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Abstract: In clinical conditions, polysomnography (PSG) is regarded as the “golden standard”
for detecting sleep disease and offering a reference of objective sleep quality. For healthy adults,
scores from sleep questionnaires are more reliable than other methods in obtaining knowledge of
subjective sleep quality. In practice, the need to simplify PSG to obtain subjective sleep quality by
recording a few channels of physiological signals such as single-lead electrocardiogram (ECG) or
photoplethysmography (PPG) signal is still very urgent. This study provided a two-step method
to differentiate sleep quality into “good sleep” and “poor sleep” based on the single-lead wearable
cardiac cycle data, with the comparison of the subjective sleep questionnaire score. First, heart rate
variability (HRV) features and ECG-derived respiration features were extracted to construct a sleep
staging model (wakefulness (W), rapid eye movement (REM), light sleep (N1&N2) and deep sleep
(N3)) using the multi-classifier fusion method. Then, features extracted from the sleep staging results
were used to construct a sleep quality evaluation model, i.e., classifying the sleep quality as good
and poor. The accuracy of the sleep staging model, tested on the international public database,
was 0.661 and 0.659 in Cardiology Challenge 2018 training database and Sleep Heart Health Study
Visit 1 database, respectively. The accuracy of the sleep quality evaluation model was 0.786 for our
recording subjects, with an average F1-score of 0.771. The proposed sleep staging model and sleep
quality evaluation model only requires one channel of wearable cardiac cycle signal. It is very easy to
transplant to portable devices, which facilitates daily sleep health monitoring.

Keywords: sleep quality evaluation; single-lead ECG; sleep staging; heart rate variability; sleep

1. Introduction

Sleep is a vital activity of humans. However, it is difficult to measure accurately. In
clinical conditions, polysomnography (PSG) and sleep questionnaires are usually used as
objective and subjective standards, respectively, for the assessment of sleep quality. PSG is
useful in the diagnosis and treatment of sleep disorders [1]. With it, sleep stage transitions
and automatic nervous system activities in sleep can be observed by multichannel physio-
logical electric signals. The up-to-date interpretation of PSG by the American Academy
of Sleep Medicine (AASM) divides all sleep time into five stages: stage of wakefulness,
stages 1–3 of non-rapid eye movement (stage N1-N3 in NREM) and a stage of rapid eye
movement (REM) [1,2]. This categorization helps the diagnoses of some sleep diseases;
however, the PSG’s defects of inconvenience in daily use and interference with sleep are
obvious and difficult to resolve. The sleep questionnaire is a subjective and rough assess-
ment of the subject’s overall sleep quality. Both PSG and sleep questionnaires are essential
tools to obtain an individual’s sleep health information; however, the connections between
them are not so significant or coincident and cannot be indicated by simple mathematical
expressions. Researchers have found that in healthy adults, subjective total sleep time is
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overrated compared with objective total sleep time, as well as subjective sleep efficiency [3].
Sleep stage N2 is closely correlated with subjective sleep quality and neither sleep effi-
ciency nor total sleep time can be a predictor of subjective sleep quality. However, in older
people, objective sleep efficiency is the strongest correlate of subjective sleep quality, but is
inconsistent with that of younger adults. The restoration from the sleep of younger adults
relates to slow-wave sleep closely [3,4].

Standard PSG monitoring obtains multiple signals such as electroencephalogram
(EEG), electrooculogram (EOG), electrocardiogram (ECG), mouth and nose breathing and
chest breathing. Among them, EEG is the most highly correlated with sleep staging results.
Because PSG monitoring is complicated work with many wires, usually at least 12 leads, it
interferes with patients’ normal sleep, so technical needs exist to simplify the PSG method
without too much loss of accuracy in sleep staging. In the research field, by extracting
one or several channels of PSG signals, sleep staging algorithms are commonly based on
EEG [5], ECG [6,7] and cardiopulmonary coupling (CPC) [8]. Despite the fact that the
algorithms based on EEG generally perform much better than those based on ECG and
CPC [6,9,10], the discomfort and noisy signal of EEG are its bottleneck. We need reduced
connecting lines and fewer foreign body sensations to make sure that sleep is not disturbed
by devices and that the data more closely resemble natural sleep.

Many research studies have verified the possibility of sleep staging by ECG
signals [6,8,11,12]. ECG signals can be much more easily obtained than EEG signals. We
only need to collect one lead of wearable ECG signals and that is very convenient and offers
small disturbance to subjects. The signals can be obtained by the portable devices with two
or three electrodes pasted on the surface of the subjects’ chest or abdomen, with no wires
around the body. Heart rate variability (HRV) is the physiological phenomenon of variation
in the time interval between heartbeats. It is measured by the variation in the beat-to-beat
interval. The data source used to calculate HRV is usually ECG or photoplethysmography
(PPG); the difference between them is negligible [13,14]. Many researchers have introduced
large numbers of HRV features and complicated neural networks into their sleep staging
models, which is very time consuming and short of practical value [6,15–18], and this need
to be altered and improved.

In practice, the demand exists to evaluate subjective sleep quality with a few physio-
logical signals for ordinary persons and for special post staff. The special post staff are those
whose working hours are lengthy, working content is difficult and the accommodation is
rough, such as soldiers, firefighters, pilots and construction workers. They must be ener-
gized before performing a special task, which requires them to have a good sleep. Thus, it is
better for their sleep quality to be supervised objectively by the leaders. However, it is not
a wise option to have them fill out the sleep quality questionnaires because some unaware
or intended false answers might be included. We should resort to some technical means
to obtain sleep information objectively without significantly affecting the staff’s normal
sleep. Generally, for healthy people, how they really feel about their sleep is considered
to be credible and acceptable. The score of their subjective sleep questionnaires can be
thought to be the standard of sleep quality. The aim of this paper is to develop a practical
method to differentiate subjective sleep quality into two groups—“good” and “poor” using
single-lead wearable cardiac cycle signals. To achieve this, we collected ECG data and sleep
questionnaires from 200 employees who work in special positions when they sleep at night.
We should first build a sleep staging model as the bridge. We strive to screen out those
whose sleep quality is poor and demand that the algorithm does not consume too many
hardware resources and can be easily transplanted into portable devices.

