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Abstract: Balance ability is one of the important factors in measuring human physical fitness and
a common index for evaluating sports performance. Its quality directly affects the coordination
ability of human movements and plays an important role in human productive activities. In the
field of sports, balance ability is an important indicator of athletes’ selection and training. How
to objectively analyze balance performance becomes a problem for every non-professional sports
enthusiast. Therefore, in this paper, we used a dataset of lower limb collected by inertial sensors to
extract the feature parameters, then designed a RUS Boost classifier for unbalanced data whose basic
classifier was SVM model to predict three classifications of balance degree, and, finally, evaluated
the performance of the new classifier by comparing it with two basic classifiers (KNN, SVM). The
result showed that the new classifier could be used to evaluate the balanced ability of lower limb,
and performed higher than basic ones (RUS Boost: 72%; KNN: 60%; SVM: 44%). The results meant
the established classification model could be used for and quantitative assessment of balance ability
in initial screening and targeted training.
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1. Introduction

Balance is one of the basic abilities of the human body to accomplish complex motor
movements [1,2]. The assessment of balance in sports performance analysis is also an
essential research direction in sports science today. The research results can be used not
only in the rehabilitation of the elderly or people with balance disorders, but also in the
selection of young athletes and the special training of various sports, which is of great value
for scientific training monitoring. With the spread of wireless sensor technology in sports,
physiological and sports monitoring systems consisting of multiple wearable sensors can
provide coaches with a large amount of multifaceted information to provide an objective
basis for training decisions [3]. Intelligent wearable equipment represented by inertial
measurement unit (IMU) is now widely used and recognized by professionals in hockey,
basketball, rugby, golf, gymnastics, running, swimming, etc., [4–10]. The speed, angle,
acceleration, and other data provided by IMU can provide strong support for action posture
recognition. In addition, combining motion data with supervised learning algorithms can
also enable data fusion, which can be applied to comprehensive evaluation and prediction
of motion performance. This method has been applied to action recognition, behavior
prediction, etc., and achieved relatively good results.

The factors that affect the human balance are highly complex and, therefore, rely
heavily on the expert fusion of information and comprehensive judgment. The Berg
Balance Scale [11,12] was first proposed by Katherine Berg in 1989 and is the most widely
used tool in balance assessment. The rehabilitator can rate the subject’s balance based on
the completion of the standard action and the composite score. The balance beam test [13]
and single-legged closed-eyes standing test [14] evaluate balance ability based on travel
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length or standing length. The test results will be observed in these tests corresponding
to a performance indicator, thus alleviating the burden of complex multiple information
fusion on experts, but also leading to problems such as non-uniform evaluation criteria
and excessive human factor interference. The Y balance and star excursion balance tests
further refine the performance metrics and synthesize them with weighting factors [15,16].
Although both methods alleviate the problem of volatility of subjective evaluation to
some extent, they rely on specific testing equipment and testing movements. Therefore,
they are not easily integrated with sports programs and can only be used as a reference
basis. While the introduction of inertial sensor technology has greatly enriched the data
sources and information dimensions, the overly complex information has also resulted
in data analysis and prediction that can no longer be performed manually [17]. Various
classifiers based on supervised learning algorithms can assist in the fusion of multifaceted
sports data. For example, it is foreseeable that with the widespread citation of smart
wearable technologies in sports, the thinking and methods of balance assessment will also
be transformed. Efficient classifiers designed for various sports and special movements
will be the focus of the research. However, the data used in the current classifier design are
mainly from movement disorders and the elderly, and there are relatively few studies on
classifiers for movement populations. In addition, since the sample classes of the motion
dataset may not be balanced, classifiers designed based on traditional supervised learning
algorithms such as KNN, SVM, etc., have limited performance [18].

Therefore, a three-category classifier for equilibrium prediction of the general sports
population is designed based on the RUSBoost algorithm [19].

2. Materials and Methods

This paper investigated the measurement method for quantitative evaluation of bal-
ance capability based on inertial measurement units, including establishing data sets
through experiments, constructing quantitative evaluation models, and comparing the
performance of the evaluation model and basic algorithm. The general flow of the study
proposed in this paper was shown in Figure 1.

• Data collection. Including experimental movements selection using the Delphi method [20],
experimental tasks designing, experimental sites setting up, and experimental data
collecting. Experiments were conducted using inertial 3D motion capture system
whose validity had been tested.

• Extracting key features. Principal component analysis was used to reduce the dimension-
ality of the features and filter out the feature parameters for classification evaluation.

