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Abstract: Voice communication using an air-conduction microphone in noisy environments suffers
from the degradation of speech audibility. Bone-conduction microphones (BCM) are robust against
ambient noises but suffer from limited effective bandwidth due to their sensing mechanism. Although
existing audio super-resolution algorithms can recover the high-frequency loss to achieve high-
fidelity audio, they require considerably more computational resources than is available in low-
power hearable devices. This paper proposes the first-ever real-time on-chip speech audio super-
resolution system for BCM. To accomplish this, we built and compared a series of lightweight audio
super-resolution deep-learning models. Among all these models, ATS-UNet was the most cost-
efficient because the proposed novel Audio Temporal Shift Module (ATSM) reduces the network’s
dimensionality while maintaining sufficient temporal features from speech audio. Then, we quantized
and deployed the ATS-UNet to low-end ARM micro-controller units for a real-time embedded
prototype. The evaluation results show that our system achieved real-time inference speed on
Cortex-M7 and higher quality compared with the baseline audio super-resolution method. Finally,
we conducted a user study with ten experts and ten amateur listeners to evaluate our method’s
effectiveness to human ears. Both groups perceived a significantly higher speech quality with our
method when compared to the solutions with the original BCM or air-conduction microphone with
cutting-edge noise-reduction algorithms.

Keywords: audio super-resolution; bone-conduction microphone; real-time system; convolutional
neural network

1. Introduction

The most commonly used microphones for voice communication are air-conduction
microphones, which pick up sound propagating through the air. Although providing high
fidelity capture in quiet scenarios, they are vulnerable to environmental noises. To improve
the speech quality of air-conduction microphones in noisy environments, researchers
proposed multi-microphone beamforming with noise suppression techniques [1–3] or
deep-learning-based speech enhancement methods [4,5]. However, these solutions require
a significant amount of additional hardware or computing resources. Further, all these
methods fundamentally seek to reduce environmental noises but also inevitably corrupt
speech. Moreover, these solutions are still vulnerable to boisterous environments, such as
construction sites or strong wind, where extraneous noises overpower speech signals.

Bone-conduction microphones (BCMs) could achieve more robust results against am-
bient noises due to their physical design and fundamental conduction principles. However,
BCMs only have limited frequency response with high-frequency components above 2 kHz
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significantly attenuated. Reconstructing the high-frequency details can effectively increase
the speech audio’s quality.

A traditional method of reconstruction is to design a linear phase impulse response
filter [6]. However, acoustic paths are different among speakers because their bone struc-
tures are unique. Furthermore, it is impossible to ensure uniform BCM placement, which
may result in different spectral properties [7]. Therefore, a simple filter is insufficient to
accommodate a variety of users.

Audio super resolution [8], also called bandwidth expansion, is the task of increasing
the audio sampling rate and restoring the high-frequency components of low-resolution
audios. Convolutional Neural Networks have achieved state-of-the-art performance in
audio super resolution [9–11]. Additionally, similar neural-network structures have also
been proven effective in reconstructing distorted spectrograms [12] and enhancing record-
ings from low-end microphones [13,14]. Therefore, designing an audio super-resolution
model is feasible to reproduce high-fidelity speech from BCMs while maintaining their
noise resistance property in multi-speaker settings. However, existing deep-learning-based
audio super-resolution methods are commonly computationally intensive, making them
unfit for deployment on resource-constrained embedded systems.

This paper proposes the first-ever real-time on-chip speech audio super-resolution
system for BCMs. In order to achieve this goal, we first designed and compared a series
of lightweight deep-learning models for speech audio super resolution. Among all the
models, ATS-UNet is the most cost-efficient. We proposed an audio temporal shift module
(ATSM) and introduced this module to ATS-UNet. Therefore, ATS-UNet can reduce the
network to one dimension but still learn sufficient features from the temporal information
flow in speech audios.

Thus, ATS-UNet can reconstruct high-fidelity speech audios but require minimal
computational resources. We further quantized and deployed ATS-UNet and its variants
on micro-controllers, including ARM Cortex-M4f and M7 processors, and conducted a
full evaluation of our proposed method’s performance regarding the audio quality and
inference latency. The results show that ATS-UNet outperformed the cutting-edge audio
super-resolution method [9] with the perceptual evaluation of speech quality (PESQ) [15]
increased by 9% and log-spectral distance (LSD) [16] by 44%.

On the Cortex-M7 processor, our end-to-end latency, comprising model inference, feature
extraction, and reconstruction, is 38 ms on average. This is less than the half-frame length
(64 ms), meaning that our system can achieve real-time processing with 128 ms frames half-
overlapped. To further assess our method’s effectiveness in obtaining high quality speech, we
recruited 20 participants, including 10 experts and 10 amateur listeners, for the perceptual
audio quality evaluation. The results show that our method outperformed the original BCM
solution and commodity noise reduction solution with the air-conduction microphone. To the
best of our knowledge, our method is the first chip-deployable audio super-resolution solution.
To summarize, our contributions are as follows:

• We propose a lightweight audio super-resolution deep-learning model—ATS-UNet—
that utilizes our proposed audio temporal shift module (ATSM) to form a novel one-
dimensional UNet architecture. When compared with ATS-UNet’s variants without
ATSM, ATS-UNet was the most cost-efficient for chip deployment.

• We implement the first-ever real-time on-chip speech audio super-resolution sys-
tem for the bone-conduction microphone by quantizing and deploying ATS-UNet to
popular micro-controllers in commodity hearable devices. We further evaluate its com-
putational complexity on both ARM Cortex-M4f and M7 processors and demonstrated
its real-time processing capability.

• We evaluate our system’s effectiveness in improving speech quality with a bone-
conduction microphone through perceptual audio quality user studies. Audio sam-
ples are publicly available (https://sites.google.com/view/audio-sr-for-bcm/home
(accessed on 1 November 2022)).

https://sites.google.com/view/audio-sr-for-bcm/home
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2. Background and Related Work

Voice communication using air-conduction microphones in noisy environments has
been a challenging problem. For conventional speech communication, researchers have
proposed speech enhancement methods, such as beamforming with a microphone array
and blind source separation [17], for background noise removal. These algorithms only
remove part of the unwanted noises and introduce the risk of damaging the voice integrity.
Beamforming is based on directionality.

