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Abstract: The advancement in sensor technologies, mobile network technologies, and artificial
intelligence has pushed the boundaries of different verticals, e.g., eHealth and autonomous driving.
Statistics show that more than one million people are killed in traffic accidents yearly, where the
vast majority of the accidents are caused by human negligence. Higher-level autonomous driving
has great potential to enhance road safety and traffic efficiency. One of the most crucial links to
building an autonomous system is the task of decision-making. The ability of a vehicle to make robust
decisions on its own by anticipating and evaluating future outcomes is what makes it intelligent.
Planning and decision-making technology in autonomous driving becomes even more challenging,
due to the diversity of the dynamic environments the vehicle operates in, the uncertainty in the
sensor information, and the complex interaction with other road participants. A significant amount
of research has been carried out toward deploying autonomous vehicles to solve plenty of issues,
however, how to deal with the high-level decision-making in a complex, uncertain, and urban
environment is a comparatively less explored area. This paper provides an analysis of decision-
making solutions approaches for autonomous driving. Various categories of approaches are analyzed
with a comparison to classical decision-making approaches. Following, a crucial range of research
gaps and open challenges have been highlighted that need to be addressed before higher-level
autonomous vehicles hit the roads. We believe this survey will contribute to the research of decision-
making methods for autonomous vehicles in the future by equipping the researchers with an overview
of decision-making technology, its potential solution approaches, and challenges.
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1. Introduction

The advancement in sensor technologies, mobile network technologies, and artifi-
cial intelligence (AI) has pushed the boundaries of different verticals i.e., healthcare and
autonomous driving (AD). Statistics show that more than one million people are killed
in traffic accidents yearly, where the vast majority of the accidents are caused by human
negligence [1]. It is envisioned that the development of safe and robust AD systems has
the potential to drastically reduce road traffic accidents by shifting the entire responsibility
and driving control from humans to vehicles. Therefore, the obvious byproducts of AD are
expected to be improved road safety and traffic efficiency. The Society of Automotive Engi-
neers (SAE) [2] outlines six levels of design goals for AD, ranging from Level 0 (L0) to Level
5 (L5). It can be seen in Figure 1, L1 indicates no automation and L5 indicates all automation,
however, a fully automated vehicle will not have a driver’s cockpit. The evolution from
L1 to L5 vehicles necessitates the implantation of various new features in vehicles.
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Figure 1. SAE Levels of Driving Automation.

The core components of an autonomous vehicle (AV) software stack are broadly
categorized: into three categories: perception, planning, and control, as shown in Figure 2.
Each layer is responsible to carry out the layer’s specific operations, and decisions realizing
the inter-layers interactions for different use-case scenarios aiming to achieve a higher level
of autonomy in AD. Table 1 presents the space and time horizons required to make the
decision at each layer [3]. In what follows next, each component is discussed briefly:
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Figure 2. Software Architecture of Autonomous Vehicle.

(i) Perception: The perception component of AV collects the information from differ-
ent on-board sensors (LiDAR, RADAR, and camera) and external sources (high-definition
maps), extracts the relevant knowledge, and develop an understanding of the environment
focusing on; Which type of objects are in the vicinity of the vehicle? How far is the next
obstacle? How effective is the detection of traffic signs, road marking, curves, neighbor-
ing vehicles, pedestrians, cyclists, other objects, and so on? The perception has a direct
impact on the planning and decision-making of AVs allowing them to react to the events
of the environment accordingly. Therefore, the wider and more accurate environment
understanding is, the better AVs make the decision [4].

(ii) Planning: Responsibility for making the decisions and providing the AV with a safe
and collision-free path towards its destination, taking into account the vehicle dynamics,
maneuvering capabilities in the presence of obstacles, along with traffic rules and road
restrictions [5].

(iii) Control: Responsibility for translating the AV intentions into actions by taking
the generated control signals from the decision-making component and applying them to
physical control systems of the AV, for example, steering, throttle, and braking.
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Table 1. Space and Time Horizon for the Autonomous Driving Layers.

Route Planning Prediction Decision Making Generation Deformation

Space >100 m
>1 m
<100 m

>10 m
<100 m

>10 m
<100 m

>0.5 m
<10 ms

Time >1 min
<1 h

>1 s
<1 min

>1 s
<1 min

>1 s
<1 min

>10 ms
<1 s

An ample amount of research has been carried out toward deploying autonomous vehi-
cles during the last decades. However, still, plenty of issues need to be addressed to achieve
higher automation. In connection to this, both industry and research communities have
been working on solutions to realize a higher level of AD, therefore, the solution approaches
focus on different aspects of AD, i.e., augmenting the vehicle perception, improving the
decision-making and control, implanting intelligence in the vehicles, and improving the
communication technologies to enable reliable and real-time vehicle-to-everything (V2X)
communication. However, the perception systems have been remarkably improved, mainly
due to the success of deep learning techniques [6]. The low-level control of the vehicle is al-
ready a mature research area and can be solved with classical control theory approaches [7].
However, how to deal with high-level decision-making in a complex, uncertain, and ur-
ban environment is a comparatively less explored area [1,8] and forms the main topic of
this research.

There are some existing surveys on decision-making for AVs. Schwarting et al. [9]
provided a review of some typical methods of decision-making. Katrakazas et al. [5]
presented a review of the fusion of solution approaches for planning and decision-making.
Li et al. [10] mainly overviewed the research studies conducted on the planning and
decision-making technologies at intersections. Leon et al. [11] conducted a review on
tracking, prediction and decision-making approaches for AD. Even though these surveys
provide a variety of content they did not detail enough on the decision-making approaches.
Considering the importance of decision-making technology for AVs and the tendency of
the recent development of new approaches, this paper aims to provide a detailed analysis
of solution approaches focusing on decision-making for AVs. To equip the readers with the
background information on AD and its related concepts, we highly encourage them to look
into our comprehensive surveys [12,13] published in reputed journals.

This paper is divided into five sections. Section 2 equips the readers with an overview
of decision-making technology. Section 3 provides a comprehensive survey of the research
literature on different decision-making techniques and methods. Section 4 outlines the
challenges of decision-making approaches and suggests future directions in this area.
Finally, Section 5 elucidates the conclusion of the study.

