark) is supposedly imperceptible and sufficiently robust to withstand unin-
tentional modifications and/or intentional attacks. In addition, the watermark information
should be retrievable and easy to verify whether the inspected image has tampering or
infringement problems.

Imperceptibility, robustness, and capacity are three mutually conflicting properties
of image watermarking [6]. The balance between these often relies on the adjustment
of the embedding strength of the watermark. Given that the payload capacity is fixed,
increasing the embedding strength may improve the robustness but impair the impercepti-
bility. To date, it has remained a challenge to find an ideal watermarking scheme that can
comprehensively address the three requirements.
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Image watermarking can be divided into blind and non-blind categories. Those be-
longing to the non-blind category require the original image and/or additional information
for watermark extraction, whereas blind ones require neither. As the original image is not
always accessible during the stage of watermark extraction, the blind approach is most
prevalent in practical applications. Image watermarking schemes can also be classified
based on the domain chosen to hide the watermark. Transform-domain approaches are
widely used as they can take advantage of an image’s intrinsic characteristics and human
visual perception. Commonly observed transformations for image watermarking comprise
the discrete Fourier transform (DFT) [7–9], discrete wavelet transform (DWT) [10–13], dis-
crete cosine transform (DCT) [14–18], and various matrix decompositions (MD) [19–24].
Combinations of the abovementioned transforms were also attempted with encouraging
results [25–29].

Although watermarks can be any form of digital data conveying ownership informa-
tion, the most frequently found watermarks in the literature were image logos. This can be
attributed to the fact that the performance of an image watermarking scheme can be easily
identified through visual inspection of the recovered watermarks. Our literature survey
indicates that there has been no shortage of high-capacity color watermarking schemes
proposed in recent years. The following are some examples. In [9], Zhang et al. exploited
the unique features of the direct current (DC) component of the DFT. Each binary bit was
determined by manipulating the inequality relationship between the DC components of
two adjacent image blocks of size 2× 2. In the original literature, the authors hid two 24-bit
color images of 32 × 32 pixels in a carrier color image of size 512 × 512, but it is possible
to embed 64× 64× 3× 8 bits into the host image if every 2× 2 block is used to perform
watermarking.

After taking the Haar transform on each image block, Liu et al. [30] chose the coef-
ficient with the largest energy to perform quantization. Given that one bit was hidden
in every two 2 × 2 blocks, the maximum allowable capacity was the exact number of
64 × 64 × 3 × 8 bits. As a result, the proposed watermarking scheme achieved a
payload capacity of 3/8 (= 64 × 64 × 24/512× 512) bit per pixel (bpp).

The concept of embedding watermark bits into the transformed coefficients derivable
from another domain was also found in [27,31]. In [27], Su et al. designed a combined-
domain watermarking scheme that nominally modulated the first-level approximation
coefficients of the DWT. An essential feature of this scheme lies in the acquisition of
the targeted DWT coefficient in the spatial domain. Such a design exploits not only the
computational efficiency of spatial-domain watermarking schemes but also the strong
robustness of transform-domain schemes. Yuan et al. adopted a similar strategy [31],
which explores the DC component of a 2D DCT in the spatial domain to achieve large-
capacity watermarking. Here, a binary bit is characterized by the relativity of the DC
coefficients between adjacent blocks. For these two aforementioned watermarking schemes,
the resultant payload capacity can reach as high as 3/8 bpp as long as the transformed
coefficients are derived from block matrixes of 2× 2 pixels.

Following the division of the carrier image into block matrices, Chen et al. [32] pre-
sented an efficient blind watermarking algorithm using the Walsh–Hadamard transform
(WHT). A binary bit can be embedded into a WHT matrix block of size 4 × 4 by fine-tuning
the paired coefficients in the first row of the transformed matrix. Regarding the class of MD-
based image watermarking, Hsu et al. [23] proposed a high-capacity QR decomposition
(QRD)-based image watermarking algorithm that manipulates two pairs of elements drawn
from the first column of the orthogonal matrix after applying the QRD to a block of size
4× 4 pixels. Meanwhile, Liu et al. [24] proposed embedding watermark information into
the maximum eigenvalue of the Schur decomposition of selected matrices using quaternary
coding. This scheme claimed to be efficient because multiple bits were accommodated in
the quaternary code. As these forgoing three approaches proceeded from block matrixes of
size 4× 4, a high capacity at a level of 3/8 bpp is feasible if each block can contain 2 bits.
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Although the aforementioned high-capacity blind color image watermarking schemes
have achieved certain degrees of success, their robustness against severe attacks could not
yet match acceptable expectations. Hence, this study aims to develop a scheme capable of
performing efficient high-capacity blind color image watermarking, along with the use of a
generative adversarial network (GAN) to enhance the visual quality of extracted watermarks.
Consequently, the contributions in this study include two aspects: (1) the development of
a novel blind watermarking scheme that enables a direct and effective embedding of 8-bit
unsigned pixel values, which facilitates the goal of hiding color images in color images; (2) the
incorporation of a GAN to enhance the watermark images retrieved from the watermarked
carrier images, thus making the watermarks more visually recognizable.