2. Materials
2.1. International Public Dataset

Our sleep staging model is built mainly based on the international public database
and the following two datasets were used: (1) the Sleep Heart Health Study Visit 1 database
(SHHS1DB) [19,20], (2) the PhysioNet Computing in Cardiology Challenge 2018 training
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database (CincDB) [15,21]. The SHHS1DB includes the PSG data of 6441 individuals; the
participants have no history of treatment of sleep apnea, no tracheostomy, and no current
home oxygen therapy. The CincDB is from a challenge whose goal is to classify target
arousal regions in the sleep time at night using PSG data. In the training set of CincDB,
994 subjects were included, some of whom were diagnosed with sleep disorders. All the
data we used are annotated in 30 s contiguous intervals: wakefulness, stage N1, stage
N2, stage N3 and REM. We pick out only one channel of ECG signals from PSG data. We
selected all the subjects in CincDB and the same number of subjects in SHHS1DB randomly.

2.2. Subjects

Two hundred healthy male subjects participated in this experiment. Their age ranged
from 18 to 35. When they slept habitually in their bunks at night, each person was asked to
paste a tiny device manufactured in our laboratory on their chest to record ECG signals.
The size of the device is 87 × 54 × 16 mm, small enough that it cannot interfere with
subjects’ normal sleep. There are two electrodes on the back side of the device. The sample
frequency is 250 Hz and it can work continuously for 24 h. The storage is enough for
20 days’ record. The experiment lasted for one night. All the staff were required to fill in
the sleep questionnaire the next morning as soon as they woke up.

The subjective sleep questionnaire was modified from the widely used Pittsburgh
sleep quality index (PSQI) questionnaire [16]. A few questions relevant to the professional
characteristics of the special position staff were added to the questionnaire and the ques-
tions related to general conditions of the past month’s sleep quality were replaced by the
questions reflecting one night’s sleep conditions or deleted. The total score of our question-
naire ranges from 0 to 22 and the lower the score, the better the sleep experience. There
are 7 components in the scoring system, 6 components ranging from 0–3, and 1 component
ranging from 0–4. The questionnaire and the scoring system of it are contained in Ap-
pendix A. It should be considered that the special position staff are young people, most
of them sleep well in normal conditions and they never use medicines to help them sleep.
After being assessed by experts, the score below or equal to 6 indicates “Good” and above
6 indicates “Poor” in the grading criterion. In our experiment, subjects were divided into
2 classes—“good sleep” and “poor sleep”.

The study was approved by the Ethics Committee of Zhongda Hospital, affiliated to
Southeast University, China. All the subjects were well informed of the aims and risks of
the experiment and they all signed informed consent before the study.

3. Method

Sleep staging model building is the first step to implement sleep quality evaluation.
The second step is to construct a sleep quality evaluation model as a bridge of objective
sleep staging features and subjective sleep questionnaire scores.

3.1. Sleep Staging Model

The sleep staging model was built based on the international public dataset. Before
model building, we divided the dataset into two parts: half of each database was the
training set and the other half was the test set. For obvious absent data (data less than 5 h
in length), data error, those with obvious sleep disease (whose Apnea–Hypopnea Index
(AHI) is equal or more than 5), objective sleep efficiency less than 75%, and if the recording
time began too early (over 45 min at the beginning is wake stage) or ending too late (over
30 min at the end of the data is wake stage), the subjects’ data were discarded.

3.1.1. Data Preprocessing

The R waves of ECG signals were automatically identified by the P&T method for its
extensively tested accuracy and efficiency [22]. According to the calculation rules of HRV
parameters, abnormal heartbeats, such as wide gap longer than 2 s, narrow gap shorter
than 0.35 s and irregular adjacent gaps, were removed automatically. If the wake time at
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the beginning of each subject’s signal is longer than 5 min, the extra signal before the last
5 min in the wake time is cut off. The sleep stages were annotated every 30 s. For each
30-s data segment, the 4 min 30 s data centered on it is the basic unit for calculating HRV
features; the segments with more than two kinds of sleep stages were not included.

3.1.2. Feature Selection

1. Candidate features that represent the characteristics of the data segment itself

The sleep staging model is based on the transformation of different HRV features in
the whole night. Each HRV feature is calculated every 4.5 min. Thus, to build the model
we should first select proper HRV features and calculate their values. In our work, some
frequently used features in research and clinical conditions and two-time irreversibility
features were taken into consideration in the feature selection procedure. We examined
how each feature and each combination of features correlate with the transformation of
sleep stages by analysis of variance. The 23 features we picked out are listed in Table 1. HR,
SDNN, RMSSD, SDSD, PNN50, LF, HF, VLF, LF/HF ratio, LFn and HFn are linear HRV
features. Among them, feature coRR, resf and strf are cited from Heenam Yoon’s work [23]
and they are effective in the recognition of the REM stage. Feature α1 and α2 are the slope
and offset of Detrended Fluctuation Analysis (DFA) respectively. The DFA method was
first proposed by Peng et al. in 1994 when they studied the structure of DNA molecular
chain [24]. DFA analysis first removes trends caused by external factors in the sequence,
and then studies the long-range correlation of the sequence. DFA analysis can eliminate
trend components of all orders, deal with those time series with long-range correlation and
non-stationary data, and eliminate the pseudo-correlation phenomenon. P1 and G1 are time
irreversibility parameters that measure time imbalance of a RR intervals sequence [25–28].
The difference value between adjacent RR intervals could be positive, negative and zero.
The positive and negative ones are expressed by ∆RR+, ∆RR− and their number are shown
as N(∆RR+),N(∆RR−). The two features are defined in Formulas (1) and (2).