2. Decision Making in Autonomous Driving—An Overview

Decision-making is the key player in enabling automated driving and is realized
through planning algorithms. The decision-making component is responsible for making
suitable driving decisions relying on the context understanding of the environment received
from the perception module and then a plan for a drivable path is generated by a path
planner which is then passed to the control module for execution hence achieving both
safety and traffic efficiency [14].

The planning module of an AV is further broken down into three hierarchical level
planners as presented in Figure 2:

(i) Mission Planning: also known as route planner is in charge of finding the optimal
global route from a given source to destination taking into account the predefined criteria
such as fastest route, shortest route, minimum travel time, and fuel efficiency. The global
route is determined once at the beginning of driving by leveraging the map information
and occasionally supplemented by real-time traffic information. Therefore, in the case of
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disturbances and unprecedented events such as accidents or road work modified route
planning is required [15].

(ii) Behavioural Planning: the behavioral planner is responsible for decision making
ensuring; the vehicle follows road rules and interacts with other agents in a conventional,
safe manner while making incremental progress towards the route determined by the
mission planner. The behavioral planner is also referred to as tactical decision making
or maneuver planning, where the ego vehicle has to deal with a wide variety of traffic
situations thus adapting its driving behavior continuously considering the perceived
environment. It takes the static, dynamic objects, road blockages, and traffic-free reference
into consideration as input and makes the high-level maneuver decisions i.e., when to
change lane, merge, turn left, overtakes, or cross interaction and then outputs the decisions
to the motion controller to efficiently execute the operations of AV [4].

(iii) Motion Planning: after making the decisions, the motion planner, also known
as the local planner, plans a set of actions, a suitable collision-free path, and a detailed
trajectory for some period of future time allowing AV to reach its higher-level goals while
avoiding the collision.

Within the planning hierarchy, the task of behavioral decision-making is pivotal in
translating thoughts into actions. It is a crucial component where intelligent decision-
making algorithms are, which make AD genuinely feasible, safe, and fast. Moreover,
the functions lying under the scope of behavioral planning define mostly the objectives
of higher automation levels. Therefore, this survey focuses on the behavioral planning of
autonomous driving.

3. The Analyses of Decision-Making Relevant Solutions for Autonomous Driving

The behavioral decision-making approaches for autonomous vehicles roughly fall into
three main directions: classical approaches, utility/reward-based approaches, and machine
learning approaches as shown in Figure 3.

Decision Making 
Approaches

Classical 
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Rule Based

Finite State 
Machine

Specific Rule-Based

Motion Planning 
Based 

Graph Based 
Approaches

Optimization Based

Utility/Reward 
Based

Partially Observable 
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Game Theory Coalitional Learning

Machine Learning 
Approaches

Reinforcement 
Learning

Imitation Learning

Figure 3. Categorization of Decision-Making Approaches for Autonomous Vehicles.

3.1. Classical Approaches

The classical methods of decision-making for AD can be grouped into two categories:
rule-based methods and motion planning methods. The analysis of these methods is
discussed in this section and the comparison of these approaches is presented in Table 2.
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3.1.1. Rule-Based Approaches

The common representative of this approach is the Finite State Machine (FSM) method.
A sample of FSM shown in Figure 4 is a mathematical model with discrete inputs and
outputs where the actions are generated to react to the external events resulting in transi-
tioning the states of the agents to another state. Based on the logical structure of the states,
the FSM models are categorized into three types: tandem type, parallel type, and hybrid
type, which have been widely implemented in autonomous vehicles [16].

Figure 4. Simple Finite State Machine for Autonomous Vehicle Overtaking Maneuver.

The winning team, Tartan Racing, of the DARPA Urban Challenge, implemented the
behavior generation component leveraging the hierarchical FSMs [17]. They broke down
the mission task into high-level behaviors such as drive-down road, handle intersection,
and achieve-zone-pose, with their simpler sub-behaviors aimed at accomplishing the
mission planning task. The state machines triggered the different behaviors based on
the progress reported by the motion planners and the objectives set out by the mission
planner [18]. Similarly, another team securing second place in the DARPA challenge
implemented the behavioral planner utilizing a hierarchical FSM with a total of thirteen
states categorized into normal behavior and exception states to execute the tactical decision
such as changing lanes, merging, and avoiding obstacles [19].

Wang et al. [20] employed the hierarchical FSM to develop the three-layered FSMs
decision-making framework for the vehicle behavior of AV. The top layer was responsible
to classify the scenario considering the relative position of the ego vehicle and the infor-
mation of its neighboring vehicles, and the middle layer determined the optimal driving
behavior by evaluating the optimal energy efficiency value of the potential vehicle behavior
targeted at multiple criteria factors such as driving efficiency, safety, and the grid-based
lane vacancy rate, lastly, the lower layer generated the state transition matrix combined
with the results of the middle layer to decide the optimal driving strategy for AV to pass
way in the region. The simulation-based results concluded that the proposed framework
could choose the optimal driving decision in complex road scenes while considering safety
and traffic efficiency.

Similarly, in another study [21], the FSM separately implemented two longitudinal
and four lateral state transitions contributing to an emergency stop assistant on highways.
Unlike the rule-based approaches, the FSMs could directly execute the pre-planned se-
quence of actions and states which were then mapped with path generation and control.
The FSMs are also considered, as state classifier algorithms, thus making them a simple
communication framework for collective and driver-shared driving [3]. Ziegler et al. [22]
developed multiple statecharts in parallel to handle the concurrent states machines which
were good at executing simultaneous actions in a decision process such as yielding and
merging maneuvers. To conquer the limitations of classical FSM, a double-layer FSM was
implemented to minimize the complexity of driving behavior transfer. It utilized a rule-
based decision approach to plan maneuvers such as structured driving, lane changing,
turning, and so on aimed to enhance stability under different driving scenarios [23].
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Concludingly, some of the limitations of FSM-based studies are that they are fully
reliant on knowledge certainty and cannot be generalized to unknown scenarios. They
are unable to manage large complex networks, resulting in state and transition explosions.
To have a completely reactive system; each state must be able to transit to every other state
making it a fully connected graph. Therefore, the modification of FSM is labor-intensive
making them difficult; to collaborate as they expand [24].