The remainder of this paper is organized as follows. Section 2 outlines the technical
background pertaining to the fundamentals of DCT and super-resolution (SR). Section 3
elucidates the procedures for watermark embedding and extraction in the DCT domain.
Section 4 presents experimental results. Improvements owing to the incorporation of the
GAN are also reported. Finally, conclusions are presented in Section 5.

2. Preliminaries
2.1. DCT-Based Watermarking

Among the transformations used in digital image processing, the DCT has drawn
considerable attention as it can efficiently compact the signal energy at low frequencies [33].
This property makes the DCT highly suitable for applications in image compression and
watermarking. The two-dimensional (2D) DCT performed on an image matrix acts the same
as a one-dimensional (1D) DCT performed along a single dimension, followed by another
1D DCT in the other dimension. The 2D DCT for an image block matrix X = {Xmn}M×N
and output DCT matrix Y =

{
Ypq
}

M×N is defined as

Ypq = αpαq

M−1

∑
m=0

N−1

∑
n=0

Xmn cos
π(2m + 1)p

2M
cos

π(2n + 1)q
2N

,
0 ≤ p ≤ M− 1
0 ≤ q ≤ N − 1

(1)

with

αp =

{ 1√
M

, p = 0;
2√
M

, 1 ≤ p ≤ M− 1
αq =

{ 1√
N

, p = 0;
2√
N

, 1 ≤ p ≤ N − 1.

where Xmn denotes the (m, n)th pixel value of the image block, Ypq represents the frequency
component at position (p, q), and M and N correspond to the row and column size of X,
respectively. After the 2D DCT, the output matrix Y containing direct-current (DC) and
alternating-current (AC) components can be obtained. The DC coefficient situated at the
top-left corner of the resulting DCT matrix signifies the average intensity of the image
block. Depending on the distance from the DC component, the remaining coefficients in
Y can be classified as low-, middle-, and high-frequency ranges.

DCT-based image watermarking is referred to as the modification of DCT coefficients
according to specific rules imposed by watermarking. Once the watermarking process
is complete, the application of the inverse DCT (IDCT) can recover the image block with
concealed watermark information. The formula for the 2D IDCT is expressed as follows:

Xmn =
M−1

∑
p=0

N−1

∑
q=0

αpαqYpq cos
π(2m + 1)p

2M
cos

π(2n + 1)q
2N

,
0 ≤ m ≤ M− 1
0 ≤ n ≤ N − 1.

(2)

2.2. Super-Resolution Reconstruction

SR is a technique used to reproduce images with higher resolution. This technique
can be employed as a post-process to enhance the watermark image. In this study, we
only consider single-image SR (SISR) that attempts to reconstruct high resolution from a
single low-resolution watermark image. SISR is challenging because high-frequency details
are already lost in the low-resolution image. Owing to the advancement of deep learning,
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reestablishing the complex mapping between low- and high-resolution images is possible
using very deep neural networks.

As demonstrated in [34–37], several methods developed based on convolutional
networks have shown promising results. Ledig et al. [38] not only tackled the SISR problem
using a deep residual network (ResNet) but also introduced a GAN framework to acquire
photo-realistic natural images. Figure 1 illustrates the GAN structure for carrying out SISR.
The generator is a 16-block deep ResNet, where the function is denoted by GθG (·), capable
of recovering a high-resolution image I∗HR (, GθG (ILR)) from a low-resolution image ILR.
The discriminator, which is expressed as DθD (·), renders the probability whether the input
is from either the reference or generator distributions. Subsequently, the GAN-based
network is optimized to solve an adversarial min-max problem as follows:

min
θG

max
θD

EIHR∼Pre f (IHR)

[
log DθD (IHR)

]
+ EIHR∼PG(ILR)

[
log
(
1− DθD

(
GθG (ILR)

))]
, (3)

where θG and θD correspond to the model parameters associated with the generator and
discriminator, respectively. Further, E[·] denotes the expectation operator based on a
probability distribution, and P(·) is a probability density function. The basic idea behind
the above formulation is to train the generative model GθG (·) to fool the discriminator
DθD (·), which is supposedly trained to distinguish between model-generated and real
images. It was reported in [38] that, with the GAN-based framework, using perceptual loss
in the discriminator model contributed to significant improvements in perceptual quality.
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Figure 1. The GAN for denoising and super-resolving recovered watermarks.