P1 =
N(∆RR−)

N(∆RR−) + N(∆RR+)
× 100 (1)

G1 =
∑

N(∆RR+)
i=1 ∆RR+(i)2

∑
N(∆RR+)
i=1 ∆RR+(i)2 + ∑

N(∆RR−)
i=1 ∆RR−(i)2

× 100 (2)

Table 1. Heart rate variability (HRV) candidate features that represent the characteristics of the data
segment itself for sleep staging model.

Category Feature Description

Linear HRV features

HR Average heart rate

SDNN The standard deviation of NN intervals.

RMSSD The root mean square of successive differences.

SDSD The standard deviation of the difference of the adjacent NN intervals.

PNN50 The number of times in which the change in successive normal sinus
intervals exceeds 50 ms.

LF, HF
VLF

LF/HF ratio

Low-frequency and high-frequency power.
Very low-frequency power.

The ratio of low-frequency power to high-frequency power

LFn, HFn The normalized low-frequency and high-frequency power.
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Table 1. Cont.

Category Feature Description

Features relevant to
respiration

coRR Coefficient of an RR interval sequence and its second-order
smoothed sequence

resf The dominant frequency in the range of 0.15 to 0.5 Hz

strf The standard deviation of resf

Nonlinear features

α1, α2 The value of slope and offset in DFA.

SE, FE Sample entropy and Fuzzy entropy

SD1, SD2 Poincaré plot features. SD1 and SD2 are the length of semi-minor axis and
semi-major axis of the fitting ellipse of the Poincaré plot.

Time irreversibility
features P1, G1 As shown in formula (1) and (2)

Other features corr2 If the length of a sequence is n, and the first and last n-2 points constitute
sequences s1, s2 respectively, corr2 is the coefficient of s1 and s2.

If the length of a sequence is n, and the first and last n-2 points constitute sequences
s1, s2 respectively, corr2 is the coefficient of s1 and s2.

HRV parameters vary with changes of sleep duration and sleep stages. If we plot
the variation trend of a HRV parameter in a sliding window whose length is five minutes
and step size is 30 s in a whole night’s sleep, we can find out the regularities in how HRV
parameters vary synchronously with the changing of sleep stages. Figure 1 is an example,
demonstrating the synchronous relationship of the index α1 and SE with sleep stages.
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Figure 1. Variations in HRV parameter α1, sample entropy and sleep stages in a whole night of a
subject in SHHS1DB. (A–C) show the corresponding graph of α1, sample entropy and sleep stages.

2 Candidate features that represent the relationship between current data unit and the
adjacent/overnight data units

Considering that the feature value saltus is often accompanied by the transformation
of sleep stages, the relationship between each data unit to be classified and the adjacent
or overnight data units has a great influence on the classification results. In the process of
classifier construction, we need to introduce new features to reflect whether there is a trend
rise or fall in HR and respiration rate between two adjacent data units, and compare the
level of HR and respiration rate of this data unit with that within one hour and overnight.
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Based on this, the features we extracted are listed in Table 2. The rising and falling trend
features are the slope value between the first and second maximum points (t1, t2) and the
first and second minimum points (b1, b2) are given in 3 min windows before and after
current data unit.

Table 2. Candidate features that represent the relationship between current data unit and the
adjacent/overnight data units.

Feature Description

aHRs_t1_b1,aHRs_t1_b2, aHRs_t2_b1,
aHRs_t2_b2, aress_t1_b1, aress_t1_b2,
aress_t2_b1, aress_t2_b2, zHRs_t1_b1,
zHRs_t1_b2, zHRs_t2_b1, zHRs_t2_b2,
zress_t1_b1, zress_t1_b2, zress_t2_b1,

zress_t2_b2

Rising and falling trend features of instantaneous
HR and respiratory rate in the 3 min window

before and after current data unit.

HRm_m1, resm_m1 The ratio of average HR and respiration rate in
current data unit to that in current one-hour.

HRm_ma, resm_ma. The ratio of average HR and respiration rate in
current data unit to that in overnight data.

3 Useless features elimination

In the process of model building, some features made little difference on the improve-
ment of sleep stage recognition accuracy or could be replaced by other features. Thus,
further feature selection is needed. For the features in Table 1, we limited the number of
features to 2 or 3 and exhausted all the feature combinations to examine the recognition
effect of different sleep stages. Then, the feature combinations were ranked in the order
of recognition accuracy and Youden’s index. Youden’s index is a method to evaluate the
authenticity of the screening test [29]. The index is the average performance of sensitivity
and specificity of a classification result. It gives equal weight to false positive and false
negative values, so all tests with the same value of the index give the same proportion of
total misclassified results.