• Establishing quantitative assessment models for testing balance ability. According to
the characteristics of data imbalance, explored the processing methods of imbalanced
data sets, and established three quantitative evaluation models of KNN, SVM, and
RUS Boost.

• Model performance evaluation. Accuracy and ROC (receiver operating characteristic)
curves were taken to explore the influence of different classifier algorithms on model
construction, to compare and analyze the performance of models constructed by
different algorithms on the test set.

Figure 1. Overall process of the proposed approach.

2.1. Data Inspection

Before data acquisition, the reliability of the PNS (Perception Neuron Studio) inertial
motion capture system was checked to make sure that the data collected met the acquisition
standard before the formal data acquisition.
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The calibration procedure for this acquisition device was performed on Axis Neuron
Studio software using two consecutive static poses (A pose and S pose) for four consecutive
tests due to the magnetization environment during the experiment. Each pose was per-
formed five times. During the procedure, the signal strength was observed in real time; if
the signal was ‘poor’, we adjusted it in time to ensure the integrity and validity of the data.
The calibration posture of the subject was shown in Figure 2, and the software interface of
the device was shown in Figure 3; the seven positions marked in Figure 3 show where the
lower extremity model sensors are worn.

Figure 2. Subjects calibrate their posture. (a) A pose: Stand straight, arms facing down with palms
facing your body. Position feet distance approximately the same distance of your hip width and
maintain feet parallel to each other. (b) S pose: Crouch down with feet flat on the ground while
maintaining feet and legs parallel to each other. Extend arms forward with palms facing down.

Figure 3. Equipment software operation interface.

2.2. Data Collection and Dataset Creation
2.2.1. Experimental Pose Selection

Based on the basic concepts of balance and previous studies [21], we collected kinematic
data and developed improved balance test maneuvers through literature and scales [11,22].
Based on the Delphi Action selection method, we conducted two rounds of investigation with six
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experts and, finally, selected four typical actions as the experimental movements for this paper.
(1) Upright: this was static standing, with arms down and palms facing the body. Feet were
positioned approximately the same distance as the subject’s hip width and feet are parallel to
each other. (2) Walking: fixing the number of steps the subjects walked, for each subjects walking
six steps. Step length should be adjusted according to the subject’s habits to prevent them from
leaving the PNS reception range. (3) Squat: a 45 cm tall base was placed behind the participant’s
knees; this prevented them from squatting below this depth. This standardized method was
crucial to prevent reflection markers from being blocked during a lower squat. (4) BOSU ball
squat [23]: the standardization of the BOSU squat was mainly from the perspective of safety, so
that the subjects could maintain a consistent squat depth as far as possible under the condition
of ensuring safety.

2.2.2. Equipment and Environment

Shuai et al. [24] compared the lower body joint angle data obtained from both the PNS
and OptiTrack systems and showed that the RMSE ranged from 3.57◦ to 13.14◦, while the
CMC values ranged from 0.47 to 0.99, indicating the reliability of the PNS in measuring
lower limb kinematic data and assessing the kinematics of the lower limbs.

Data and signal acquisition equipment were mainly used to collect three-dimensional
motion information from the movement of the human body. The main equipment was
Perception Neuron Studio (Noitom Perception Neuron Studio, Noitom Technology Ltd.,
Beijing, China). According to the recommendations of the manufacture [25], the PNS
IMUs were placed on the sacrum, bilaterally on the upper thigh (between the greater
trochanter and medial epicondyle of the knee), the lower shank (medial surface of the
proximal tibia), and the dorsum of the foot. PNS contains seven wireless IMUs, each
measuring 12.5 mm × 13.1 mm × 4.3 mm and consisting of a 3-axis gyroscope (2000 DPS),
3-axis magnetometer, and 3-axis accelerometer (32 g). This system was responsible for
collecting lower limb motion signals, which could be real-time transmission of acceleration
(Acce), angular velocity (Gyro), quaternion (Quat), velocity (Velo), and position (Posi). In
this experiment, the sampling rate of the data acquisition system was 100 Hz.

2.2.3. Subjects

A total of 20 college students passed the screening for motor function and became
subjects in our study. Among them, there were 10 males and 10 females with a mean age
of 25.35 ± 2.35 years. Motor function screening required the subjects to perform routine
functional exercise tests to ensure that the subjects had no obvious movement disorders,
such as severe sports injuries, joint inflammation, or balance defects. None of the subjects
in our study reported any known movement disorders or other health problems that could
affect mobility. The study was conducted in accordance with the Declaration of Helsinki.
Before the experiment, subjects were informed of the contents of the experiment, and
each subject voluntarily signed an informed consent form and agreed to participate in
the experiment.