Therefore, it is prone to directional noise sources. In other words, when noise and
voice sources are on-axis, beamforming will not effectively separate the noise. To reduce
on-axis noise, noise suppression algorithms, such as [3,18,19] first estimate the noise with
statistical models and then remove the noise from the captured spectrum to recover the
original speech. These methods could lead to speech integrity issues due to the noise
model estimation accuracy. Moreover, under extreme conditions, such as strong wind noise,
air-conduction microphones will not pick up human voices due to saturation.

A bone-conduction microphone, which collects human speech propagated via human
bones, naturally suppresses environmental noises with its hardware placement and FSV
conduction. However, the speech captured by the BCM has a limited frequency bandwidth
which attenuates quickly above 2 kHz [20]. Our motivation is to enhance the BCM’s speech
sound quality by recovering high-frequency details while keeping its advantage against
environmental noise. In this section, we describe existing speech enhancement algorithms
for BCM and then give an overview on speech super-resolution techniques.

2.1. Bone-Conduction Microphones

Bone-conduction microphones are commonly used as an accessorial enhancer to
air-conduction microphones for capturing human speech. Researchers have proposed
speech enhancement methods using BCMs [21–25]. The BCMs can be used for accurate
voice activity detection due to their noise suppression characteristics [24]. BCMs can also
be incorporated to increase the voice activity detector accuracy and, hence, increase the
accuracy for noise model estimation to achieve better denoising results [22].

Further, BCMs can provide additional input for a multi-modal deep-learning net-
work [25]. However, these solutions require multiple microphones that are costly and
limited in capability in extreme circumstances, such as strong wind noise. Our work aims
to enhance speech quality using a single bone-conduction microphone. In other words, we
plan to achieve clean human speech capture while maintaining the microphone’s capability
against environmental noises.

Similar speech processing techniques based on BCM speech capture with audio super
resolution can be found, including the following: speech enhancement approaches for bone-
conduction microphones through audio signal processing [20]. Shimamura and Tamiya [6]
proposed a reconstruction filter calculated from long-term spectra of human voices from
both air- and bone-conduction microphones.

Shimamura et al. [26] further utilized a multi-layer perceptron to model the recon-
struction filter more accurately. Rahman and Shimamura [27] excluded the need for the
air-conduction microphones by introducing an analysis-synthesis method based on linear
prediction. Bouserhal et al. [28] introduced adaptive filtering along with non-linear band-
width extension method for enhancing the speech sound quality. However, these methods
require complex feature engineering and are, thus, difficult to adapt to different users and
equipment setups.

Recently, researchers applied deep-learning methods for speech enhancement with
BCMs. These methods aim to increase the sound quality of BCMs to be comparable to
air-conduction microphones in ideal conditions. For example, Shan et al. [29] proposed an
encoder–decoder network with a long short-term memory (LSTM) layer and local attention
mechanism, which reconstructs an air conduction log-spectrogram from a bone-conduction
log-spectrogram. This method only reconstructs frequency components below 4 kHz and
is based on a specific speaker.
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Liu et al. [30] introduced Mel-scale features of speech audio from a bone-conduction
microphone with a deep denoise auto-encoder for speech enhancement. This work recon-
structs high-frequency components up to 8 kHz. This increases the perceptual evaluation
of speech quality (PESQ) by 9.38% compared with the original bone-conduction speech;
however, the auto-encoder is also trained with a single speaker’s speech. Hussain et al. [31]
proved that, with only limited training data, the hierarchical extreme-learning machine
could outperform the denoise auto-encoder. Zheng et al. [32] adapted structural similarity
(SSIM)—a widely used metric in image quality assessment—as the loss function for a
Bidirectional LSTM Neural Network. As a result, the model achieved higher PESQ when
trained with SSIM loss compared with the standard mean square error (MSE).

Although proven effective, the aforementioned deep-learning methods were not
designed to be deployed on real-time embedded systems due to exceeding computation
resources and power limits. Moreover, these methods were not evaluated with cross-
user validation, which limits their generalizability to adapt to individual users. Some
works [29,32] used a sampling rate of 8 kHz, which is not sufficient for the Wideband Speech
protocol with required sampling frequency at 16 kHz. Therefore, our work approaches BCM
voice capture as a real-time resource-constrained super-resolution problem on embedded
systems. Furthermore, to make our solution robust against individual users and various
environments, we also introduced transfer learning to make our model generalizable.

2.2. Audio Super-Resolution Techniques

The audio super resolution, also known as bandwidth expansion, aims to increase the
sampling rate and restore high-frequency components of the low-resolution audio. Inspired
by image inpainting methods, researchers have proposed several frequency domain based
deep-learning methods for audio super resolution. These methods can be trained using
clean samples of BCMs as input and air-conduction microphones as references. These
samples are then converted into snapshots of spectrograms in the frequency domain as
snippets of audio features. The learned model restores the missing high-frequency details
from BCMs based on pattern recognition at the inference time. Then, the output snippets are
reconstructed back into the real-time speech stream as output. Below we describe various
audio super-resolution methods, optimization strategies, and on-chip deployment methods.

Audio super-resolution methods either took raw waveforms [8–11] or spectral repre-
sentations [33–35] as the input. A one-dimensional UNet [8] asymmetrical network with
skip connections was the first attempt to use a deep convolutional neural network for
end-to-end speech super resolution. To expand the perceptual field, TFiLM [9] utilized
bidirectional LSTM as the module to build up a variant 1D-UNet for speech audio su-
per resolution. In another variation of 1D-UNet [10], conventional convolutional layers
were replaced by multi-scale convolutional layers to capture information at multiple scales.
Mfnet [11] also attempted to facilitate multi-scale information exchange through multi-scale
fusion block.