Youden′s index = sensitivity + specificity− 1 (3)

Features frequently demonstrating relatively high accuracy and Youden’s index were
reserved and others were excluded. For feature combinations, we first computed the first
principal component with principal component analysis (PCA) and it was smoothed at
a small and a large frame length. An offset value was added on the large frame length
smoothed curve. The detailed procedure is similar to building the recognizers of the model,
which is introduced below in the section on “Steps of model construction”. When trying to
recognize one sleep stage, some features pull down the average value of the combination’s
performance and some have no remarkable effect. They are all useless for the recognition
of a certain stage. Finally, we obtained four groups of “Useless features” and the features in
their intersection are removed from the whole features set. This method reduces the number
of features without losing the potential for the improvement of the model’s performance.

For the features in Table 2, Support Vector Machine methods based on Recursive
Feature Elimination (SVM-RFE) was applied to implement the feature selection for each
classifier. SVM-RFE method was first proposed by Guyon when he studied the gene
selection for cancer classification [30]. This method sorts the features in the order of their
significance based on the score of each feature, which helps us eliminate those features that
make little difference to the performance of the model and reserve those that are useful to
obtain the best accuracy.
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3.1.3. Steps of Model Construction

1. Principle of recognizers’ construction

In our work, we first observe how the principal component of the selected features
varies in the whole night relative to its smoothed tendency. We used Savitzky-Golay FIR
filter as the smoothing filter. The relative position is an important basis for distinguishing
different sleep stages. Our task is to look for feature combinations suitable for recognizing
a specific sleep stage. To achieve this, we exhaust all the feature combinations, calculating
their first principal component respectively, then transform them into their zero mean
and unit variance. For a subject’s whole-night data, the first principal component F1 is
smoothed at a small and a large frame length, named SF1 and BF1. SF1 follows the variation
in F1 more closely and BF1 reflects the major transformation of sleep cycles in the night.
Figure 2A is an example. F1 is the first principal component of a combination of four HRV
feature (coRR, HR, resf and α2). The relative position of SF1 to BF1 relates to how deep the
sleep is. When SF1 is above BF1 and they are far from each other, a jump often appears in
sleep stages from NREM sleep to wakefulness or REM sleep. Thus, we can recognize a
specific sleep stage by the relative position of SF1 to BF1. In order to make the recognition
effect better, the BF1 curve should be moved up or down a little bit. We used k to denote a
small distance. We put the combination of four features (coRR, HR, resf, α2) and offset k
together and called it the wakefulness recognizer.
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Figure 2. An example showing how to recognize wakefulness by the first principal component.
(A) Variations of the first principal component for recognizing wakefulness segments. (B) Sleep
stages. (F1 is the first principal component. SF1 and BF1 are the smoothed result of F1 at a small and a
large frame length respectively. k is the translation range of BF1. The parts that meet SF1 > BF1 + k
are the recognized wakefulness segments).

We apply the same procedures to look for the appropriate features combination and
k to construct the REM recognizer, light sleep (N1 and N2 included) recognizer and deep
sleep (N3 stage) recognizer respectively. For the recognition of wakefulness and REM
sleep, the criterion is SF1 > BF1 + k, and for the recognition of deep sleep, the criterion is
SF1 < BF1 + k. Furthermore, BF1 + k1 < SF1 < BF1 + k2 is used to recognize the light sleep
stage. The criterion differs due to the characteristics of HRV features. When a subject is
aroused from NREM sleep, a jump would occur from a relatively low value to a higher
value in many major HRV features except SE and α2, whose variation regularity is often
inverse to other features. Before PCA, we should reverse the two features to their opposite
number in order to achieve better accuracy.
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2 Boundary value processing based on variable threshold and window width

In the actual data analysis, if only BF1 ± k is used as the threshold to identify a
certain sleep stage, the data segments at the intersection of SF1 and BF1 ± k are likely to
be misjudged. We use variable windows and local threshold adjustment to correct the
classification of W, R and D segments. First, the windows in which the height difference
and slope between maximum points and minimum points meet the threshold requirements
are found. Taking W recognizer as an example, the window starts from the minimum point
of SF1 below BF1, along with the transformation of SF1 from negative to positive, passing
the maximum point of SF1 above BF1 + k, until SF1 goes down through the intersection
of BF1 (as shown in Figure 3). We performed threshold adjustment at the medial side of
the intersections of SF1 and BF1 + k. The threshold of W and R recognizer is lifted, and D
recognizer is in the opposite direction. The width and height of the threshold adjustment is
proportional to the slope and height difference between the high point and low point on
the same side (H1&L1, H2&L2).
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3 Determination method of the final category

To classify ECG segments into four groups, a multi-classifier fusion method was
applied. We first pass every ECG segment into the four recognizers to see which categories
each ECG segment belongs to, respectively. A problem may occur if an ECG segment
belongs to more than one sleep stage, so it is necessary to consider their grouping carefully.
Here, the sigmoid-fitting method proposed by Platt [31] was used. In this method, the
output result of the standard SVM is fitted with the LR model (sigmoid function), and
the original output value of the model is mapped to the probability value [0, 1]. Firstly,
we use SVM to build the WR/N classifier, W/R classifier and L/D classifier. Depending
on the type and number of labels that may be attached to each data segment, they are
selectively passed through each of the three classifiers. The data segments selected by
multiple recognizers are first sent to the WR/N classifier. The probabilities they belong
to W + R and N classes are P(WR) and P(N) respectively. Then they are passed through
W/R classifier and L/D classifier to get the conditional probability P(W|WR), P(R|WR),
P(L|N) and P(D|N). Therefore, the probability that each data segment belongs to the four
categories is the joint probability of the above two categories. The classification to which
the maximum probability belongs is taken as the final judgment result of the data segment,
that is, the category corresponds to the maximum value among P(WR) × P(W|WR),
P(WR) × P(R|WR), P(N) × P(L|N) and P(N) × P(D|N). For data segments whose labels
only contain W & R, or L & D, we do not calculate the probability of P(WR) or P(N).