3. Proposed Watermarking Scheme

Figure 2 depicts the entire process of watermark embedding and extraction. The
watermarks used in this study were downsized color images of 64× 64 pixels. To ensure
information security, each watermark image was scrambled using the Arnold transform [39]
before embedding. When extracting the watermark, one needs a correct key to descramble
the watermark to restore the actual content.
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3.1. Watermark Embedding via the DCT-MGA Scheme

The proposed DCT-based magnitude gap adjustment (DCT-MGA) scheme starts by
partitioning the carrier image into non-overlapping blocks with a size of 8× 8. The next
step is to take the 2D DCT of each block in the R, G, and B channels individually. After
obtaining the required DCT coefficients, watermark embedding is a joint operation of two
involved coefficients such that the gap between the two coefficient magnitudes matches
the desired length.

Let Yp1,q1,r1 and Yp2,q2,r2 denote the two DCT coefficients that participate in the em-
bedding process. Further, (p1, q1) and (p2, q2) represent the coordinates of the paired
coefficients, while r1 and r2 signify the channel sources for each respective coefficient. For
example, (p1, q1, r1) =(3, 0, 1) and (p2, q2, r2) =(3, 1, 1) were selected to embed the red
color pixel values. Watermark embedding involves the manipulation of two coefficient
magnitudes, namely,

∣∣Yp1,q1,r1

∣∣ and
∣∣Yp2,q2,r2

∣∣, such that the gap between them can reflect
the intended pixel value. For this purpose, we first define the following parameters:

mlow = min
{∣∣Yp1,q1,r1

∣∣, ∣∣Yp2,q2,r2

∣∣}, (4)

mhigh = max
{∣∣Yp1,q1,r1

∣∣, ∣∣Yp2,q2,r2

∣∣}, (5)

ρ =
ŵ(i, j, k)− 127.5

255
α, (6)

where mlow and mhigh are the lower and higher levels of the two magnitudes, respectively,

and ŵ(i, j, k) denotes the (i, j)th pixel value of the scrambled watermark in the kth channel.
A value of 255 in the denominator of Equation (6) is the maximum allowable level of an
8-bit unsigned integer; thus, the midline of the dynamic range becomes 127.5. Further,
α signifies the embedding strength. Consequently, the gap (symbolized as ρ) reflects a
scaled quantity deviating from the midline, with a distance proportional to ŵ(i, j, k). After
determining the gap ρ, the two magnitudes are adjusted accordingly.

m̂low = max

{
0,

∣∣Yp1,q1,r1

∣∣+ ∣∣Yp2,q2,r2

∣∣
2

− ρ

2

}
(7)
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m̂high = m̂low + ρ (8)

Equation (7) adjusts mlow in the least-squares sense, but the resulting output m̂low
must be positive to conform with the definition of magnitude. Equation (8) confines the
gap between m̂high and m̂low to exactly ρ. After determining m̂high and m̂low, we reassign
the two involved coefficients as:

If
∣∣Yp1,q1,r1

∣∣ ≤ ∣∣Yp2,q2,r2

∣∣
Ŷp1,q1,r1 = sgn

(
Yp1,q1,r1

)
· m̂low;

Ŷp2,q2,r2 = sgn
(
Yp2,q2,r2

)
· m̂high;

else
Ŷp1,q1,r1 = sgn

(
Yp1,q1,r1

)
· m̂high;

Ŷp2,q2,r2 = sgn
(
Yp2,q2,r2

)
· m̂low,

(9)

where sgn(·) denotes a sign function. This embedding process is repeated for every block
and channel involved. After replacing the modified coefficients in the DCT block matrix,
we used the IDCT to obtain the watermarked image block.

In this study, we deliberately chose three pairs of adjacent DCT coefficients to embed
three pixel values in 8-bit unsigned integer format. While watermarks hidden at high
frequencies are vulnerable to high-frequency attacks (e.g., low-pass filtering and image
compression), watermarks at low frequencies cannot resist attacks such as unsharp filtering
and histogram equalization. A compromise can be reached by selecting DCT coefficients
situated in the middle frequencies. Figure 3 illustrates the locations of the three coefficient
pairs selected to embed the three pixel values in this study. Specifically, the three designated
pairs are {(3, 0, 1), (3, 1, 1)}, {(2, 1, 2), (2, 2, 2)}, and {(1, 2, 3), (0, 3, 3)}, where the first
two indices in each coordinate representation indicate the location of the 2D DCT ma-
trix. The third index signifies the color channels with 1, 2, and 3 corresponding to the
red, green, and blue colors, respectively. The motives for these pair arrangements are
twofold. First, the watermarking process generally requires an increase in one magnitude
but a decrease in the other for each pair. As the energy of each color component remains
roughly balanced, modifications of a pair of DCT coefficients in adjacent locations with the
same color are expected to yield less variation in color intensity. Second, because textual
patterns of adjacent DCT coefficients retain partial similarity, the image reconstructed after
watermarking can show more structural similarities.
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3.2. Watermark Extraction and Regulation