2.2.4. Experimental Procedure

The subjects wore a tight clothing with sensors on the corresponding body parts, and
the system selected lower body collection mode. Before the collection, we evaluated the
equipment based on the number of sensors, sensor initialization, signal quality, and sensor
attitude; the equipment was used only when the collection standards were reached. To
prevent the subjects from misunderstanding the actions, they should be given thorough
explanations and trained on the actions before the experiment. After completing the
calibration procedure, subjects would complete four rounds of testing, with each round
randomly selected one pose until all poses were tested. Each pose should be completed
10 times consecutively and standard. We would record experimental videos simultaneously
while collecting data and sent them to a physical training expert, who would score the
poses according to her experience, with three scores: 2 (perfect), 1 (good), 0 (average).
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The expert scored the actions twice for evaluation, and the kappa consistency test was
performed on the two scoring results. The final kappa coefficient obtained was 0.951,
proving a strong intra-rater reliability. The scoring results would be used in the design of
the classifier models.

2.2.5. Data Statistics

The data set contained three folders IMU, BVH, and Angle. The data in the IMU folder
were the original inertial CSV data exported from the test using the PNS motion capture
system, and the Calc output data structure of the CSV data were shown in Table 1 [26].

Table 1. Calc data structure table.

Serial Number Marking Content Notes

1 Body part name A total of 7 species, see Table 2 for details

2 Characteristic information Sensor, Joint, Bone

3 Physical quantity information Transmission of acceleration (Acce), angular velocity (Gyro),
quaternion (Quat) and velocity (Velo) and position (Posi)

4 Specific component values x, y, z components, where the quaternion has one more w component

The BVH folder contained the action stream BVH data [27] that define the anatomical
information of the human body. BVH as a common human feature animation file format that
could support most 3D animation production (3dMax, Unity, Maya) software production
development [28]. BVH data were processed in the Python parsing backend of the PNS
package using specific parsing methods. The action flow data format was divided into
two parts: (1) SIZE: defined the size of each major bone of the body (cm) (see Table 2).
(2) MOTION: defined the number of frames, the frame rate, and the rotation angle of each
joint in each frame (see Table 3).

Table 2. Table of body part names *.

Partial Name Marking Serial Parent Node

Hip Hips 0 Root Node
Right thigh RightUpLeg 1 0
Right calf RightLeg 2 1
Right foot RightRoot 3 2
Left thigh LeftUpLeg 4 3
Left calf LeftLeg 5 4
Left foot LeftFoot 6 5

* In the data, the lower limbs are divided into 7 parts, where the hip node is the root node and each subsequent
node is connected to a parent node in the order shown in the table above.

Table 3. Bone and joint correspondence table.

Bone Joint

The connection between Hip and LeftUpLeg LeftHip
The connection between LeftUpLeg and LeftLowLeg LeftKnee

The connection between LeftLowLeg and LeftFoot LeftAnkle
The connection between Hip and RightUpLeg RightHip

The connection between RightUpLeg and RightLowLeg RightKnee
RightFoot RightAnkle

The Angle folder contained the CSV data after processing the BVH data by the Python
parsing method that accompanied the PNS motion capture system. The size section clearly
showed the body part position and rotation components defined in a hierarchical relation-
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ship, the motion corresponding to the skeleton information, and the data information of
each frame.

2.3. Feature Parameter Extraction

The feature parameter extraction is mainly to extract the indicators that can character-
ize the motion signal. The acquired motion signal is pre-processed and analyzed in time
and frequency domains, and as many time and frequency domain indicators that can reflect
the motion retardation characteristics are extracted to establish the feature parameter set for
motion evaluation. Feature parameters with distinguishing information, such as motion pe-
riod and peak power, are extracted. Among them, mean, standard deviation, and RMS are
commonly used feature parameters in the field of balance quantitative assessment studies.
For each movement, the extracted feature parameters are 35 features such as acceleration
root mean square, angular velocity root mean square, combined acceleration, combined
angular velocity, approximate entropy (ApEn), principal frequency, total energy value,
coefficient of variation, mean motion period, and peak power, among other features [29].