The procedure to operate this classification algorithm is demonstrated in Figure 4.
Every 4.5 min ECG data segment is first recognized by the four recognizers (wakefulness
recognizer, REM stage recognizer, light sleep recognizer and deep sleep recognizer) which
are abbreviated to W recognizer, R recognizer, L recognizer and D recognizer, respectively.
Each recognizer is responsible for determining whether this RR intervals sequence belongs
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to its category. If yes, we label this RR intervals sequence with the tag of the recognizer
(W, R, L and D). After being checked by all four recognizers, each RR intervals sequence is
attached with tags of different number, ranging from zero to four. Based on the category
and number of the tags, different strategies are applied. (1) For the RR intervals sequence
with only one tag, they are already categorized. (2) For the RR intervals sequence with
two tags, if the two tags are from recognizer Group A (W and R recognizer) or Group B (L
and D recognizer), that is, the tags on the sequence are WR or LD, they are divided further
by classifiers used to differentiate W and R, or L and D. If the two tags are from Group
A and Group B respectively (WL, WD, RL, RD), they are decided by WR/N classifier. (3)
For the RR intervals sequence with no tag or with three or four tags, they are first sent to
WR/N classifier to obtain the probability values P1WR and P1N, and then sent to the W/R
classifier and L/D classifier to obtain the conditional probabilities P2W, P2R, P2L and P2D.
The final classification result corresponds to the maximum joint probability of the above
two steps’ probability.
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Figure 4. Graphical representation of classification procedure. (Classification procedure: Every ECG
segment is detected by the four recognizers in turn. The sequence will be labeled by “W”, “R”, “L” or
“D” if it passes the correspondent recognizer. The tags on each sequence are unequal in number. For
example, “WR” indicates the sequence passes the W recognizer and R recognizer at the same time.
For those segments with two tags, the WR/N classifier, W/R classifier and L/D classifier perform
the judge function to decide which category they belong to. For those segments with 0 or more than
2 tags, we determine the final classification result by calculating the probability that they belong to
each category.).
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After the classification procedure, the results could be modified to conform to the
physiological laws of real sleep. The REM stages which emerge too early (in the first 80
min after sleep begins) should be replaced by wakefulness, and deep sleep in the half hour
before waking up was modified to light sleep.

3.1.4. Model Performance Guarantee and Examination

Ten-fold cross validation was used in the training set when we built the model. The
test set was divided randomly into five equal parts which were named K1 to K5 for the
examination of the results balance. We used the accuracy and average F1-score to evaluate
the performance of the model. F1-score is the harmonic mean of the precision and recall.
Precision is also known as positive predictive value, and recall is also known as sensitivity
in binary classification.

3.2. Sleep Quality Evaluation Model
3.2.1. Data Preprocessing

The data sources for this model are the subjects’ ECG data and their sleep question-
naires. The ECG data covering less than 5 h or with too much noise mixed in (noise
occupying more than 25% of data) was discarded. If there is too much information omitted
to calculate the total score, the questionnaire together with the ECG data will also be
excluded. Finally, there were 113 subjects left. The data information is listed in Table 3. Half
of them were categorized into the training set and the other half into the test set randomly.
The subjects belonging to each group were distributed equally in the two sets.

Table 3. Data information for sleep quality evaluation model. (Good and poor sleep are divided
based on sleep questionnaires score).

Total Subjects Deserted
Usable

Good Sleep (≤6 Points) Poor Sleep (>6 Points)

200 87 74 39

3.2.2. Model Principle

We aimed to divide all subjects into two groups, “good sleep” and “poor sleep”,
according to objective sleep quality features. Subjective sleep score acts as a standard
and verification.

From the sleep staging results, we mainly extracted features that can reflect sleep
fragmentation, sleep depth and sleep duration. For the measurement of sleep fragmentation,
we calculated the occurrence number of successive W stages and the intensity of sleep stage
transitions. Here, the intensity of sleep stage transitions is defined as follows:

First, we labelled W, R, and L/D stages 1, 0 and 1 respectively. Then, we calculated
the absolute value of the difference of the two neighboring labels. Finally, we summed up
all the absolute differences as the intensity of sleep stage transitions.

Other features include sleep efficiency, sleep and REM incubation, total sleep and
different sleep stages duration, proportion of different sleep stages, wakefulness times,
and the frequency of W and R labels after 6 h since the beginning (measurement of
early awakening).

The SVM-RFE method was also used to conduct feature selection. We also adopted
accuracy and F1-score as the standard of the model’s performance and five-fold cross
validation was used.

4. Results
4.1. Feature Selection Result

From the features set, there are 13 HRV features left for the building of the recognizers
and the features that represent the mutual relationship of data units are all essential in
the construction of the classifiers. The 13 HRV features are HR, PNN50, LF, LF/HF ratio,
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coRR, resf, strf, α1, α2, SE, P1, G1 and corr2. Variance analysis was implemented for every
feature to prove their distinguishing ability for at least one sleep stage. The result suggests
that every feature demonstrates a high significant difference for at least one sleep stage.
Statistical difference of all the features in different sleep stages is demonstrated in Figure 5
using the mean ± standard deviation format. Each subfigure represents a specific feature,
and we can clearly see that their mean value varies with the sleep stages. For example, the
feature SE in D stage is distinctly larger than the other three stages, and α2 in L stage is
much smaller than the other three stages. Successive two samples u test result shows the p
values are all less than 0.001 which indicates that all features make a difference picking the
four stages out from all ECG segments.
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Figure 5. (A–M) show the statistical difference of the features we select in different sleep stages. (“W”,”
R”,”L”,”D” are the abbreviation of wakefulness stage, REM stage, light sleep (N1&N2) and deep
sleep (N3) respectively. Aesthetically, the vertical axis representing α2 is plotted in reverse order).