Other deep-learning methods utilized the spectrogram as input. For example, Li and
Lee [33] proposed a three-layer fully connected network for speech audio super resolution.
UNet [34] was also proven to be effective in performing speech audio super resolution
using the power spectrogram. To take advantage of representations in both the time and
frequency domain, TFnet [35] incorporated two network branches that operate on both the
waveform and the spectrogram, respectively. Although proven effective on speech audio
super resolution, the deep-learning models mentioned above have too many parameters,
which causes them to exceed the computation and power budgets of micro-controllers by a
factor of 100 times.

The optimization strategy for audio super resolution includes the loss function and
training optimizations. One of the most commonly used loss functions is the mean square
error [8,33]. Although simple to compute, the MSE does not represent human perceptual
speech quality. Therefore, perceptually motivated loss [36] that calculates the L1 distance on
log mel-spectrogram was proposed. Further, the log spectral distance (LSD) [8,16], which
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measures the distance between the log–power spectrum of reference and reconstructed
signals, was also adopted as one option for the loss function.

For training, WaveNet [37,38], an auto-regressive model, optimized the joint prob-
ability of the targeted high-resolution audio. Adversarial learning is another popular
training technique. In this technique, a discriminator that works either in the time do-
main [10,11,39] or frequency domain [34,40,41] guides the generator to predict more realistic
high-resolution audio from low-resolution inputs.

Recently, hearable devices, such as TWS earbuds, have become increasingly popular,
with 233 million shipments in 2020, while deep-learning-based audio super-resolution
methods have been proven effective, deploying such solutions to a resource-limited em-
bedded system has not been fully investigated. Similar to our proposal, several super-
resolution deep-learning methods [39,42,43] have proven the feasibility of applying the
super-resolution method on a smartphone.

Other state-of-the-art speech super-resolution models require considerable computa-
tion resources and cause significant latency, which is not suitable for edge device deploy-
ment. This paper proposed a lightweight deep-learning model—ATS-UNet, which can run
on power- and space-limited ARM Cortex-M platforms. We expect future hearables em-
bedded with a single BCM will achieve good performance without the need for additional
computation resources with the proposed method.

3. Overview

This paper focuses on the uplink portion of the communication system—namely, the
capture side of the speech communication protocol. In particular, the capture and recovery
of the BCM input as an alternative solution to the conventional air-conduction microphone.
Shown in Figure 1, our proof-of-concept prototype is composed of commercially available
electronic parts: a pulse density modulation (PDM) bone-conduction microphone (Knowles
V2S100D), an analog MEMS air-conduction microphone (InvenSense ICS-40730), and a
micro-controller development board (Bestechnic (http://www.bestechnic.com/Home/
Index/index/lan_type/2 (accessed on 1 November 2022)) (BES) BES2300YP).

The BES2300YP system on chip (SoC) simultaneously collects audio signals from the
Knowles V2S100D and InvenSense ICS-40730, forming a dataset for audio super resolution.
Then, we trained ATS-UNet using this dataset on an Nvidia Titan XP GPU (12GB RAM).
The floating-point model was further quantized to the 16-bit data format and transformed
from a Tensorflow [44] to CMSIS-NN [45] implementation. With the model quantization
and optimization, ATS-UNet can then run efficiently on micro-controllers.

Figure 1. This paper’s overview.

http://www.bestechnic.com/Home/Index/index/lan_type/2
http://www.bestechnic.com/Home/Index/index/lan_type/2
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In this work, we tested two popular micro-controllers. (1) The BES2300YP with dual
ARM-Cortex M4F processors operating at a frequency up to 300 MHz with 992 KB SRAM
and 4 MB flash storage. The BES SoC was adopted by many popular TWS earbuds, such as
JBL FREE II, Samsung Galaxy Buds Live, and Huawei FreeBuds 2 Pro, for its compact form
factor and power efficiency. We only use one single processor in this work since the other
processor runs the Bluetooth stack and digital signal processing (DSP)-related algorithms.

Furthermore, the two processors share the SRAM with the storage requirements
from the Bluetooth and the operating system taking more than 400 KB. To prevent the
memory overflow, we limited the SRAM for the machine-learning model to be below
500 KB. (2) The NXP RT1060 SoC with a single Arm-Cortex M7 processor operating at a
frequency up to 600 MHz with 1 MB on-chip SRAM. In this case, only 512 KB general-
purpose SRAM can be used to host the machine-learning model. Both micro-controllers
support audio applications.

4. Deep-Learning Models for Bone Conduction Speech Audio Super Resolution

In this section, we first describe our general UNet design for bone-conduction speech
audio super resolution. We then describe how our models, including our proposed 2D-
UNet, Hybrid-UNet, Mixed-UNet, 1D-UNet, and ATS-UNet, were derived from this UNet
design. Most importantly, we present the key module called the Audio Temporal Shift
Module (ATSM). Finally, we describe the pre-processing and post-processing methods for
our deep-learning models.

4.1. UNet Variances for Bone Conduction Speech Audio Super Resolution

The original UNet has a fully convolutional and symmetrical network structure with
skip connections to facilitate information flow. Additionally, it can extract temporal and
frequency information in the time–frequency domain and reconstruct high-resolution
spectrograms. Compared with conventional convolutional and recurrent neural networks,
UNet is more efficient, as feature maps are down-sampled, contributing to fewer floating-
point operations.

However, UNet’s large model size still introduces unfavorable computation for on-
chip deployment. Therefore, we reduce the number of channels and network depth.
The general UNet architecture (Figure 2) contains five down-sampling blocks (DB) and
five up-sampling blocks (UB). Each DB has a max-pooling layer followed by two convolu-
tional layers. The size of the max-pooling layer is 2× 1. Therefore, after each DB, the length
of the frequency axis of the feature map is halved, while the time dimension remains the
same throughout the network.

Figure 2. The detailed architecture of our general UNet design. (F, T, C) indicates F for frequency
bins, T for temporal frames, and C for channels. When all convolutional layers are 1D and ATSMs
are inserted after each DB/UB, it is our ATS-UNet.

In UB, feature maps are up-sampled, concatenated with skip features, and then fed
into two convolutional layers. A ReLU activation function is adopted after each convolu-
tional layer except for the last layer. 2D-UNet V1 (Figure 3a) has the same structure and
channel numbers as shown in Figure 2; however, it has no ATSM, and every convolutional
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layer is 2D. We also present 2D-UNet V2, which has four times the filters of 2D-UNet v1
for comparison.