Watermark extraction is the process of retrieving a watermark from a watermarked
color image. The right half of Figure 2 shows the extraction procedure. The first two steps
involve partitioning the watermarked color image into non-overlapping blocks of size 8× 8
and then applying 2D DCT to these blocks. For each set of

{
Ỹpqr

}
derived from an image

block, we select three pairs of DCT coefficients (as shown in Figure 3) and then compute
the pixel value using the following formula:
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w̃(i, j, k) =
255
α

(∣∣∣Ỹp1,q1,r1

∣∣∣− ∣∣∣Ỹp2,q2,r2

∣∣∣)+ 127.5, k = 1, 2, 3, (10)

where w̃(i, j, k) denotes the retrieved (i, j)th pixel value in the kth channel and the tilde
implies that the watermark image may have suffered from attacks.

In our experiments, it was observed that, under certain attacks, the extracted wa-
termarks might appear brighter or darker than the original watermarks. Interestingly,
watermarks with altered luminance are still visually recognizable, suggesting that the
attacks have merely caused the pixel values to be rescaled. Restoring the retrieved pixel
values back to the normal range is expected to provide a better view of the watermark.
Consequently, a simple remedial algorithm is introduced below to rectify the recovered
watermark.

According to Equation (10), the output is obtained by adding a deviation term
(i.e., d , 255

α

(∣∣∣Ỹp1,q1,r1

∣∣∣− ∣∣∣Ỹp2,q2,r2

∣∣∣)) to the midline value 127.5. Because w̃(i, j, k) can
only fall between 0 and 255, the absolute value of the deviation term (i.e., |d|) must not
exceed 127.5. Luminance regulation begins with the sorting of |d|’s gathered from every
channel. Then, the average in the range 90–95% of the sorted |d|’s, termed η, serves as
a gauge to mark the upper margin. Depending on the resulting η, the deviation term is
proportionally restrained to a range between ψlow and ψup as follows:

w̃reg(i, j, k) =


(w̃(i, j, k)− 127.5)× ψup/η + 127.5, η > ψup;
(w̃(i, j, k)− 127.5)× ψlow/η + 127.5, η < ψlow;

w̃(i, j, k), otherwise.
(11)

where w̃reg(i, j, k) denotes the regulated outcome from the initially retrieved pixel value
w̃(i, j, k). Terms ψup and ψlow respectively represent the upper and lower boundaries of the
expected η. These two boundaries can be deduced from the dataset of possible watermarks.
In this manner, the regulator restrains the luminance of the color watermark to a normal
value. Note that the scale adjustment (as given in Equation (11)) has no influence on the
textural content; however, it makes the watermark image more visually distinguishable.
After gathering all pixels

{
w̃reg(i, j, k)

}
, the last step of watermark extraction is to use the

decryption key to discern the watermark image.

4. Performance Evaluation

The test materials comprise 16 color images of 512× 512 pixels collected from the
USC–SIPI [40] and CVG–UGR [41] image databases. Figure 4 shows the 16 color images
in a 4× 4 array. The watermarks were obtained by downsampling the 16 color images
to a size of 64 × 64 pixels. To accommodate such a watermark in a normal-size carrier
image, each 8× 8-sized image block must contain three 8-bit unsigned integer values. The
payload capacity was thereby 3/8 (= (64× 64× 3× 8)/(512× 512)) bpp. Consequently,
there are 256 possible combinations between the carrier images and intended watermarks.
To enhance the security of the watermark information, each color channel of the color
watermark image was scrambled before embedding using the Arnold transform [39]. To
this end, the retrieved watermark must undergo a descrambling process after watermark
extraction. Figure 5 presents the test watermarks with their scrambled versions examined
in our experiments.

To render a balanced performance between robustness and imperceptibility, this study
set the embedding strength α (as defined in Equation (6)) at 90 for the proposed DCT-MGA.
The two boundaries for luminance regulation were chosen as ψup = 83 and ψlow = 120,
which correspond to the mean value plus/minus the standard deviation of the η’s derived
from all the images in the IAPR TC-12 database [42]. In addition to the proposed DCT-MGA,
seven recently published blind color image watermarking schemes were considered for
performance evaluation and comparison. For simplicity, the seven schemes are abbreviated
hereinafter as QRMM22 [23], WHT21 [32], Haar21 [30], Schur21 [24], DFT20 [9], DCT20 [31],
and DWT20 [27], with the last two digits signifying the publication year.
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4.1. Imperceptibility Test

When determining the embedding strength, trade-offs exist amid imperceptibility,
robustness, and capacity. In general, a weak embedding strength is conducive to imper-
ceptibility but detrimental to robustness. Raising the embedding strength can reinforce
the watermark hidden in the carrier image but may also impair the visual quality of the
watermarked image. To probe the influence of embedding strength, we conducted a pi-
lot experiment to determine an adequate embedding strength that achieves balance in
imperceptibility and robustness.