Experiment results showed that the combination of specific features which are suitable
for the recognition of a certain sleep stage are not applicable for the recognition of other
sleep stages. The combination of features that suit each recognizer best is listed in Table 4.

Table 4. Feature combinations that suit each recognizer best.

Recognizer/Classifier Features Combinations

W recognizer coRR, HR, resf, α2

R recognizer coRR, HR, resf, α1, α2, G1

L recognizer HR, resf, SE, α2, P1

D recognizer resf, LF, α1, corr2
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For the sleep quality evaluation model, nine features are left and they are sleep
efficiency, total sleep time, the occurrence number of successive W stages, the intensity of
sleep stage transitions, and the frequency of W and R labels after 6 h since the beginning,
NREM and W duration, R and D proportion. The third-order polynomial kernel was the
most fitting for the model by testing.

4.2. Performance of Sleep Staging Model

The algorithm has been tested in CincDB and SHHS1DB and the results of four classes’
categorization (wakefulness, REM, light sleep and deep sleep) are listed in Table 5. There is
not huge difference in accuracy and F1-score between the two databases. Accuracy is the
average value of all data and F1-score is the mean value of different categories. We obtained
an accuracy of 0.661 and an F1-score of 0.625 in CincDB. The accuracy and F1-scores in
SHHS1DB were 0.659 and 0.624 respectively. The confusion matrixes are in Appendix B
(Tables A1 and A2).

Table 5. Performance of sleep staging model.

Categories Database

Performance in Each Subset
Accuracy Average

F1-ScoreSubset Accuracy Average
F1-Score

W/REM/N1,
N2/N3

CincDB

K1 0.658 0.622

0.661 0.625
K2 0.659 0.621

K3 0.665 0.628

K4 0.659 0.623

K5 0.663 0.629

SHHS1DB

K1 0.664 0.618

0.659 0.624
K2 0.653 0.622

K3 0.656 0.623

K4 0.651 0.629

K5 0.670 0.628

4.3. Performance of Sleep Quality Evaluation Model

The results of each fold are demonstrated in Table 6. The accuracy in the test set is
0.786 and the average F1-score is 0.771 at the same time.

Table 6. The performance of sleep quality evaluation model.

“Good Sleep”
Accuracy

“Poor Sleep”
Accuracy Average Accuracy Average F1-Score

0.784 0.789 0.786 0.771

5. Discussion

In this paper, we proposed a scheme that is easy to transplant to the common wearable
ECG devices to conduct sleep quality evaluation and applied it to practical conditions.
Our model has been tested by the international public database and medically approved
sleep questionnaires involving over 100 subjects. In the model building procedure, a new
method for sleep staging using single-lead wearable ECG signals has been developed
and the mapping relationship between objective sleep parameters and subjective sleep
questionnaires has been expressed by a SVM model.

In the sleep staging model building procedure, we balanced light weight and perfor-
mance. We did not use too many features or a complex computing method. Researchers
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have pointed out the good coincidence of HR & pulse rate (PR), HRV & pulse rate vari-
ability (PRV) [13]; thus, we can also obtain pulse intervals as a replacement of cardiac
intervals. The pulse acquisition devices are more easily accessible. Our scheme suggests a
possible way of applying the cardiac cycle sequence to sleep quality. This is important for
the routine testing of special post staff and ordinary persons.

We also tried our best to construct a model with a clear frame which provides a
reasonable possibility for further modification. With the development of hardware power,
complex machine learning and deep learning methods have become popular for their
good performance. However, abstract neural networks are like a black box; it is unclear
what is inside. This limits the promotion and revision of the model. Clarity and ease of
understanding are the advantages of our model and this is conducive for model migration
to populations of different ages or disease.

In the process of sleep stage model building, feature selection is a critical step. In
the process of constructing recognizers and classifiers, further feature selection was im-
plemented to achieve the best accuracy and Youden’s index. Table 7 is an example of
feature selection for recognizing the REM stage. The features combinations of high and
low accuracy and Youden’s index are listed and the features existing in the upper half of
the table occupy Important positions in REM stage recognition; in contrast, the features
appearing in the bottom half of the table do not play a key role. From Table 7 we can find
that LF, HF, VLF, LFn, HFn, SD1, SD2, SDSD, SDNN, RMSSD pull down the accuracy and
FE, SE have no remarkable effect, so they are useless to REM. This method helps reduce the
feature quantity to 13.

Table 7. Method of excluding “useless features” for REM stage recognition.

Features
Combination

Accuracy/
Youden’s Index

Features
Combination

Accuracy/
Youden’s Index

coRR, G1 0.799/0.538 coRR, resf, α2 0.807/0.560

coRR, α2 0.796/0.523 coRR, strf, α2 0.805/0.557

α1, α2 0.789/0.530 α2, P1, corr2 0.799/0.554

α2, corr2 0.780/0.539 HR, α2, corr2 0.795/0.548

α1, P1 0.776/0.516 HR, α1, α2 0.794/0.536

corr2, P1 0.775/0.481 coRR, HR, α1 0.789/0.531

coRR, α1 0.769/0.480 LF/HF ratio, α1, α2 0.772/0.532

coRR, HR 0.758/0.481 coRR, PNN50, corr2 0.770/0.521

. . . . . . . . . . . .