Researchers also focused on implementing the decision-making approaches using
a specific rule base for a particular scenario. Rule-based decision-making approaches make
use of a rule database built on combining the traffic rules and laws, driving experiences,
and driving knowledge to make the decisions. Some of the other rules for decision-making
could be speed limits, work zone, stopping at the stop sign and intersection precedence
handling [25]. The algorithms of this approach make decisions by considering the states
of neighboring vehicles without taking their dynamics into account, hence predicting
their trajectories. Therefore, these algorithms are deemed applicable to the scenarios and
task-driven autonomous driving modes.

Antonio et al. implemented a decision-making framework without utilizing a detailed
priori map [26,27]. A maneuver planner was developed, with four different planning
modes to address all possible situations of the environment when analyzing the predicted
motion of nearby objects together with the current planned trajectory of the ego-vehicle:
(i) re-plan from the current pose; (ii) extend the current trajectory; (iii) avoid static obstacle
and (iv) avoid the dynamic obstacle. Finally, a hybrid flow diagram was designed to
make maneuvering decisions based on a series of rules/conditions of the surrounding
environment to generate the final trajectory of the ego vehicle. Chang et al. [28] designed a
multi-point decision-making framework combining real human driving data and vehicle
dynamics for human-like autonomous driving. To control the vehicle steering, the frame-
work determined the optimal turnaround maneuver to reduce the time required to execute
the task based on a rule of minimum road width to perform a U-turn. Behavioral planning
and decision-making are some of the biggest challenges for highly automated systems.
Therefore, to overcome these challenges, Piotr et al. [29] contributed with a framework
combining a rule-based and hierarchical behavior-based architecture for tactical and strate-
gical behavior generation in automated driving. The results showed that the proposed
framework has a high degree of generality and expandability, and can be combined with
several scenarios.

Humans can recognize the maneuver intentions of neighboring vehicles by observing
lateral and longitudinal motion cues. Therefore, to adapt this ability to the AVs, Nils-
son et al. [30] implemented simple logical rules to recognize the intentions of highway
maneuvers. The experimental results showed that the proposed framework could correctly
recognize the intentions of left and right lane change maneuvers with an accuracy of 89%
approximately. Aksjonov et al. [31] also proposed a rule-based decision-making system
for AVs aimed at solving the challenge of complex intersections with mixed traffic envi-
ronments. The system was built to prioritize road safety and avoid collisions with other
road users at any cost. The proposed framework relied on the on-vehicle perception and
localization sensors allowing the AV to operate alongside the human-driven vehicle and
without vehicle-to-vehicle (V2V) communication technology.

To sum up, the decision-making process in L2 to L4 autonomous driving is mainly
driven; by rule-based methods implemented as handcrafted state machines and rules. These
methods are simple, reliable, highly interpretable, provide a breadth of decision-making,
and are straightforward to implement. In simple scenes, their applicability is superior
compared to other feasible methods. However, some of the limitations of these approaches
are that they do not deal with the input uncertainties and cannot generalize to unknown
situations, which makes them difficult to scale them to the complexity of real-world driving
where the events may be unprecedented and unknown. Furthermore, when dealing with
complex urban environments, such as road intersections, where various uncertainties exist,
a rule-based approach cannot maintain safe and efficient driving [10,15,32–34].
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3.1.2. Planning-Based Methods

Another group of algorithms addresses the decision-making task as a motion planning
problem. Commonly, a prediction model is developed to predict the motion and intention
of the surrounding vehicles, and then the behavior of the ego vehicle is planned accordingly.
This results in reactive behavior since the predictions are independent of the ego vehicle
plan. Therefore, the interaction between the ego vehicle and other agents is not explicitly
considered [8,35]. The current states such as the position, velocity, and yaw angle of the
nearby vehicles can be measured using a perception module which is then utilized to
make predictions for each time step over the total horizon. Two types of motion-planning
algorithms for decision-making are discussed briefly in this subsection.

Graph-Based Search

The graph-based method is often used in mobile robotics and can assist AVs in finding
a path within the free space. Commonly, a tree-like graph is used to model different
decisions and their consequences in choosing the optimal action. Hubmann et al. [36]
introduced a simple rule-based classifier to model the road users and then, the A* graph
search method was utilized with invisible collision states as a heuristic. This method was
tested on the road as well as in BMW’s Highly Automated Driving Framework simulator.
Another graph-based approach is using Rapidly Explored Random Trees (RRTs). In another
study, Liu et al. [37] leveraged the cooperative perception to execute the motion planning
via an RRT-based framework. The map was first divided into a grid using the occupancy
grid map, and then a cost map was generated to keep the vehicle in the middle of its lane on
the road, and planning was then handled by the Anytime RRT algorithm. Arab et al. [38],
used the Sparse Stable Trees with the RRT* approach for motion planning to simplify
the problem by pruning non-useful nodes and model predictive control. Li et al. [39]
combined the sampling and graph searching-based methods in the Frenet frame and
simplified the trajectory searching space to improve efficiency. In some of the recent studies,
Heged et al. [40] and Speidel et al. [41] also implemented the graph-based motion planning
algorithms for AVs. Furthermore, readers are encouraged to look into [40] for a detailed
discussion on graph-based approaches.

Optimization-Based Models

Another approach to solving the motion planning problem is to use optimization-
based techniques. An optimization method such as Model Predictive Control (MPC) is an
effective method and has been broadly used for planning and decision-making problems for
AVs. In MPC, motion planning is considered an optimization problem where the system’s
dynamics are used as constraints alongside obstacle avoidance requirements. This opti-
mization problem is commonly solved over a finite time horizon for real-time tractability,
and re-planning is frequently used to account for uncertainty and updated information.