Figure 3. Our proposed series of novel network architectures including a variant 2D-UNet, 1D-UNet,
Hybrid-UNet, Mixed-UNet, and ATS-UNet.

Although 2D-UNet V1 is significantly smaller than the original UNet for image seg-
mentation, 2D convolutional layers still introduce unfavorable computation for on-chip
deployment. Since low-latency audio super resolution requires a small frame size, the shape
of the input spectrogram is narrow (the frequency axis is much longer than the time axis).
Therefore, only a few 2D convolutional layers are sufficient to extract information from
the full temporal range. Thus, using 2D convolutional layers throughout the network
is unnecessary.

Based on the above observation, We present another architecture called Hybrid-UNet
(Figure 3c) and Mixed-UNet (Figure 3d), which replace a portion of the 2D convolutional
layers with 1D convolutional layers. 2D convolutional layers enable temporal information
flow, while 1D convolutional layers only compute along the frequency dimension to enlarge
the perceptual range. Hybrid-UNet adopts 2D and 1D convolutional layers in each DB/UB
alternately, which maintains temporal information flow in the whole network. Mixed-UNet
replaces 2D convolutional layers with 1D layers in the middle of the network so that
temporal information exchange only exits in shallow layers.

Although Hybrid-UNet and Mixed-UNet are more efficient than traditional 2D-UNet,
2D convolutional layers still introduce unfavorable computation for real-time inference
on low-end embedded systems. Thus, we replace 2D convolutional layers with 1D con-
volutional layers completely to obtain a new architecture called 1D-UNet (Figure 3b), a
1D version of 2D-UNet V1. However, 1D-UNet lacks temporal modeling; therefore, we
inserted ATSM after each DB/UB to enable efficient and effective information exchange
along the temporal axis. We called 1D-UNet with ATSM ATS-UNet (Figure 3e). For all the
models, the kernel sizes of 1D and 2D convolutional layers are 3 × 1 and 3 × 3, respectively.

4.2. Audio Temporal Shift Module (ATSM)

Conventional deep-learning models for audio processing require massive 2D convolu-
tional operations to extract meaningful features from spectrograms [4] as Figure 4a shows.
However, they utilize a large number of computational resources. Therefore, the aforemen-
tioned deep-learning models are unlikely to be adopted for on-chip audio super resolution.
Instead, we introduced a novel module to accelerate convolutional operations in the time–
frequency domain called the Audio Temporal Shift Module (ATSM), as Figure 4b shows.
ATSM was inspired by the Temporal Shift Module (TSM) [46], an effective mechanism for
video understanding.
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This replaces 3D convolutional operations with 2D ones while preserving high-
dimensional modeling. This is achieved by shifting the feature maps among video frames
to enable temporal information flow. Similarly, ATSM utilizes 1D convolution operations
to replace 2D convolution operations for audio processing. In order to utilize information
from a longer temporal range for 1D convolutional kernels, ATSM shifts feature maps
along the temporal axis of spectrograms. In contrast to the TSM, whose input is four-
dimensional feature maps extracted from video frames, the input ATSM is extracted from
the 2D log-spectrogram and only has three dimensions: channel, time, and frequency.

More specifically, as illustrated in Figure 4b, feature maps are divided into two chunks
along the channel dimension: (1) dynamic and (2) static. The dynamic feature maps are
split evenly into two parts, with one part shifted forward (delaying time by one frame)
and the other backward (advancing time by one frame). The static feature maps remain
unchanged. It is worth noting that ATSM requires no additional computational resources to
facilitate information exchange along the temporal dimension in spectrogram computation.

Figure 4. To enable information flow through t1, t2, t3, we can use (a) a 2D convolutional layer or
(b) the proposed ATSM with a 1D convolutional layer. The latter is more lightweight.

4.3. Audio Pre-Processing and Resynthesis

Voice communication’s ideal overall latency is below 50 ms, which humans are unable
to notice. As latency increases, humans start to notice lip-sync issues; however, communi-
cation latency under 150 ms is still considered acceptable. However, a latency that exceeds
400 ms [47] is unacceptable for real-time communication. Therefore, a feasible audio super-
resolution system should not add too much latency to the communication process. As a
result, our system requires fast computing with an appropriate frame size and short-time
Fourier transform (STFT) parameter.

The pre-processing includes the feature extraction from the raw audio signal as shown
in the left figure of Figure 5. ATS-UNet processes a single audio frame at a time and outputs
audio frames in sequence to resynthesize the audio stream. A large frame provides more
information for ATS-UNet but introduces longer latency, since the system has to wait for the
time of the entire frame. Therefore, we use a 2048-point (128 ms) frame with half overlap
to achieve acceptable latency while maintaining adequate information. These frames are
transformed into spectrograms by STFT and fed into ATS-UNet.

The STFT parameter is another major factor in computational intensity. High frequency
and time resolution spectrograms can be achieved with a larger fast Fourier transform
(FFT) size and overlap between FFT windows, resulting in considerable computation load.
Considering the memory and resources on the micro-controller, we adopted a window size
of 512 points for the STFT. Further, we also utilized a half overlap strategy to the raw audio
data. The detailed trade-off of the STFT parameter is explained in Section 5.

The audio resynthesis, also known as post-processing, converts the reconstructed
spectrograms back to the time domain using the inverse short-time Fourier transform
(ISTFT). The overlapped frame is then multiplied by the Hanning window (2048-point) and
added to the previous frame. We adopted this resynthesis method because the data points
in the center of the window are better reconstructed due to richer temporal information.
Therefore, the Hanning window function gives the data samples in the center of the
window higher weights but weakens the importance of the data samples by the side.
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Further, we adopted half-overlapped Hanning window functions so that their summation
is a constant value. Thus, it will not distort the signal and can smooth the transition between
adjacent frames.

Figure 5. Feature extraction and reconstruction.

5. Model Training and Deployment

In this section, we provide experimental details, including the data collection proce-
dure, training scheme, and quantization procedure.