LF(HF), α2 0.648(0.629)/0.315(0.298) α1, α2, SD1(SD2) 0.721(0.718)/0.415(0.409)

VLF, α1 0.609/0.226 α1, α2,
SDNN(RMSSD) 0.712(0.717)/0.382(0.391)

LFn(HFn), α1 0.596(0.607)/0.209(0.214) coRR, strf, SDSD 0.704/0.411

In Table 4, we notice that the feature combination of each recognizer is quite different.
BF1 is the large frame length smoothed filtering result reflecting the transformation cycle of
the whole sleep. HRV features are measurement of sympathetic and parasympathetic nerve
activities, which is quite different from EEG. Thus, the algorithm accuracy based on ECG
signals performs more poorly than algorithms based on EEG signals, which are the most
important part in PSG sleep staging. Table 8 lists the four classes’ grouping performance
in other researchers’ work. Some used ECG signals only and some added respiratory
inductance plethysmography signals to build the model. In addition, the data source, data
processing and result evaluation methods they chose are not the same. It is hard to compare
the performance of models only by ranking the accuracy strictly.
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Table 8. Comparison with similar works (four classes).

Work Signals Database Feature
Quantity Method Accuracy

Li Q. [32] ECG CincDB,
SHHS1DB 8 CNN + SVM 0.656

0.659

Fonseca P
[11] ECG + RIP 48 of

SIESTA 142 multi-class Bayesian
linear discriminant 0.69

Sani M. Isa
[33] ECG SLPDB 9 KDR + kNN + RF + SVM 0.60

Our work ECG CincDB,
SHHS1DB 33 PCA + SVM 0.661

0.659
SLPDB: MIT-BIH Polysomnographic Database; SIESTA: a polygraphic and clinical database [34]; RIP: respi-
ratory inductance plethysmography; CNN: Convolutional Neural Networks; RF: random forest; KDR: kernel
dimensionality reduction.

Youden’s index is a measurement of the balance and credibility of the experimental
results. It is a combination of sensitivity and specificity. Sensitivity is the accuracy of
the target group recognition and specificity is the ability to pick out non-target groups
precisely. For every link in the process of model building, considerations of Youden’s
index are as important as target group accuracy. Ten-fold cross validation was used to deal
with the potential over-fitting problem, although the phenomenon of over-fitting was not
apparent regardless of whether the volume of training set was small or big because of the
visualization of our model’s design thinking and since every ECG segment is considered
in the whole night sleep cycle rather than separately and unrelatedly tested by a machine
learning model. The large frame length smoothed trend line BF1 behaves as the comparative
standard of the principal component of the combination of HRV parameters to substitute for
an invariable threshold value in the model’s design thinking. This is because the same value
range may correspond to different sleep stages for a specific feature with sleep progressing.
Despite all that, individual differences are inevitable and that is the main source of error
and accuracy decline.

In addition, the performance of each recognizer is affected by the feature quantity,
k value and the frame length of smoothing filter. We take W recognizer as an example
to show how the accuracy correlates with feature quantity (Figure 6). The accuracy with
a certain number of features is the highest with the best feature combination and with
suitable Youden’s index.
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Differences exist between subjective and objective sleep parameters. Sleep efficiency
is the ratio of the total time one is asleep to the total time one is dedicated to sleep. Sleep
incubation is the time interval between one beginning to try sleeping and one falling asleep.
We take them as examples. We calculate the objective and subjective sleep efficiency of
every subject and plot a scatter diagram shown in Figure 7. From Figure 7 we notice that the
sleep efficiency of the majority of subjects is greater than 0.8, and objective sleep efficiency
tends to be smaller than subjective sleep efficiency. Similar results for sleep incubation are
demonstrated in Figure 8. This is in accord with [5], although our sleep staging results are
not the accurate PSG results.
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With respect to the connection between subjective and objective sleep quality, there
are studies revealing the correlation of subjective and objective sleep parameters with
significance level p. However, only p is useless for the prediction work. No precise
numerical connections between objective and subjective sleep quality parameters have
been disclosed and we tried to understand the mapping relationship from sleep staging
parameters to the questionnaire score using a machine learning method; however, apparent
correspondence cannot be found, so we seek the second best outcome by just categorizing
sleep quality into two classes and trying our best to meet practical demands.

There are still some limitations in this study, which should be addressed and improved
in future studies. First, since most special position staff are currently male, we did not study
gender differences in this work. This is a limitation of the work, and more female subjects
need to be included in the experiment to explore the possible impact of gender differences
to enhance the generalization of the model. Second, the dataset of this study excludes
the data of most patients with sleep apnea. Sleep disorders and their sleep structures
deserve more attention and further exploration. Night-to-night variability also needs to
be considered in the model building. Third, since our research still needs to be improved
on the precise discrimination of sleep stages by ECG, the sleep staging methods based on
RR intervals can only be applied to daily home monitoring or rough assessment of sleep
status of special positions staff, which is far from the requirements of clinical diagnosis. To
bridge this gap, more basic studies on ECG are needed. Fourth, for practical applications,
more real data for testing are needed. Fifth, cross-dataset validation is very important in
improving the model’s generalization ability. Without it, when the model is applied to
other datasets, the reliability of the prediction results will be affected. Therefore, improving
the cross-dataset performance of the model is one of the key problems in the future. Sixth,
since we have no access to accurate sleep stage labeling of special position staff, we cannot
figure out the exact relationship between sleep stages and sleep quality. Despite PSG
interfering with sleep, such data are important to improve the performance of the sleep
quality evaluation model. Finally, the applicability and migration of the algorithm between
different populations and different diseases need to be modified and improved in practice.
Pre-study of each person is a good method to overcome individual differences.