The automatic merging maneuver is one of the most challenging maneuvers since it
must be completed in a dynamic traffic environment within a limited distance. Li et al. [42]
proposed an integrated path planning and trajectory tracking algorithm based on MPC to
execute automatic lane merge in a mixed traffic environment such as with manual vehicles,
semi-AVs, and fully AVs. A comparison of the simulation-based results was made between
the proposed algorithm and a benchmarked two-layer control strategy. Overtaking is
another complex maneuver. The available solution approaches to autonomous overtaking
are limited to simple and static scenarios. Palatti et al. [16] developed a framework for
the behavior and trajectory planning for safe autonomous overtaking. A simple rule-
based finite state machine was used; to determine the optimal maneuver at each time
and a combination of safe and reachable sets was used to iteratively build intermediate
reference targets based on the current maneuver. In addition, the proposed method had
a novel feature that allowed the AV to abort the overtaking and merge back into the lane if
safety was compromised. The feasible and collision-free trajectories were planned using the
nonlinear MPC. Following this, Lin et al. [43] also implemented a safe overtaking maneuver
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for an AV based on time-to-lane crossing estimation and the MPC scheme. Viana et al. [44]
also proposed the non-linear MPC to solve the problem of cooperative optimal trajectory
generation for AD. The simulation-based results in CarSim showed the effectiveness of the
proposed model for a cooperative overtaking scenario.

Bey et al. [45], implemented the MPC to regulate the whole traffic situation, where
high-level behaviors of an ego vehicle were generated, and other vehicles were indirectly in-
fluenced by the ego’s behaviors. Yang et al. [46], modeled the vehicle-pedestrian interaction
through a multi-state forced pedestrian motion prediction model, and then MPC was used
to generate low-level control commands for the ego vehicle. Sun et al. [47], implemented
MPC combined with inverse reinforcement learning (IRL) to develop a more suitable cost
function. In another study by Werling et al. [48] the optimal control method was applied to
highway driving scenarios.

Table 2. Comparison of the Classical Solution Approaches for Decision-Making.

Decision Making Approaches Advantages Disadvantages

Classical
Approaches

Rule
Based

Finite State Machine/
Hierarchical FSM

1. Good decision-making breadth.
2. Easy to understand and debug [49].
3. Easy to implement and efficient in
deterministic decision-making [16].

1. Results in poor explainability,
maintainability, and scalability
2. Fully reliant on knowledge certainty and
can not be generalized to unknown situations.

Specific Rule Based
1. Simple, reliable, and easy to interpret [10].
2. Applicability is superior in simple use cases
such as lane change [10].

1. Cyclic reasoning and the exhaustive
enumeration of rules leading to infinite loop
and impact the computation time [3].
2. Cannot maintain safe and efficient
driving [10].
3. Deemed applicable to the L-2 to L-4 and
task-driven autonomous driving modes.

Planning
Based

Graph Based

1. Strong path searching capability in complex
spaces [50].
2. Implementation and formulation is usually
simpler, more scalable, and modular [51].

Real-time performance is hard to achieve with
graph-search algorithms [8].

Optimization Based

1. Allows for a large action set to be used and
optimized decisions can be generated [49,52].
2. Interaction between different traffic
participants can be modeled better [52].

1. Do not have the provision to consider
uncertainty [49].
2. Challenging to guarantee real-time
performance and convergence [51].
3. MPC requires a heavy computational load,
due to its complex design and is unsuitable
for high-speed autonomous driving and
complex road trajectories [53].

3.2. Reward/Utility Based Approaches

Another category of solution approaches relies on a reward or utility function to
make decisions. This section discusses two utility-based decision-making approaches for
autonomous driving.

3.2.1. Partially Observable Markov Decision Process

The partially observable Markov decision process (POMDPs) extends the Markov
Decision Processes (MDPs) to situations in which the other agents’ intentions and re-
planning strategies are encoded in hidden variables and cannot be directly observed. Their
capability to cope with probabilistic uncertainty of the observed environment makes them
an essential topic in automated driving. Usually, these models have access to noisy or
imperfect observations of the state, and the agent then acts in response to an estimate of the
true state of the world. Given a set of possible states, actions, reward functions, conditional
transition probabilities, and observations, the POMDP allows an agent to decide the best
course of action to take. The agent’s objective is to evaluate every action sequence and
consider its impacts to optimize the overall long-term predicted reward over a period
of time.
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The POMDP is a mathematical framework to make decisions in the presence of
uncertainty, sensor noise, and other constraints. It is capable of simulating uncertainty in
both the current state and uncertainty in the future evolution of the traffic scene, therefore,
modeling interactive behavior can be divided into two classes: offline and online methods.
The offline techniques often concentrate on calculating the optimum course of action for
every possible belief state, rather than only the current belief state. As a result, they establish
a policy before the execution specifying the best course of action to take in every possible
circumstance. On the other hand, online methods are more adaptable than offline methods
since a policy is determined as the approach is being executed. However, the restricted
number of computational resources available necessitates careful problem formulation and
lowers the quality of the solutions.

Liu et al. [54] proposed the intention prediction approach for AVs utilizing the hidden
Markov model (HMM) to accurately forecast the upcoming driving intents of human-
driven vehicles in a mixed-traffic environment. HMMs with various driving intentions
were trained and tested on the data collected from a flyover. The experimental outcomes
demonstrated that the suggested framework performed better at predicting driving inten-
tions than logistic regression. A human-like decision model for unsignalized intersections
was proposed by Hsu et al. [55] by leveraging the intention-aware method to forecast the
intentions of other drivers and the movement of obstacles based on a convolution neural
network (CNN) with multiple objects tracking and Kalman-Filter operations. Another
study by Song et al. [56] implemented an intention-aware decision-making algorithm for
an urban environment comprised of an uncontrolled intersection. To predict the low-level
interaction intentions as well as the high-level motion intentions, a continuous HMM was
developed and then a POMDF framework was modeled to design the AD decision-making
system. The distance to the intersection, longitudinal velocity/acceleration, and yaw
rate were used as inputs to anticipate drivers’ lateral and longitudinal intentions at an
intersection with a deterministic setting and resultantly they got a reasonable prediction
performance. Hubmann et al. [57] implemented the online POMDP with the intended
routes of the neighboring vehicles as hidden variables, with a particular emphasis on the
scenario where the vehicles merge due to a reduction in the number of lanes on city roads
and taking into account the interaction between drivers.