5.1. Speech Audio Data Collection

We conducted a user experiment to collect an audio dataset using the hardware shown
in Figure 6. The MEMS air-conduction microphone was placed near the mouth to collect
high-quality ground-truth speech audios. The BCM was secured with an earmuff. Thus,
when subjects wore the earmuff, the BCM would be pressed in front of the ear. To prevent
reverberation, we placed an acoustic panel in front of the speaker. As Figure 1 indicates, we
utilized a BES2300YP micro-controller to simultaneously collect speech audios from both
the air- and bone-conduction microphones. The sampling rate and bit depth were set to
44.1 kHz and 16 bits. We recorded the speech audios in a recording studio that was quiet
for high speech quality.

Figure 6. (a) The position of the air (MEMS) and the bone (BCM) conduction microphone. (b) The
headphone prototype for data collection.

We recruited 20 participants (10 males and 10 females). After wearing the headphone,
each subject was informed to read six paragraphs of an article, yielding approximately
12 min of speech per subject. We removed the silence clips at the beginning and the end
of all audio files and normalized the volume across participants. We then down-sampled
each speech audio to 16 kHz, which is sufficient for communication (https://en.wikipedia.
org/wiki/Sampling_(signal_processing) (accessed on 1 November 2022)). The processed

https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
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dataset includes 200 min of speech audios in total. Each participant received a 10 USD gift
card after the experiment.

5.2. Implementation and Training Details

Bone-conduction audios were down-sampled to 16 kHz, cropped to 2048-point frames
(128 ms), and transformed to time–frequency representations by short-time Fourier trans-
form (STFT) [48] with 512-point Hanning window and half overlap (a stride of 256-point).
We adopted the implementation of librosa (https://librosa.org/doc/latest/index.html (ac-
cessed on 1 November 2022)) for STFT and ISTFT. The symmetrical component is removed,
resulting in 257 Fourier coefficients. Thus, the size of the input spectrogram is 257 × 9.

Then, we converted the power of each coefficient to the log scale and standardize
them to normal distribution. We skipped the 0th coefficient (DC component) but fed
the remaining 256 coefficients into the network. Lastly, we obtained the enhanced log-
spectrogram from the super-resolution model and concatenated it with 0th coefficient;
therefore, the output’s shape is also 257× 9. The post-processing audio resynthesis includes
denormalization, conversion to linear-scale, and inverse STFT. The model only predicts
magnitude, and thus we kept the original phase information from the bone-conduction
audio to resynthesize the enhanced speech audio.

All super-resolution models were implemented in Tensorflow [44]. We adopted cross
user validation with the training dataset consisting of speech audios from 18 speakers and
the remaining audios as the test dataset. We randomly initialized the model and trained it
for 100 epochs using the Adam optimizer [49] with a learning rate of 0.0001 and batch size
of 64.

5.3. Loss Function

The loss function is given by Equation (1), that consists of two parts: the least absolute
deviation (L1) loss and perceptually motivated loss [36]. L1 loss measures the absolute
difference between the log-spectrograms of the output speech audio and the ground-
truth speech audio—log(s(y)). Perceptually motivated loss is the L1 distance calculated
on log-melspectrogram log(ms(y)) considering that the mel-scale is more aligned with
human hearing [50]. In Equation (1), s(y) and s(ŷ) stand for spectrograms of the output
and ground-truth audios. ms(y) and ms(ŷ) represent melspectrograms of the output and
ground-truth audios, respectively.

Loss = | log(s(y))− log(s(ŷ))|1 + | log(ms(y))− log(ms(ŷ))|1 (1)

5.4. Model Quantization

We re-compiled each model using the CMSIS-NN [45] framework for efficient inference
on Arm Cortex-M processors. First, we transformed the model from floating-point to fixed-
point format. Both weights and activations were quantized to 16-bit integers, given by
Equation (2). In practice, quantization is symmetrical around zero with power-of-two
scaling; therefore, it can be implemented by bitwise shifts in CMSIS-NN kernels.

xq = bx× 215−log2 max|x|c, (2)

where x represents the weights of a convolutional layer. xq is the quantized weights.

5.5. Noise Transfer Learning

The primary motivation behind the use of BCM is to enhance the communication
quality in noisy environments. Therefore, our system should improve bone-conduction
recordings in a quiet environment and in boisterous environments. To this end, we collected
voices from BCM in different noisy locations. However, we observed more unwanted noises
in the reconstructed speech compared with the quiet laboratory setup. This is because BCM
can still pick up some external noises that are further being enhanced by the model.

https://librosa.org/doc/latest/index.html
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We adopted transfer learning to fine-tune the model for noise reduction. By collecting
pure noises using BCM and adding them to bone-conduction audio in the training dataset,
the model can learn to identify the unwanted noises and only recover speech signals.
In detail, we collected bone-conduction noises in three locations, including a subway
station, a bus stop, and a dining hall. We instructed a participant to wear the prototype
without speaking and recorded bone-conduction noises for 20 min in each location.

We then added the noises to the bone-conduction speech recorded in the quiet studio.
For each audio clip, the signal-to-noise ratio (SNR) between the bone-conduction speech
and the additive noise was randomly sampled from Gaussian distribution with a mean of
18 and a standard deviation of 3.5. Before being deployed in real-world environments, ATS-
UNet was fine tuned on the noisy data for another 100 epochs with the same parameters
in Section 5.2.

6. Quantitative Speech Quality Evaluation

In this section, we present the quantitative speech quality evaluation regarding the air-
conduction microphone as the ground truth. We describe the evaluation metrics, baselines,
and results. We then explain the reasons behind the hyper-parameter selection and bench-
mark the performance of ATS-UNet, UNet variants, and baselines for speech enhancement.

6.1. Evaluation Metrics

We considered the effectiveness, model size, latency, and power consumption to
evaluate each model’s performance comprehensively. Specifically, the effectiveness includes
two metrics: the log spectral distance (LSD) [16], and the perceptual evaluation of speech
quality (PESQ) [15]. LSD, given by Equation (3) [8], measures the distance between the
log–power spectrum of reference and reconstructed signals. Therefore, a lower value
indicates a better performance. PESQ was provided by Recommendation ITU-T P862 [15]
for the objective assessment of speech quality. This models the mean opinion score (MOS),
which ranges from 1 (bad) to 5 (excellent).