To assess the distortion of the carrier image due to the watermarking process, we
adopted the peak signal-to-noise ratio (PSNR) and mean structural similarity (mSSIM)
metrics given below to assess the degradation of the image quality.

PSNR(I,
^
I) = 10× log10

 2552

1
Mrow×Ncol×3

3
∑

t=1

Mrow
∑

m=1

Ncol
∑

n=1

(
Im,n,t − Îm,n,t

)2

; (12)

mSSIM(I,
^
I) =

1
L× K× 3

3

∑
t=1

L

∑
l=1

K

∑
k=1

SSIM
(

Bl,k,t,
^
Bl,k,t

)
, (13)

where I = {Im,n,t}Nrow×Ncol×3 and
^
I =

{
Îm,n,t

}
Nrow×Ncol×3, respectively, represent the origi-

nal and watermarked images of Mrow × Ncol pixels with a depth of three color channels.

Bl,k,t and
^
Bl,k,t in Equation (13) correspond to the (l, k)th windows in the tth channel ac-

quired from I and
^
I, respectively. The denominator value L× K× 3 indicates the number

of image blocks. The function SSIM(·) is responsible for measuring the degree of similarity

between Br,s,t and
^
Br,s,t.

SSIM
(

Bl,k,t,
^
Bl,k,t

)
=

(
2µBl,k,t

µ^
Bl,k,t

+ k1

)(
2σ

Bl,k,t
^
Bl,k,t

+ k2

)
(

µ2
Bl,k,t

+ µ2
^
Bl,k,t

+ k1

)(
σ2

Bl,k,t
+ σ2

^
Bl,k,t

+ k2

) , (14)

where µBl,k,t
and σ2

Bl,k,t
, respectively, represent the mean and variance of Bl,k,t; σ

Bl,k,t
^
Bl,k,t

denotes the covariance between Bl,k,t and
^
Bl,k,t; k1 and k2 are values introduced to ensure

the stability of SSIM. By default, these values are k1 = 0.01 and k2 = 0.02.
Figure 6 depicts the average PSNRs and mSSIMs for α in the range 60–100 with

increments of 2. Based on the experimental results shown in Figure 6, we chose α as 90 as
this choice led to a PSNR near 38.5 dB and an mSSIM of approximately 0.96. In general,
watermarked images with this PSNR and mSSIM are deemed to possess satisfactory quality.

Note that the seven watermarking schemes under comparison were intended to hide
binary information, but not all of them were initially designed to attain a payload capacity
as high as 3/8 bpp. If such a high capacity is under request, the original embedding
strength specified in the literature may lead to unacceptable PSNR and mSSIM outcomes.
Consequently, while implementing the compared schemes, we had to adjust the parame-
ters relevant to the embedding strength such that the PSNRs and mSSIMs fell within an
acceptable range.
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Table 1 presents the statistical results measured for every possible combination of test
images and watermarks. With the use of the specified embedding strength, the average
PSNR and mSSIM obtained from the proposed DCT-MGA were 38.48 dB and 0.959, respec-
tively, both of which ranked the highest among all compared schemes. The PSNRs acquired
by DCT20 and DFT20 fell below 33 dB, suggesting that these two schemes may cause
excessive pixel modification. Ironically, the mSSIMs resulting from these two schemes were
not the worst. This can be attributed to the fact that watermark embedding merely affects
the DC component, which causes less damage to the textural structure of the carrier image.
The worst mSSIM value generally occurred in the case of DWT20. Despite the average
PSNR obtained from DWT20 remained above 36 dB, the resulting mSSIM unexpectedly
dropped to 0.925. This is thought to be due to the watermark being embedded in a relatively
wide frequency sub-band.

Table 1. The statistics of the measured PSNRs and mSSIMs obtained from compared watermarking
schemes. The data in each cell are interpreted as “mean [standard deviation].”

Method PSNR [dB] mSSIM
DCT-MGA 38.48 [1.50] 0.959 [0.021]
QRMM22 37.98 [0.67] 0.953 [0.013]
WHT21 34.78 [2.10] 0.958 [0.004]
Haar21 36.86 [0.32] 0.931 [0.028]
Schur21 36.30 [0.17] 0.940 [0.023]
DCT20 32.09 [2.18] 0.944 [0.008]
DWT20 36.13 [0.24] 0.925 [0.026]
DFT20 32.61 [2.29] 0.956 [0.009]

4.2. Robustness Test

The second phase of the performance evaluation focused on the robustness of the com-
pared watermarking schemes in the presence of commonly encountered attacks. The types
of attacks considered in this study included image compression, noise corruption, filtering,
histogram equalization, geometric correction, cropping, and luminance adjustment. Table 2
lists the specifications for the intended attacks.
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Table 2. Attack types with detailed specifications.