Huang et al. [58] developed an IMM-based POMDP decision approach for a mandatory
lane change maneuver leveraging collision-risk function incorporating the time-to-collision,
inter-vehicular time, and the collision function. The suggested collision-risk function was
composed of two components: the vehicle impact factor and the collision function, which
calculated the likelihood that the AV would collide with nearby vehicles. The authors
concluded that given the collision-risk function and the probability distribution of the
statuses of nearby cars in the future, the suggested POMDP decision-making algorithm
could detect whether the AV accelerated, or decelerated lane shifting and obtained the
acceleration corresponding to each path point. Coskun et al. [59] suggested a lane-changing
model made up of two components: a threat assessment that makes use of fuzzy logic to
evaluate how traffic players interact and a decision-making method based on the MDP
concept. In another study, Song et al. [60] developed a POMDP model for decision-making
for lane-changing and lane-keeping operations. To represent the candidate policies utilizing
path and velocity profiles throughout the policy generation process, a maneuver-based
decomposition method was created. Then, a deterministic machine learning (ML) model
was deployed to identify the driving intents of human-driven vehicles. Lastly, a situation
prediction model was put forth to calculate potential future actions of other vehicles
considering cooperative driving behaviors. To enhance the AV’s capability to handle
a variety of occluded driving circumstances, Zhang et al. [61] presented an interesting
behavior planner incorporating the traffic mirror awareness based on the POMDP model,
see Figure 5. The proposed approach created phantom traffic participants in hazardous
occluded locations and predicted the likelihood of their existence using contextual data
and uncertain traffic mirror detections. The experimental results demonstrated that in
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the presence of obstructions at crossings and crosswalks, the planner drove more safely
and effectively by utilizing traffic mirror detection. However, the lack of a V2X module,
which could have provided measurements of dynamic road users with uncertainty in
unobservable locations, is one of the main shortcomings of the proposed approach.

Figure 5. A framework of traffic mirror-aware POMDP behavior planner.

Overall, the POMDP approach is extremely advantageous, allowing all sources of
uncertainty to be modeled but real-time implementation is usually a problem due to the
computational complexity [49]. Some of the main limitations of the POMDP methods are
they suffer from the curse of history, their computational complexity growing exponentially
with the planning horizon, and the curse of dimensionality. The size of the state space grows
exponentially with the number of state variables. Therefore, the POMDPs need to plan on
a (|S| − 1) dimensional continuous belief space [62]. The limited available computational
resource for online methods requires careful problem formulation. However, the main
drawback of the offline methods is that they are designed for specific scenarios. Hence
due to the wide variety of real-world scenarios, it becomes impossible to pre-calculate
a policy that is generally valid for all scenarios. Computing approximate offline solutions,
even for extremely simple POMDP problems, may take several minutes to many hours.
On the other hand, decisions must be updated frequently (e.g., every 100 ms) while making
decisions in traffic scenarios Besides, solving the most general POMDP is intractable in
real-time applications [9].

3.2.2. Coalitional Learning Approaches

Game theory (GT), is an analytical framework with several mathematical tools used
to study the cooperation, conflict, and complicated interactions between numerous in-
dependent rational players/agents. The players are also referred to as decision-makers
because one player’s decision may have an impact on the other players. GT has had
a revolutionary impact on a wide range of disciplines over the past few decades, includ-
ing economics, politics, communication, wireless networks, computer science, and more.
The game-theoretical framework has two primary branches: non-cooperative game theory
(NCGT) and cooperative game theory (CGT). The primary focus of NCGT is on analyzing
and modeling the competitive behavior of players and the strategic decisions that emerge
from interactions between these rival players. Each player independently determines its
strategy with the goal of either enhancing performance or minimizing losses. As a result,
NCGT cannot support binding agreements. While the CGT simulates cooperative behavior
and agreements to distribute cooperative gains among players. CGT is further classified
into two approaches; Nash bargaining and coalitional game theory [63].

Although a few branches of game theory (GT) such as cooperative, leader-follower
games [64], etc are fitting approaches, we focus on the analysis of coalitional games in the
context of behavioral decision-making in this paper for the following reasons:
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1. Coalitional GT for autonomous driving is a relatively newer and less explored area.
2. It provides very fitting characteristics for realizing the solutions of complex and urban

driving, specifically for short-term, highly dynamic, and L4/L5 platooning.
3. The approaches such as cooperative GT for collaboration are researched extensively

and publications may be found e.g., [65–68].

Coalitional GT has been employed in a number of applications and has proven to be
a potent framework for developing reliable, usable, and effective cooperation strategies
in a variety of settings. It primarily deals with forming cooperative groups referred to
as coalitions, allowing the cooperating players to strengthen their position in a game.
The coalitional game is made up of two components: (i) the set of players which interact
with each other to form cooperative coalitions and make agreements among them to act as
a single entity in the given game; (ii) the coalition value which denotes the utility of the
coalition in the game. The coalitional game may be either a TU game (transferable utility)
or an NTU game (non-transferable utility). In TU games, the utility of the coalition is a real
value that can be distributed among the coalition’s members in any way. The coalition value
in NTU games, however, is not a real number but rather a vector payoff, where each element
denotes the potential reward payoff for each coalition member [69]. Mathematically the
coalition game can be defined as below:

Definition 1 (Coalition Game). A coalitional game is defined by a pair 〈N, ν〉, where N =
{1, 2, . . . , n} is the finite set of players who seek to form coalition S such that S ∈ 2N . The S
consisting of only one player is referred to as a single-player coalition and S with all players is
referred to as a grand coalition. The ν is a real-valued function, called characteristic function such
that ν : 2N → R maps each possible coalition S ⊆ N to its payoff ν(S).