LSD(x, x̂) =
1
T

T

∑
t=1

√√√√ 1
K

K

∑
k=1

(X(t, k)− X̂(t, k))2, (3)

where t and k are the frame and frequency index, respectively. X and X̂ denote the log–
power spectrum of x and x̂, which are defined as X = log|S(x)|2. S stands for STFT with
2048-point frames.

6.2. Baselines

Birnbaum et al. [9] inserted temporal feature-wise linear modulation (TFiLM) layers
into a time-domain 1D-UNet to expand the receptive field. This improved the performance
of audio super resolution compared with the original 1D-UNet [8], achieving cutting-edge
audio super resolution performance. Therefore, we adopted TFiLM as the baseline in this
paper. We used the open-sourced code of TFiLM implementation (https://github.com/
kuleshov/audio-super-res (accessed on 1 November 2022)).

6.3. Effect of the Input Hyper-Parameter

To evaluate the trade-off between frequency resolution and model performance, we first
compared two sets of STFT parameters: 1024-point FFT, 256 strides, and Blackman window as
well as 512-point FFT, 256 strides, and Hanning window. The experiments were performed on
two models. The first model is a lightweight 2D-UNet v1. In the second model, we expanded
2D-UNet v1 by increasing the number of filters in each layer by four times to explore the
optimum audio super resolution results without considering computation.

As shown in Table 1, both 2D-UNet v1 and v2 outperformed the baseline method—
TFiLM [9] with significantly fewer parameters. This proves the effectiveness of 2D-UNet in
speech audio super resolution. The computational intensity of the 1024-point STFT was

https://github.com/kuleshov/audio-super-res
https://github.com/kuleshov/audio-super-res
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nearly doubled compared with the 512-point STFT; however, the performances were close.
Therefore, we adopted a 512-point window size for the STFT in the following evaluation
procedures considering the latency and model size.

Table 1. Performance comparison for different STFT parameters.

Average LSD(dB)/PESQ

Model Params 1024-Point STFT 512-Point STFT

2D-UNet v1 11.8 k 2.028/2.713 2.013/2.790
2D-UNet v2 187.3 k 1.949/2.937 1.961/2.983

TFiLM (baseline) [9] 68,221.2 k 3.646/2.523 (time domain)

6.4. Model Performance Results and Comparison

To align the loss function with human hearing sensitivity for different frequency
ranges, we incorporated perceptually motivated loss [36]. Compared with the L1 loss, this
increased the accuracy for every tested architecture (Table 2).

Table 2. Performance comparison for different UNet architectures. Latency is the model inference
time on a single 2048-point frame by Arm Cortex-M4f/M7 processor. For 2D-UNet v2 and TFiLM,
latency was not provided as they are too large to be deployed on our embedded system.

Latency (ms) Average LSD(dB)/PESQ

Our Models Params FLOPs Cortex-M4f Cortex-M7 L1 L1 + Perceptual Loss

2D-UNet v2 187.3 k 133.9 M / / 1.961/2.983 1.954/3.030
2D-UNet v1 11.8 k 8.6 M 187 44 2.013/2.790 2.004/2.780

Hybrid-UNet 8.4 k 7.0 M 163 38 2.024/2.689 2.015 /2.733
Mixed-UNet 6.3 k 6.9 M 166 39 2.026/2.692 2.019/2.743

1D-UNet 4.5 k 4.8 M 129 31 2.063/2.664 2.052/2.717
ATS-UNet 4.5 k 4.8 M 131 32 2.032/2.710 2.032/2.749

TFiLM (baseline) [9] 68,221.2 k 116,420 M / / 3.646/2.523

Although UNet v1 only has about 10 thousand parameters, it still requires a long
inference time on a computation restricted platform, and thus we proposed Hybrid-UNet,
Mixed-UNet, and ATS-UNet as described in Section 4. Benchmark latencies and accuracies
are provided in Table 2 and Figure 7. ATS-UNet and 1D-UNet are the fastest networks,
taking 131/32 ms and 129/31 ms, respectively, to inference a 2048-point frame.

Due to the lack of temporal modeling, the accuracy of 1D-UNet is significantly lower
than ATS-UNet. ATSM effectively promotes temporal modeling while only adding negligi-
ble latency. Although Hybrid-UNet has 2000 more parameters than Mixed-UNet, the two
settings achieve nearly the same latency and accuracy because their floating-point opera-
tions (FLOPs) are very close. 2D-UNet v1 is the slowest with expensive computation and
slightly higher accuracy. Note that 2D-UNet v2 is too large to be run on our embedded
system, and thus we leave gaps in the table.

As shown in Figure 7, ATS-UNet is the most cost-efficient model as it is on the
upper left of the plot. In addition, spectrum examples in Figure 8 demonstrate that ATS-
UNet outperformed TFiLM since it recovered a more accurate high-frequency structure.
Considering our embedded system’s restricted computational resources and memory,
ATS-UNet was the best architecture to enable on-chip audio super resolution for BCM.



Sensors 2023, 23, 35 13 of 19

Figure 7. (a) The trade-off between on-chip latency and audio super resolution performance measured
by LSD. The number of parameters is represented by circle size. (b) Without ATSM, there is a linear
relationship between latency and LSD. ATS-UNet is on the upper left of the dotted line, thereby,
proving its superiority.

Figure 8. Audio super-resolution results visualized by spectrograms.

6.5. Power Consumption

Since the algorithm pipeline can be run in real-time on Arm Cortex-M7, we measured
the power consumption of this microcontroller under two circumstances: (1) during audio
super resolution and (2) without audio super resolution. We used a power analyzer
(EMK850) to measure the average current within one minute. When our super-resolution
module was active, the average consumption was 498 mW (114.4 mA at 4.35 V). After the
audio super-resolution module was deactivated, the microcontroller consumed 406mW
(93.0 mA at 4.37 V). Therefore, ATS-UNet, feature extraction and reconstruction consumed
92 mW (498 mW–406 mW) on average.