6. Conclusions

This paper aims at developing a sleep quality evaluation strategy with single-lead
wearable cardiac interval signals, so that the method can be easily transplanted into portable
electronic products. To achieve this, we first use PCA, alterable boundary and multiple-
classifier fusion method to build a sleep staging model. After that, we established a sleep
quality evaluation model with the sleeping time ECG data and sleep questionnaires from
200 persons. The SVM and SVM-RFE methods were used. Although some limitations
exist, our model reached a decent performance with fewer features and an explicable frame
structure. This provides the possibility for daily home use or routine testing in working
conditions if PSG is not easily accessible. The future work is to optimize and improve the
algorithm to suit different populations, ages and sleep diseases.
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Appendix A

Sleep Log Questionnaire
Job NO. Sex Age Date Device NO.________
Instructions:
The following questions relate to your sleep quality last night. Please fill in the questionnaire as soon as you wake up in the morning. Your
answers should indicate the most accurate reply of your real sleep quality.

1. Sleep time
a. Time you went to bed last night:
b. Time you were ready to sleep last night:
c. Time you fell asleep last night:
d. Time you wake up in the morning:
e. Duration you were awake in the sleep:

2. For each of the remaining questions, check the one best response. Please answer all questions.

a. Wake up in the middle of the night or early morning 1©Not 2©Once 3©Twice 4©Three or more times
b. Have to get up to use the bathroom 1©Not 2©Once 3©Twice 4©Three or more times
c. Cannot breathe comfortably 1©Not 2©Once 3©Twice 4©Three or more times
d. Cough or snore loudly 1©Not 2©Once 3©Twice 4©Three or more times
e. Feel too cold 1©Not 2©Once 3©Twice 4©Three or more times
f. Feel too hot 1©Not 2©Once 3©Twice 4©Three or more times
g. Had bad dreams 1©Not 2©Once 3©Twice 4©Three or more times
h. Have pain 1©Not 2©Once 3©Twice 4©Three or more times
i. Wake up by noise or roommate 1©Not 2©Once 3©Twice 4©Three or more times
j. Wake up by physical cause or sleeping posture 1©Not 2©Once 3©Twice 4©Three or more times
k. Wake up by other reason(s) 1©Not 2©Once 3©Twice 4©Three or more times

3. Feelings in the morning

a. Feel energetic? 1©Very energetic 2©Fairly energetic 3©Fairly sleepy 4©Very sleepy
b. Head clear or dazed 1©Very clear 2©Fairly clear 3©Fairly dazed 4©Very dazed
c. How would you rate your sleep
quality?

1©Very good 2©Fairly good 3©Fairly bad 4©Very bad

4. How often have you taken medicine (prescribed or “over the counter”) to help you sleep?

1©Not during the past month 2©Less than once a week
3©Once or twice a week 4©Three or more times a week
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Scoring system
The items in Sleep Log Questionnaire are combined to form 7 “component” scores,

each of which has a range of O-3 or 0–4 points. In all cases, a score of “0” indicates no
difficulty, while a score of “3” or “4” indicates severe difficulty. The 7 component scores
are then added to yield one “global” score, with a range of O-22 points, “0” indicating no
difficulty and “22” indicating severe difficulties in all areas.

Component 1: Subjective sleep quality
Examine question 3c, and assign scores “0”, ”1”, ”2”, ”3” to the options “ 1©”, “ 2©”, “ 3©”, “ 4©” respectively.
Component 2: Sleep latency
Examine questions 1b and 1c, and calculate their time difference. Assign scores as follows:

Time difference between 1b and 1c ≤15 min 16~30 min 31~60 min ≥ 60 min

Score 0 1 2 3

Component 3: Sleep duration
Examine questions 1d and 1c, and calculate their time difference. Assign scores as follows:

Time difference
between 1d and 1c

>7 h 6~7 h 5~6 h <5 h

Score 0 1 2 3

Component 4: Sleep efficiency
Examine questions 1d, 1b and 1c, sleep efficiency is calculated as (1d-1c)/(1d-1b). Assign scores as follows:

Sleep efficiency ≥85% 75% ~84% 65% ~74% ≤ 65%

Score 0 1 2 3

Component 5: Sleep disturbances
Examine questions 2a-2k, and assign scores “0”, ”1”, ”2”, ”3” to the options “ 1©”, “ 2©”, “ 3©”, “ 4©” respectively. Add the
scores for questions 2a-2k and assign scores as follows:

Sum of 2a-2k 0 1–9 10–18 19–27 27–33

Score 0 1 2 3 4

Component 6: Daytime dysfunction
Examine questions 3a-3b, and assign scores “0”, ”1”, ”2”, ”3” to the options “ 1©”, “ 2©”, “ 3©”, “ 4©” respectively. Add the
scores for questions 3a-3b and assign scores as follows:

Sum of 3a-3b 0 1–2 3–4 5–6

Score 0 1 2 3

Component 7: Use of sleeping medication
Examine question 4 and assign scores “0”, ”1”, ”2”, ”3” to the options “ 1©”, “ 2©”, “ 3©”, “ 4©” respectively.
Global sleep score is the sum of the 7 components score.

Appendix B

Table A1. Confusion matrix of the classification result in the test set of CincDB.

Classified as ↓ W R L D

W 6388 1795 3970 418

R 1930 5601 5050 277

L 710 1196 23,060 902

D 117 63 4589 6013
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Table A2. Confusion matrix of the classification result in the test set of SHHS1DB.

Classified as ↓ W R L D

W 8325 2147 5198 395

R 2388 7210 6092 310

L 985 1334 27,869 1021

D 320 173 5412 6497
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