In what follows next, the relevant literature review of coalitional game theory is
discussed below:

In highway settings, one of the causes of traffic congestion is vehicle merging. Several
factors, including traffic dynamics, driver preferences, and travel aims, make it difficult
for vehicles to perform merging moves. To address the multi-lane merging issue for
CAVs, Hang et al. [65] developed a cooperative decision-making framework based on
coalitional GT, see Figure 6. The motion prediction module was first developed to forecast
the motion states of the vehicles. The cost function for decision-making was created taking
into account certain constraints including safety, comfort, and traffic efficiency based on
the estimated motion states of the ego and surrounding vehicles. After creating the cost
function, the coalitional game was used with MPC to manage the coordination and decision-
making of CAVs at a multi-lane merging zone. Finally, the experimental findings on two
case studies, with four types of coalitions (see Figure 7), and various driving characteristics
demonstrated that CAVs were capable of making sane decisions. Additionally, the cost
value of each CAV in the grand coalition was lower than that in the coalition made up
of a single player, demonstrating the superiority of the grand coalition. In another study,
Hang et al. [70] built the cooperative lane-change decision-making framework for AVs based
on a cooperative coalitional game strategy that took into account human-like driving traits
like aggressive, moderative, and conservative. Three performance indices—safety, comfort,
and efficiency were used to build the cost function for making decisions. Additionally,
the cooperative coalitional game approach was used to transform the cooperative lane-
change decision-making problem into an optimization problem with multiple constraints.
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V2V

Figure 6. Coalitional game theory based decision-making framework for CAVs.

(A) (B)

(C) (D)

Figure 7. Four types of coalitions. (A) The single player coalition; (B) The multi-player coalition; (C)
The grand coalition; (D) The grand coalition with a sub-coalition.

It can be difficult to manage traffic at junctions, especially in cities where it tends to
get much worse. Hang et al. [71] addressed the coordination and decision-making problem
of CAVs at the unsignalized intersection. First, a Gaussian potential field approach was em-
ployed to construct the driving risk assessment algorithm, which reduced the complexity
of the decision-making system by evaluating the safety risk of nearby vehicles. The driv-
ing safety and passing effectiveness of the CAVs were taken into account to build the
decision-making cost function. Following that, the authors created several decision-making
constraints, including control, comfort, efficiency, and stability. Finally, based on the cost
function and constraints, two types of fuzzy coalitional game techniques—(i) single-player
coalition and (ii) grand coalition were developed to address the decision-making problem
of CAVs at unsignalized junctions representing both individual and social advantages.
The experimental results showed that the suggested decision-making framework might
assist CAVs with safe, effective, and rational decisions. Hoai et al. [72] implemented a coali-
tional game-based approach among intersection controller agents to reduce the amount
of time that cars are forced to wait at various intersections. This method relies on real-
time traffic flow data collected from CAVs, which then control traffic at the intersections.
To demonstrate the success of the suggested technique in terms of the number of vehicles
through intersections at a given time and the waiting time of vehicles, different rates of
traffic flow were developed. To simulate the traffic light control at intersections, Netlogo,
an agent-based modeling simulator, was used. Results from simulations indicated that the
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proposed strategy, when compared to the conventional approaches, greatly outperformed
them in terms of controlling the traffic at various crossings. In another study, Wei et al. [73]
implemented a hierarchical game-in-game structure to improve traffic safety by lowering
collision rates while also enhancing intersection throughput. A connected, multi-layered
strategy that took into account coalitional and non-cooperative games was formulated.
To increase throughput and the smoothness of traffic moving through the intersection,
a coalitional game that groups vehicles into platoons and schedules their passage through
the intersection was proposed in the first layer. To prevent collisions inside the intersection,
a strategic game was developed for the second layer. Finally, the proposed game-in-game
framework found the intersection traffic management equilibrium solutions.

To maximize road safety, traffic flow, fuel consumption, and platoon stability, An-
gel et al. [74] used the coalitional GT to establish the vehicle platoon and at the same time
managed the intra- and inter-platoon coordination utilizing a cooperative communication
strategy. Three utility functions; individual, coalitional, and global functions were used to
examine the game. The local environment, including its state vector and the information
supplied by the infrastructure, was considered an individual utility. The coalitional utility
motivated the formation of a coalition, followed by the global utility, where some of the
players were not individuals but rather formed coalitions. The proposed theoretical frame-
work is then validated on two parameters—load per path and transit time to destination.
Similarly, in another research, Khan et al. [75] used a hardware wireless Convoy Driving
Device (CDD) to develop a coalition formation strategy to help the driver decide whether
to join or leave a platoon, influencing the speed and formation of the platoon. The CDDs
could communicate with one another and make decisions about the formation of a pla-
toon based on a variety of parameters, including the vehicles’ current speed, the desired
speed, vehicles’ limitations, and the speed limits on the roads. The vehicles negotiated
and agreed on a similar platoon speed and then changed their speed to keep the platoon
steady, ideally with uniform following distances. Besides, two algorithms were developed
to determine whether to join the coalition. The experimental results showed that rational
coalitions can be created by utilizing the speed and proximity information of neighboring
vehicles. The social potential fields-based influence scheme, however, can be used not only
to make coalitions but also to regulate the V2V distance within the coalition. The motion
controller and spacing policies have an impact on the platoon’s overall performance and
profit. A systematic spacing policy was presented by Liu et al. [76] to study the spacing
decision based on coalitional GT. Based on the concepts of bionic motion, a flock’s model
was employed as the payoff function. To allocate the spacing fairly, the characteristics func-
tion for the platoon was developed based on the Shapley value and average lexicographic.
The outcomes demonstrated that the suggested method improved both the convergence of
longitudinal following error and the steady time for consistency control.

Hadded et al. [77] implemented a shared transportation system use case in an urban
setting where human drivers were contracted to pick up abandoned vehicles. Each driver,
termed a platoon leader, was responsible for driving gathered vehicles as a platoon to
return them to a specific location, like an airport or a train station. To address this issue,
a hedonic coalition game was constructed to determine the following: (i) the distribution of
unused vehicles to the least number of platoons; (ii) the optimum tour for each platoon,
and (iii) the minimal energy required to collect all of these vehicles. In the coalitional GT,
the authors considered the parked vehicles as the players and the coalitions as the vehicle
platoons. Three optimization criteria were used to assess the solution’s quality after the
game converged to a stable result. The simulation-based results demonstrated that the
suggested technique was effective at resolving the multi-objective optimization problem.