Item Type Description

A JPEG compression Apply the JPEG compression to the test image
with the quality factor (QF) chosen from {80, 40}.

B JPEG2000 compression
Apply the JPEG2000 compression to the test
image with the compression ratio (CR) chosen
from {4,8}.

C Gaussian noise corruption Corrupt the test image using Gaussian noise
with the variance set as 0.001 of the full scale.

D Salt-and-pepper noise
corruption

Corrupt the test image using the salt-and-pepper
noise with 1% intensity.

E Speckle noise corruption Add the multiplicative noise with a variance of
0.01 to the test image

F Median filtering Apply a median filter with a 3 × 3 mask to the
test image.

G Lowpass filtering Apply a Gaussian filter with a 3 × 3 mask to the
test image.

H Unsharp filtering Apply an unsharp filter with a 3 × 3 mask to the
test image.

I Wiener filtering Apply a Wiener filter with a 3 × 3mask to the
test image.

J Histogram equalization Enhance the contrast of the test image using
histogram equalization.

K Rescaling restoration Shrink the test image from 512 × 512 to
256 × 256 pixels.

L Rotation restoration Rotate the test image counterclockwise by 45◦.

M Cropping (I) Crop 25% of the test image on the upper-left
corner.

N Cropping (II) Crop 25% of the test image on the left side.

O Brightening Add 20 to each pixel value of the test image.

P Darkening Subtract 20 from each pixel value of the test
image.

As discussed in Section 3, the proposed DCT-MGA directly embeds 8-bit unsigned
pixel values into the specific DCT coefficients. By contrast, all other compared water-
marking schemes can only embed binary bits. Because the embedding data type of the
proposed DCT-MGA differs from the others that perform binary watermarking, such a
difference imposes difficulties in performance comparison. One feasible assessment metric
applicable to either type of watermarking is zero-normalized cross-correlation (ZNCC),
which characterizes the similarity of two data sequences without concerning the data type.
For a watermark constituted by pixel values, ZNCC is defined as

ZNCC(Wv,
~

Wv) =
nL
∑

p=1

nK
∑

q=1

nch
∑

r=1
(wv(p,q,r)−wv)×(w̃v(p,q,r)−w̃v)√√√√( nL

∑
p=1

nK
∑

q=1

nch
∑

r=1
(wv(p,q,r)−wv)

2

)
×
(

nL
∑

p=1

nK
∑

q=1

nch
∑

r=1
(w̃v(p,q,r)−w̃v)

2
) (15)

where wv denotes the mean of the pixel values obtained from a watermark image
Wv= {wv} of size nL × nK(=64× 64) with nch(=3) channels, and the tilde signifies retrieval
after a possible attack.
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Alternatively, the ZNCC for the watermark composed of binary bits is

ZNCC(Wb,
~

Wb) =
nL
∑

p=1

nK
∑

q=1

nch
∑

r=1

nb
∑

s=1
(wb(p,q,r,s)−wb)×(w̃b(p,q,r,s)−w̃b)√√√√( nL

∑
p=1

nK
∑

q=1

nch
∑

r=1

nb
∑

s=1
(wb(p,q,r,s)−wb)

2

)
×
(

nL
∑

p=1

nK
∑

q=1

nch
∑

r=1

nb
∑

s=1
(w̃b(p,q,r,s)−w̃b)

2
) (16)

where wb denotes the mean of the binary values obtained from a watermark image of
nL × nK × nch × nb bits. Here, nL = nK = 64, nch = 3 and nb = 8.

Table 3. The average ZNCCs obtained from the compared watermarking schemes under various attacks.