7. Perceptual Speech Quality Evaluation

In this section, we present the perceptual speech quality evaluation of our method
under both quiet and noisy environments. We describe the user study design, participants,
and results in this section. Specifically, we conducted two user studies. The first was to
compare the perceived speech audio quality of different machine-learning models.

The second user study was to evaluate our method’s effectiveness against environ-
mental noises. We utilized a within subject user study design. We utilized the Friedman
test for non-parametric statistical analysis (p < 0.05) and the Wilcoxon signed-rank test for
post hoc analysis (p < 0.05). We utilized the Mann–Whitney U test to evaluate the difference
between user groups for statistical analysis (p < 0.05).

7.1. Participants

We recruited 20 participants (14 males and 6 females) with an average age of 33.2
(s.d. = 4.8) separated into two groups. The “Golden Ear” (GE) group had 10 participants
(6 males and 4 females) with an average age of 34.2 (s.d. = 5.0). They were specialists who
were selected and trained to be able to discern subtle differences in audios. The “Non-
Golden Ear” (NGE) group had the other 10 amateur listeners (6 males and 4 females) with
an average age of 32.1 (s.d. = 4.6).

The study was conducted in a quiet listening room. During the test, each participant
was required to wear headphones (AKG N20 model). A 5 min break was required after
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10 trials. The whole study lasted for 60 min. Each participant received a 30 USD gift card
for their time and effort.

7.2. User Study 1: Speech Audio Quality in Quiet Environment

This user study included 20 trials. Participants listened to an audio clip from the
MEMS air-conduction microphone in each trial, which produced the highest speech audio
quality. Then, they listened to and compared three audio clips, including: (1) original
speech audio from the BCM (Original); (2) speech audio processed by the 2D-UNet v1; and
(3) speech audio processed by the ATS-UNet.

The three audio clips had the same duration, while each set of audio clips lasted
between 5 and 10 s with an average duration of 8.2 s. Then, each participant rated the
sound quality of these three audio clips by referring to the high-quality audio clip from
the MEMS microphone. We utilized a 5-point Likert scale for the rating (5 = very good,
3 = neural, and 1 = very bad). The three audio clips were ordered randomly in each trial
before the user study. Participants were allowed to listen to and compare audio clips
repeatedly. In total, each participant listened to 80 audio clips.

Results

The results show that both 2D-UNet v1 and ATS-UNet can effectively increase the
sound quality of audio from the bone-conduction microphone. Further, 2D-UNet v1
achieved better performance compared with ATS-UNet. As shown in Figure 9a, the mean
score of the original audio was 2.09 (s.d. = 0.03), of the ATS-UNet audio was 2.95
(s.d. = 0.03), and of the 2D-UNet v1 audio was 3.03 (s.d. = 0.03). These differences were sta-
tistically significant according to a Friedman test (χ2(2, N = 400) = 376.6, p < 0.001). Post-hoc
analysis showed that both the perceived sound quality of audio processed by the ATS-UNet
(Z = −13.6, p < 0.001) and the 2D-UNet v1 (Z = −13.9, p < 0.001) significantly outperformed
the original bone-conduction speech audio. Further, 2D-UNet v1 outperformed ATS-UNet
(Z = −2.8, p < 0.01) significantly.

Figure 9. (a,b) The qualitative speech audio quality evaluation results.

The user group analysis results show that there was significant effect of golden ear
status on the perceived sound quality when listening to the original speech audio from the
BCM (Z = −2.1, p = 0.036) but not under the 2D-UNet v1 (Z = −0.9, p = 0.37) or ATS-UNet
(Z = −1.2, p = 0.23) conditions.

7.3. User Study 2: Effectiveness of ATS-UNet Against Environmental Noises

This user study is to evaluate the effectiveness of our method against environmental
noises. We compared our method (BCM + ATS-UNet) to a baseline method—a single air-
conduction microphone with environment noise reduction (AIR+ENR). In this evaluation,
we adopted Baseus Encok TWS earbuds–WM01 (http://www.baseus.com/product-740?
lang=en-us (accessed on 1 November 2022)) as our comparison baseline. It has a built-in
signal processing method for environmental noise reduction. During our test with five

http://www.baseus.com/product-740?lang=en-us
http://www.baseus.com/product-740?lang=en-us
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different brands of earphones with the single speech microphone solution, the Baseus
WM01 earbud achieved the best performance in environmental noise reduction.

7.3.1. Speech Audio Data Collection in Noisy Environments

We first recruited five participants to collect speech audios under various environ-
ments, including a noisy pedestrian street, a subway station, and a moving car with the
window open. They had an average age of 26.5 (s.d. = 2.5). We used the recording hard-
ware presented in Section 5.1 to collect the speech audios from both the air-conduction
microphone and the bone-conduction microphone. Further, we streamed the speech audio
from the Baseus WM01 earbud to an iPhone 12 for comparison.

We used three hand-clapping events to start each recording and later synchronize the
audios. During each data collection session, each participant read the same article that lasts
around 2 min. The whole data collection procedure lasted 40 min. Each participant received
a 20 USD gift card. As a result, we collected 2 (min) × 5 (participants) × 3 (environments) =
30 min of speech audios with the bone-conduction microphone, the MEMS air-conduction
microphone, and the Baseus WM01 earbud. Among these audio recordings, the raw audios
from the MEMS microphone contained stronger environmental noises.

7.3.2. Speech Audio Quality Evaluation

This user study included 24 trials. In each trial, participants listened to an audio
clip from the MEMS microphone with stronger background noises. Then, they listened
to and compared two audio clips, including (1) speech audio from the bone-conduction
microphone processed by the ATS-UNet and (2) speech audio from the Baseus WM01
earbud with noise-reduction algorithms. Each pair of audio clips had the same duration
and lasted between 8 and 13 s, with an average duration of 10.96 s.