By reviewing the literature we summarize some of the main limitations of game theory
as below:

1. In every theoretical framework, modeling a system necessarily entails some amount of
abstraction. On the other hand, game theory has a particularly high level of abstraction
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since there are so many implicit assumptions that must be taken into consideration in
game-theoretic models [78].

2. Microscopic driving decisions based on the application of game theory modeling could
result in computationally slow methods, making the chosen approach unsuitable for
real-time simulation. This issue becomes even more obvious when working with
more intricate driving scenarios [79].

3. Increasing system complexity necessitates the use of greater computation resources
and more potent decision-making execution capabilities [80].

Furthermore, the comparison of coalitional game theory studies based on different
parameters is given in Table 3.

Table 3. Comparison of coalitional game theory studies.

Coalitional Game
Type Ref. Use Case/Application Coalition of What? Coalition Type Cost Function

Parameters/Metrics Solution Concept Simulator/Tool

Coalitional
Formation [65] Multi-lane merging scenario Connected AVs Single Player, multi-player, grand

& sub-coalition
Safety, Comfort,
Efficiency - MATLAB/Simulink

Cooperative
Coalitional [70] Cooperative lane change decision making. Vehicles - Safety, Comfort, Efficiency - MATLAB/Simulink

Fuzzy Coalitional
Game [71] Decision-making framework for CAVs at

unsignalized intersection. Connected AVs Single Player & grand coalition Driving safety, passing
efficiency Fuzzy Shapley value MATLAB/Simulink

Coalitional
Formation [72] Traffic optimization at multiple intersections. Intersections Dynamic

(1) Waiting time of vehicles;
(2) number of vehicles passing
in a certain time.

Nash
equilibrium

NetLogo
Simulator

Coalitional
Graph [73] Platoon for intersection scenario. Lanes - Throughput, the ratio of

accidents
Nash
equilibrium -

Coalitional
Formation [74] Platooning Vehicles Dynamic Mean load per path,

mean travel time Shapley value -

Coalitional
Formation [75] Convoy driving on the highway. Vehicles Dynamic - - Motes Devices,

YAES simulator

Hedonic Coalition
Formation [77]

Platoon allocation and route planning
for a shared transportation system in
an urban environment.

Parked vehicles -

Average number of the
platoon, maximum tour
duration, totally
consumed energy

Nash stable Java

Coalitional
Formation [76] Spacing allocation method for platooning. Vehicles - -

Shapley value, τ value
& lexicographic
value

-

3.3. Machine Learning Approaches

Machine learning (ML) has recently attracted attention in the field of autonomous
driving due to advances in deep learning. The advantage of this approach is that it does not
rely on hand-crafted rules and scales well with data, improving performance as more data
is utilized for training. Consequently, this method has a great deal of potential to manage
a wide range of driving scenarios. A plethora of ML approaches have been investigated
and are contributed by the research community for different use cases enabling a higher
level of autonomous driving. For a ready reference, readers are directed to some recent
surveys [81–83] for a detailed discussion. However, this section analyzes the two most
popular ML paradigms for planning and decision-making in AD.

3.3.1. Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that deals with the issue
of automatic learning and the best choices over time. RL enables an intelligent agent to
learn from its mistakes and experiences. The RL agent acts in the environment to receive
rewards where the goal of the agent is to choose the action that will maximize the expected
cumulative reward over time. An RL agent can be characterized as an MDP Process
in the following way: the agent interacts with the environment by taking actions and
getting feedback and rewards. As shown in Figure 8 at each time step t the agent obtains
a representation of the environment state st ∈ S. Based on this state the agent decides
on a course of action at ∈ A. Any action is chosen depending on the agent’s behavior,
often known as the policy which instructs the agent on the best course of action for every
potential state. As a result of each action, the agent is rewarded with a reward rt ∈ R and
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observes the next state st+1 ∈ S. The process of receiving a reward can be described as an
arbitrary function, f . At each time t, we have:

f (st, at) = rt

Agent

Action - At

Environment

R(t+1)

Reward - Rt

S(t+1)

State - St

Figure 8. Illustration of Reinforcement Learning Approach.

RL plays an imperative role in the decision-making process of AD, which enables AVs
to acquire an ideal driving strategy through constant interaction with the environment.
Lv et al. [84] developed a deep RL (DRL)-based motion planning technique for AD
scenarios including an AV merging into two-lane road traffic flow and executing lane-
changing maneuvers on highways. An improved version of the DRL algorithm based
on a deep deterministic policy gradient (DDPG) is created with well-defined reward
functions. Specifically, safety rules, a safety prediction module, trauma memory, and
a dynamic potential-based reward shaping function are adopted and implemented to
further improve safety and hasten the learning of lane-changing behavior. To identify
a risk-aware driving decision approach with the lowest risk for AD, Li et al. [85] suggested
a lane change decision-making framework based on DRL. Firstly, a probabilistic model-
based risk assessment method was presented to evaluate the driving risk utilizing position
uncertainty and distance-based safety KPIs. Then, a risk-aware decision-making algorithm
was designed to use DRL to identify a strategy with the lowest expected risk. The proposed
solutions were then tested in two scenarios using the CARLA simulator. The findings
demonstrated that the suggested methods can produce safe driving strategies and provide
better driving performances than classical techniques.

Roundabout driving can be challenging for both manual and AVs. Cuenca et al. [86]
presented a method based on the Q-learning algorithm to train an AV agent how to safely
navigate on roundabouts. The CARLA simulator is used to implement the suggested learn-
ing algorithm. The algorithm is trained through a number of simulations in two situations:
navigating a roundabout with and without surrounding traffic. The outcomes demon-
strated that the Q-learning algorithm-based vehicle agent can learn effective and smooth
driving techniques to execute maneuvers at roundabouts. In another research, an optimiza-
tion embedded reinforcement learning (OERL) approach is proposed by Zhang et al. [87] to
achieve adaptive decision-making under the roundabout. The promotion is the modified ac-
tor of the Actor-Critic framework, which embedded the model-based optimization method
in RL to explore continuous behaviors in action space directly. As a result, with high sample
efficiency, the proposed method may concurrently identify the appropriate acceleration
and action time at the medium-scale and macroscale levels (whether to change lanes or
not). Prathiba et al. [88] proposed a hybrid DRL and genetic algorithm (DRG-SP) for smart
platooning of AVs. By leveraging the DRL technique, the computational complexity is
addressed, and the highly dynamic platoon scenarios are supported. Adopting the Genetic
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Algorithm in DRL solved the slow convergence issue and provided long-term performance.
The simulation’s findings showed that Smart-Platooning efficiently creates and maintains
platoons by reducing traffic jams and fuel consumption.