Attack
Method DCT-

MGA
QRMM22 WHT22 Haar21 Schur21 DCT20 DWT20 DFT20

None 1.000 1.000 0.962 0.958 0.933 1.000 1.000 1.000

A.1/QF = 80 0.334 0.131 0.192 0.119 0.216 0.190 0.301 0.117

A.2/QF = 40 0.315 0.039 0.049 0.019 0.074 0.083 0.143 0.061

B.1/CR = 4 0.931 0.823 0.798 0.659 0.753 0.632 0.919 0.370

B.2/CR = 8 0.749 0.418 0.413 0.304 0.438 0.330 0.648 0.207

C 0.794 0.205 0.479 0.021 0.335 0.415 0.535 0.307

D 0.669 0.980 0.891 0.920 0.757 0.920 0.914 0.901

E 0.701 0.266 0.473 0.136 0.307 0.445 0.415 0.328

F 0.646 0.097 0.015 0.065 0.349 0.341 0.460 0.276

G 0.977 0.724 0.754 0.660 0.769 0.653 0.927 0.422

H 0.869 −0.035 0.839 −0.018 −0.007 0.754 −0.081 0.649

I 0.793 0.133 0.086 0.213 0.392 0.335 0.528 0.219

J 0.845 0.560 0.911 −0.031 0.004 0.867 −0.006 0.576

K 0.792 0.248 0.110 0.359 0.559 0.396 0.651 0.255

L 0.901 0.564 0.569 0.458 0.607 0.507 0.776 0.322

M 0.800 0.760 0.762 0.760 0.732 0.785 0.785 0.785

N 0.798 0.760 0.758 0.755 0.740 0.786 0.786 0.786

O 0.990 0.988 0.953 0.304 0.044 0.988 0.985 0.986

P 0.913 0.897 0.917 0.262 0.053 0.913 0.896 0.898

As presented in Table 3, the proposed DCT-MGA rendered satisfactory ZNCCs that
were normally larger than 0.65, except for JPEG compression. The lowest ZNCC occurred in
Case A.2, where the quality factor was set to 40. Nonetheless, the seemingly disappointing
score of 0.315 was still the highest among the eight compared schemes. In addition, except
for cases D (salt-and-pepper noise corruption) and J (histogram equalization), the DCT-
MGA generally obtained the highest rank. Other schemes may perform well, but they
cannot handle all the types of attacks considered in this study. In Table 4, two typical
watermarks, retrieved from the watermarked “Lena” color image for all the different
schemes in the presence of various attacks, are presented as extracted watermark examples.
A simple visual inspection of these watermarks can easily demonstrate the superiority of
the proposed DCT-MGA.
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Table 4. The extracted color watermarks from the “Lena” color image for the compared watermarking
schemes under various attacks.
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4.3. Watermark Enhancement

Because the recovered watermark contains only 64× 64 pixels, such a size makes it blurry
when zoomed in. A possible method to improve the quality of the image watermark is to
enhance the clarity and resolution using deep learning techniques. In this study, we adopted
the SR-GAN framework developed in [38] to perform image denoising and SR reconstruction
after recovering watermarks from the watermarked images. The employed generator utilizes
a residual network (ResNet) capable of converting low-resolution images (64× 64 in size)
to high-resolution images (of size 256 × 256). SR-ResNet can operate independently to
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improve the visual quality of the watermark; however, the output images are often overly
smoothed [38,43]. With the exploitation of the GAN, the generator is trained to fool the
discriminator rather than to minimize the difference between the desired and generated image
outputs. It was reported in [38] that, with the adoption of a perceptual loss function, the
SR-GAN is empowered to recover photo-realistic textures from downsampled images.

The watermarks used for training the GAN comprise 1000 color images taken from
the IAPR TC-12 database [42]. The four images (i.e., “Lena,” “Baboon,” “Peppers,” and
“F16”) shown on the top row of Figure 4 served as the carrier images in a simulation of
watermark extraction under attacks. Prior to network training, we adopted a preprocessing
method similar to image augmentation to expand the number of image samples. In addi-
tion to the ideal case without any attack, we applied every attack listed in Table 2 to the
four watermarked images and recovered the watermarks using Equation (10). The descram-
bled watermark (of size 64× 64) and its original high-resolution image (of size 256× 256)
form an input—output sample pair. Overall, 76,000 (4× 19× 1000) watermark samples
were used in the GAN training.

The improvement due to the SR-GAN is demonstrated in Figure 7, which presents
an exemplary watermark retrieved from the watermarked “Lena” image under various
attacks. Each subplot in Figure 7 comprises three parts: the left one shows the retrieved
watermark on the upper-left corner and its up-sampled version; the middle one presents
the high-resolution image resulting from the SR-ResNet trained based on the mean squared
error (MSE) between the recovered high-resolution image and the ground truth; the right
one corresponds to the so-called “photo-realistic” images rendered by the SR-GAN. As
evidenced by this demonstration, SR-ResNet inherits the merits of convolutional neural
networks, which not only enhance the resolution but also suppress the noise caused by
attacks. Nonetheless, the use of MSE as a loss function in the SR-ResNet tends to yield
overly smooth textures. With the involvement of the GAN, the generator network can
render perceptually satisfying images that match the expected resolution.

As also revealed in Figure 7, the effect due to JPEG compression deserves special
attention. It can be found in Subplots A.1 and A.2 that the extracted watermarks were not
only noisier but also had chromatic aberrations in the associated colors. Such a phenomenon
can be attributed to the poor preservation of the chroma information in the high-frequency
region. Thanks to the SR-ResNet and SR-GAN, the problems with the noise, chroma, and
limited resolution could be substantially ameliorated.