The extracted feature values were subjected to feature dimensionality reduction using
principal component analysis, and the Bartlett ball test could determine whether the factor
analysis method was effective for the extracted features. If the Bartlett’s spherical test
significance of the extracted action feature parameters was less than 0.05, indicating that
the principal component factor analysis method was valid [30].

As shown in Figure 4, it could be seen that the gravel plot tends to flatten out after
12 factors, which could indicate that the explanation rate of the variables for the 12 factors
extracted from the derived actions reaches more than 98%, so for each action feature
the 12 factors extracted could be used as the feature parameters for placement into the
evaluation model.

Figure 4. Gravel plot of the explanatory rate of the characteristic variables.
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Finally, 12 reserved feature parameters of the placement assessment model were
shown in Table 4.

Table 4. Explanation of main characteristic parameters.

Serial Number Characteristic Quantity Name Specific Meaning

1 KU_SA Combined acceleration kurtosis
2 SK_SW Combined angular velocity skewness
3 SK_SA Combined acceleration skewness
4 KU_VY Y-axis velocity kurtosis
5 RMS_SW Root mean square of the combined angular velocity
6 KU_SW Combined angular velocity skewness
7 RMS_SA Root mean square of the combined acceleration
8 SK_AY Y-axis acceleration skew
9 KU_AZ Z-axis acceleration kurtosis
10 RMS_AZ Root mean square of Z-axis acceleration
11 KU_AY Y-axis acceleration kurtosis
12 ME Average total energy

2.4. Model Construction

In machine learning, common classification algorithms included SVM, decision tree,
KNN, BP neural network, plain Bayesian, and integration learning methods [31]. For the
same dataset, each classification method had different performance. In this paper, we
compared and validated three common classification algorithms, such as KNN classifier,
support vector machine, and RUS Boost classifier, and compared the recognition accuracy
of evaluation grading models constructed by different classification algorithms on the test
set to construct a grading evaluation model for quantitative balancing ability. Figure 5
showed the flow chart of quantitative assessment model building.

Figure 5. Flow chart of quantitative assessment model building.

Integrated learning algorithms, in general, consist of a series of basic classifiers. The
two main integrated learning algorithms were Boosting and Bagging. Two mainstream
integration learning algorithms were Boosting and Bagging, which were widely used in
classification studies of unbalanced datasets due to their good performance in learning
classification of unbalanced datasets by resampling the training data or improving the
classifier algorithm. When there were far more samples in one class than in other classes, a
classifier that could effectively identify samples from underrepresented classes needed to
be constructed [19,32]. RUS Boost was a classification algorithm based on boosting for the
class imbalance problem in class-labeled data, and its basic logic was shown in Figure 6.

The RUS Boost algorithm introduced the random under sampling technique into
the algorithm of AdaBoost, combining the data sampling technique and the Boosting
algorithm, which was not only fast and efficient, but also had an excellent performance in
the classification of unbalanced datasets [33]. In this paper, the RUS Boost algorithm was
used to adjust the classification of the dataset to avoid the impact of the weak classification
ability of a single classifier and to improve the classification ability of the unbalanced
dataset. Figure 7 showed the diagram of the basic steps of RUS Boost.
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Figure 6. RUS Boost basic logic diagram.

Figure 7. Flow chart of RUS boost basic steps.
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After calibrating all sensors, the initial posture of the subject was aligned with the
posture of the models in the software, as shown in Figure 1, with the face forward and the
arms hanging naturally on the sides of the subject. All models were kept in the center area
of the software sensor area to keep the sensor positions of the models stable. To evaluate
the quality of the calibrated data, the X, Y, and Z positions of the hip, knee, and ankle joints
and their posture angles in the first frame were extracted from each calibration data record
using the PNS software, and the data distributions of the three dimensions were relatively
concentrated, indicating that our calibration method was effective. The results of the data
distribution are shown in Figure 8.

Figure 8. (a) The 3D scatter of the mass center of the last three frames. (b) The convex hull graph
distribution of projection on the XY axis. (c) The convex hull graph distribution of projection on the
XZ axis. (d) The convex hull graph distribution of projection on the YZ axis.

3. Results
3.1. Comparison of Quantitative Model Performance

In this paper, confusion matrix, ROC curve, AUC, and accuracy were used to compare
and analyze the strengths and weaknesses of the quantitative models constructed using
three classification algorithms on the test set, and the performance of the graded models
were respectively compared for KNN classification algorithm, SVM support vector machine
classification algorithm, and RUS Boost integrated algorithm. According to the balance
degree mentioned in Section 3.1, there are three levels: 2, excellent; 1, good; 0, general.
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3.1.1. KNN

After analysis, it was concluded that the error value was minimum when K = 6 or 7 as
shown in Figure 9, but considering that K generally is odd number, therefore, K = 7 was
finally chosen. The KNN classification results were shown in Figure 10.