Then, each participant rated the sound quality of these two audio clips by referring to
the audio clip from the MEMS microphone. We utilized a 5-point Likert scale for the rating
(5 = very good, 3 = neural, and 1 = very bad). The two audio clips were ordered randomly
in each trial before the user study. Participants were allowed to listen to and compare the
audio clips repeatedly. In total, each participant listened to 60 audio clips.

7.3.3. Results

The results show both golden ear (GE) (Z =−12.2, p < 0.001) and non-golden ear (NGE)
(Z = −2.2, p = 0.02) raters considered the speech audio quality of the BCM + ATS-UNet
outperformed the baseline method—AIR + ENR. As shown in Figure 9b, GE raters scored
the speech audio quality of BCM + ATS-UNet with an average of 3.83 (s.d. = 0.86) and of
the AIR + ENR with an average of 2.61 (s.d. = 0.93). NGE raters scored the speech audio
quality of BCM + ATS-UNet and AIR+ENR with average values of 3.58 (s.d. = 1.17) and
3.38 (s.d. = 1.21), respectively.

User group analysis results show that there was a significant effect of the user group on
the perceived sound quality of AIR + ENR (Z = −7.7, p < 0.001) but not BCM + ATS-UNet
(Z = −1.9, p = 0.053). These results indicate that GE and NGE raters perceived similar
speech audio quality regarding our method. However, GE raters gave the AIR+ENR a
significantly lower score, indicating a poorer preference for AIR + ENR.

8. Discussion

In this work, we present the first on-chip audio super-resolution system for BCM.
By integrating a novel ATSM into UNet architecture, ATS-UNet makes it possible to recover
the missing high-frequency content captured by the BCM on resource-constrained hearable
devices. Therefore, model inferences could be run locally on hearable devices without
unwanted data transmission and lower latency. In this section, we discuss potential future
works and related applications.
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8.1. Dual Microphone System and Ambient Awareness

Even though BCM is superior to traditional microphones in noisy environments, and
our system significantly improved the BCM’s audio quality, air-conduction microphones
still provide higher speech quality in low noisy environments. Therefore, a great deal of
research [21–25] has focused on using an air-conduction microphone as the primary sensor,
accompanied by a BCM for noise reduction. Conversely, low-quality bone-conduction
audio is used directly in this research, and thus we hypothesize that there may be an
opportunity to apply the audio super-resolution model on bone-conduction speech in
conjunction with multi-microphone denoising algorithms.

BCMs and air-conduction microphones are suitable for different scenarios due to
their hardware properties. For example, under strong wind noise, BCMs are highly de-
sired, whereas, in a quiet meeting room, BCMs are unnecessary. In this case, the audio
super-resolution algorithm leads to unnecessary power consumption. Therefore, another
potential future research with a dual-microphone system could be ambient awareness. We
anticipate that a dual-microphone system with ambient awareness could achieve the best
user experience with optimal power consumption. With the ambient environment informa-
tion, we could then determine an appropriate microphone and algorithm combination to
be utilized at any instance.

8.2. Audio Super Resolution Applications

In this work, our system incorporated a single BCM, which we modeled as an audio
super-resolution problem. We have also observed many other potential real-world appli-
cations. For example, recently, many people are wearing masks to prevent COVID-19.
While these masks prevent the spread of the virus, it also blocks part of the speech
signals. Corey et al. [51] showed different masks and microphone placements have dif-
ferent impacts on speech quality.

We believe the audio super-resolution model is a potential solution for recovering the
attenuated frequency components from the masks. Increasingly, people pursue high-fidelity
music; however, for now, the majority of music on the internet is compressed MP3 files.
We anticipate that our model could be used to recover compression losses generated from
lossy compression audio codecs. In general, it is encouraged to use our ATS-UNet if audio
quality is degraded by frequency loss.

8.3. ATSM for Other Audio Applications

ATSM was designed for processing spectrograms of the audio signal, one of the most
widely used input features for audio-related deep neural networks. Therefore, we believe
ATSM can be easily adapt to other audio applications, such as speech separation [52] and
speech emotion recognition [53]. Researchers can insert ATSM into existing models and
reduce the dimension of convolutional layers making the models more lightweight and
deployable. Though ATSM was not designed for input features, such as waveforms and
MFCC, this provides insight on how to enable information flow and enlarge perceptual
range without large convolutional kernels.

8.4. Limitations and Future Work

In this paper, we built a hardware prototype to evaluate the effectiveness of our method
to recover high-fidelity speech audio from the bone-conduction microphone. The data
collection and performance evaluation procedures were performed on the development
board, as Figure 1 shows. We did not develop a wearable hardware solution designed for
users to wear it comfortably. Further, during our test and evaluation, the placement of the
BCM had a significant effect on the audio quality.

In our implementation, we utilized an earmuff to stabilize the BCM to the user’s
skin with its location shown in Figure 6. We chose this location for two reasons. (1) It
can pick good quality of speech audios during our pilot study (In the pilot study, we
compared two locations: in front of the ear and behind the ear). (2) We referred to the



Sensors 2023, 23, 35 17 of 19

cutting-edge design of modern bone-conduction speakers. We expect future work to
investigate the optimized location and mounting mechanism. Further, we expect future
work to explore sensor fusion approaches to enable better speech audio quality using air-
and bone-conduction microphones.

9. Conclusions

In this paper, we proposed a novel real-time embedded audio super-resolution-based
speech-capture system with BCM. By integrating a novel ATSM into UNet architecture,
ATS-UNet efficiently processed bone-conduction speech audio signals with minimal com-
putational resources among our proposed lightweight audio super-resolution models.
Compared with the baseline method (TFiLM), ATS-UNet achieved higher performance in
audio quality and reduced the number of parameters by approximately 100 times. Com-
pared to the 2D-UNet v1, ATS-UNet reduced the number of FLOPs by 44% and achieved
comparable performance.

With the reduction in computation complexity, our system can achieve real-time pro-
cessing on a Cortex-M7 with an average power consumption of 92 mW. User studies demon-
strated that our system significantly improved the perceptual quality of bone-conduction
speech. We propose that our system will promote the usage of BCM in earphones and
other deep-learning-based audio-processing applications, particularly those deployed in
resource-constrained embedded systems.
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