To determine whether SR-ResNet and SR-GAN are conducive to the recognition of the
extracted watermark, we computed the ZNCCs between the recovered and real watermarks
in the presence of all the attacks considered in this study. Figure 8 presents the results as a
bar chart, wherein each attack category comprises four bins, denoted as “w64,” “BIw256,”
“SR-ResNetw256,” and “SR-GANw256.” Specifically, “w64” indicates the results derived
from watermarks of size 64 × 64, while “BIw256” corresponds to the results from the
bicubically interpolated watermarks of size 256 × 256. Meanwhile, “SR-ResNetw256” and
“SR-GANw256” represent those obtained from the SR-ResNet and SR-GAN, respectively.
Several conclusions can be drawn from Figure 8. First, the interpolated watermarks did
not improve the ZNCCs. Second, SR-ResNet substantially enhanced the ZNCC when
the watermarks were severely damaged by malicious attacks. This can be attributed to
the denoising capability of the ResNet. Third, the ZNCCs in the case of “SR-GANw256”
appeared somewhat less than those observed in “SR-ResNetw256.” Such a result is not
difficult to understand as the SR-GAN tends to rebuild high-frequency details that are
different from the original content based on what has been learned in the training stage.
Thus, the added details tend to be detrimental to the similarity measure in the pixel space.



Sensors 2023, 23, 370 15 of 18Sensors 2023, 23, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 7. Super-resolved watermarks retrieved from the watermarked “Lena” image under various 
attacks. The three images from left to right in each cell correspond to the results of “w64/BIw256,” 
“SR-ResNetw256,” and “SR-GANw256,” respectively. The label underneath each subfigure corre-
sponds to the attack type listed in Table 2. 

To determine whether SR-ResNet and SR-GAN are conducive to the recognition of 
the extracted watermark, we computed the ZNCCs between the recovered and real wa-
termarks in the presence of all the attacks considered in this study. Figure 8 presents the 
results as a bar chart, wherein each attack category comprises four bins, denoted as “w64,” 
“BIw256,” “SR-ResNetw256,” and “SR-GANw256.” Specifically, “w64” indicates the re-
sults derived from watermarks of size 64 64× , while “BIw256” corresponds to the results 
from the bicubically interpolated watermarks of size 256 × 256. Meanwhile, “SR-Res-
Netw256” and “SR-GANw256” represent those obtained from the SR-ResNet and SR-

Figure 7. Super-resolved watermarks retrieved from the watermarked “Lena” image under various
attacks. The three images from left to right in each cell correspond to the results of “w64/BIw256,” “SR-
ResNetw256,” and “SR-GANw256,” respectively. The label underneath each subfigure corresponds
to the attack type listed in Table 2.



Sensors 2023, 23, 370 16 of 18

It is noted that the GAN merely plays a supporting role to denoise and super-resolve
the small-sized watermark extracted from a watermarked color image, presumably after
an attack. The purpose of the GAN is to make the recovered watermark more visually
recognizable. It is certainly not a problem incorporating the GAN with other watermarking
schemes. Although the experimental data were not presented or visualized in detail, our
experiences with the other schemes followed a similar trend observed in Figures 7 and 8.
Specifically, the ResNet generally made a considerable contribution when the original ZNCC
was low; the involvement of the GAN conduced to image clarity perceived by the naked
eye but did not necessarily improve the ZNCC. Providing the extracted watermarks were
more accurate and precise, the subsequent ResNet and GAN could have the opportunity to
enhance the images with the desired resolution and fidelity. It appears that the development
of a competent GAN without compromising the ZNCC is also an imperative concern in
watermark enhancement.
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5. Conclusions

We introduced a new type of blind image watermarking scheme that directly embeds
a color watermark into a carrier color image. Watermark embedding was implemented
by manipulating the magnitudes of paired 2D DCT coefficients, whereas the extraction of
the embedded watermark was resolved from the relative positions of these two coefficient
magnitudes. To offset the stretching effect on the coefficient magnitudes owing to attacks,
we also attached a regulator to restrain the pixel values within a legitimate range.

In a comparison of seven recently developed schemes engaged in high-capacity color-
image watermarking, the experimental results prove the superiority of the proposed DCT-
MGA scheme in terms of both imperceptibility and robustness. Overall, DCT-MGA makes it
possible and reliable to embed a color watermark of size 64× 64 into a carrier image of size
512× 512 with satisfactory performance. In addition to DCT-MGA, a GAN was employed
to enhance the extracted watermark. As demonstrated by the improvement in ZNCC, the
generator network renders a color watermark image with a higher resolution and less
noise. Nonetheless, the DCT-MGA scheme still lacks sufficient resistance to withstand
JPEG compression and median filtering attacks. Developing a numerically embeddable
watermarking scheme that survives JPEG compression and median filtering is a topic
worthy of further study.
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