Figure 9. KNN model K-value selection.

Figure 10. KNN classification model ROC curve and area under the ROC curve.
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3.1.2. SVM

Support vector machine: the penalty function parameter C was set to 0.5, and the
classification results were shown in Figure 11.

Figure 11. SVM classification model ROC curve and area under the ROC curve.

3.1.3. RUS Boost

The base iterative classifier was selected as SVM, the total number of iterations was
set to 100, and the learning rate was 0.2. The classification results were shown in Figure 12.

Figure 12. RUS classification model ROC curve and area under the ROC curve.
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4. Discussion

Prior studies have established a number of validated balance tests such as Berg
scales [11], Y-balance tests [15], etc. In this study, we proposed a grading method for
quantitative assessment of balance ability based on inertial sensors, and established a
grading model for balance ability assessment by feature extraction and analysis of the
dataset, and then compared the performance of the grading assessment model.

4.1. Classifier Performance

KNN classification algorithm is one of the simplest methods in data mining classi-
fication techniques, which is robust, general and simple to understand [34]. It could be
obtained from the above data and classification results that KNN had better performance
in detecting triple classification compared to other models, with an over-all evaluated
accuracy of 0.62. The parameter C in SVM is the penalty parameter, which represents
the misclassification or error term. If the penalty parameter is set higher, the error rate of
classification is smaller, but if the penalty parameter is set too high when using a nonlinear
kernel it may cause overfitting [35]. Therefore, setting the penalty parameter of the SVM to
0.2, the accuracy of SVM is 0.66.

Previous research has used the ensemble method to address problems in cybersecurity,
fraud detection, recommender systems, healthcare, and remote sensing [36].Therefore, SVM
was used as the base classifier in RUS Boost classification, and the RUS Boost algorithm was
a cumulative prediction of multiple SVM models, and the algorithm. The final RUS Boost
classification accuracy, which was 0.70, had been improved due to the cumulative prediction
using a single classification model, indicating that this type of integrated prediction method
was generally better than a single classification model. Most of the traditional machine
learning algorithms assume that the data distribution is uniform, and the imbalance of data
distribution will affect the performance of the classifier to some extent, which is likely to be
the reason for the poor classification results of the previous classes of algorithms. The RUS
Boost algorithm combines the undersampling technique with Boosting, which balances
the original data set by reducing the samples of most classes, although a certain amount of
information is lost, but since the Boosting algorithm constructs different weak classifiers,
the amount of information lost in one weak classifier is likely to be included in other weak
classifiers [19,37]. Therefore, RUS Boost algorithm has a great advantage in classifying
unbalanced data, which is also demonstrated in this study.

The classification accuracy of the scoring model constructed by the RUS Boost algo-
rithm was proved to be 70%, which can meet the expectation well and can be used to some
extent as a supplement to the scale to evaluate the human balance ability.

4.2. Limitation and Future Work

A number of limitations need to be noted regarding the present study. First, all
participants in this study were healthy adults, and further studies are needed to verify
whether the study is reliable in pathological populations or in elite athletes.

Second, a large number of data samples are missing. The quantitative model based on
machine learning can be more accurate and objective under the condition of sufficient data.
Further work is required to establish the viability of expanding the sample size and further
optimizing the classifier to build the system.

Third, although the currently used classifier could further improve the imbalance of
the data, the subsequent superposition of the data volume would lead to an increasing
rate of misclassification, and the classification accuracy could be effectively improved by
changing the number of iterations and further processing of the data.

5. Conclusions

In this study, the lower limb dataset was analyzed for feature extraction using fac-
tor analysis with principal component analysis, and the final extracted 12 factors were
obtained as the features extracted after dimensionality reduction, and KNN, SVM, and
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RUS Boost classification models for the unbalanced dataset were proposed and evaluated
for performance. The performance comparison yielded a better performance of the RUS
Boost algorithm for classification in balanced quantization, with a detection accuracy of
70%. The experimental results showed that the RUS Boost classification algorithm performs
better and provided a better quantitative assessment of the balancing ability because the
data obtained from the experiments are unbalanced datasets. The classifier may be able to
replace the assessment scale to a certain extent to evaluate the balance ability.
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