Lack of interpretability is one issue with learning-based approaches for autonomous
driving. The learned deep neural network policy is similar to a black box which is not
desirable since AD is a safety-critical application. It is crucial to understand how the
autonomous vehicle understands its surroundings. The existing end-to-end approaches
frequently lack interpretability and can only handle basic driving tasks like lane keeping.
An interpretable DRL strategy for end-to-end autonomous driving capable of handling chal-
lenging urban scenarios was proposed by Chen et al. [89]. They introduced the sequential
latent environment model and learned it jointly with the RL process. With the help of this
latent model, a semantic bird-eye mask can be created, which is required to connect with
some intermediate attributes in the current modularized framework to explain the actions
of the learned policy. The sample complexity of RL is also greatly reduced by the latent
space. Comparative experiments in a realistic driving simulator revealed that the proposed
technique outperformed numerous baselines, including DQN, DDPG, TD3, and SAC in
urban settings with congested surrounding vehicles. In another research, Wang et al. [90]
proposed a latent space RL approach for interpretable decision-making for AVs at highway
on-ramps. The proposed approach is based on the latent model, a combination of the
hidden Markov model, and a Gaussian mixture regression model (HMM-GMR). Due to the
high-dimensional input and lack of task understanding, the traditional decision-making
approach has difficulty comprehending the environment. HMM-GMR model can be used
to acquire the interpretable which provides semantic information and environment knowl-
edge. The latent model is used to minimize the dimension of the interpretable state by
extracting underlying task-relevant data in a framework that unifies representation learning
with the DRL technique. The results of the experiments are provided, and they demon-
strated the ideal balance between driving safety and efficiency in the complex situations of
merging highway on-ramps. Chen et al. [91] put forth a novel end-to-end technique for
AD perception. Sequential latent representation learning is used to introduce a latent space
that contains all pertinent information useful for perception. With only minimal human
engineering efforts and without maintaining any maps online, the learned end-to-end
perception model was capable of solving the detection, tracking, localization, and mapping
challenges all at once.

Some main drawbacks of RL techniques are (i) the policy learned by RL algorithms
is through trial-and-error, which is wholly reliant on the experience gained through in-
teractions with environments; (ii) poor stability and over-fitting in DRL methods; (iii) the
optimal policy learning problem is notoriously difficult when it comes to large amounts of
acquired data referred to as the sample efficiency problem [92]; (iv) performance greatly
depends on how the reward function is designed; (v) challenging to design the reward
function for complex tasks, which has a significant impact on policy performance. In addi-
tion, readers are encouraged to look into some relevant surveys on reinforcement learning
approaches in AD [93,94] to deep dive into these approaches.

3.3.2. Imitation Learning

Imitation Learning (IL) is a supervised learning method that uses datasets of expert
demonstrations (usually made by humans) to train a system to emulate the given expert in
a variety of autonomous driving scenarios. Alternative deep learning (DL) techniques, such
as deep reinforcement learning techniques, have been used to solve the issue. However,
these approaches are constrained due to the intricacy and safety-critical nature of the
driving task. With IL, DL techniques can be trained to a level that is very close to humans
by using readily accessible, easily collected large-scale datasets of human driving. For this
reason, IL is the main topic of the majority of the literature. In what follows next, we discuss
the research on IL in autonomous driving decision-making.
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Chen et al. [95] stated that the current IL approaches for autonomous driving are
hardly up to the task in complex uncertain urban environments. Furthermore, using a deep
neural network strategy does not ensure safety, either. As a result, they developed and
implemented a system to learn a driving strategy in general urban scenarios using of-
fline recorded expert driving data, which also improved the safety of collision avoidance.
The proposed system was tested using the CARLA simulator, and the experimental results
indicated that the framework is capable of obtaining a deep convolutional neural network
policy that is wise enough to achieve high performance in simple urban driving scenarios.
Controlling a vehicle when it enters a roundabout in an urban environment is a chal-
lenging task, even for a human driver. To address this issue, Wang et al. [96] suggested
a unique imitation learning-based decision-making framework to offer suggestions for
joining roundabouts. The proposed approach used deep policy networks to make decisions
about the ideal time to enter a roundabout using observations from a monocular camera
mounted on a moving vehicle as input. The domain expert-directed learning framework
can not only facilitate better decision-making but also hasten the convergence of deep
policy networks. To evaluate the performance of the proposed approach it is compared
with the state-of-the-art supervised learning techniques, including support vector machines,
k-nearest neighbor, and DL-based approaches. The experimental findings showed that the
imitation learning-based framework for making decisions worked better than supervised
learning techniques and can be used in a driving assistance system enabling better decisions
when approaching roundabouts.

Adversarial Inverse Reinforcement Learning (AIRL) is one of the most advanced
imitation learning techniques that can concurrently learn a behavioral policy and a reward
function, however, it has only been demonstrated to work in static, unchanging situations.
Wang et al. [20] enhanced and stabilized AIRL’s performance by supplementing semantic
rewards to the learning framework. Moreover, they modified the enhanced AIRL to
a more demanding decision-making task in an environment that is highly interactive for
autonomous driving. In another study Yun et al. [97] presented a randomized adversarial
imitation learning (RAIL) algorithm. The RAIL is a new imitation learning technique that
does not use any derivatives and is designed to mimic the coordination of several advanced
driver assistance systems (ADAS) functions while driving autonomously. As a result,
it mimics the actions of the decision maker who controls the operation of autonomous
driving with several ADAS functions. The suggested approach can be used to train
the decision-maker who uses LIDAR data and controls autonomous driving in multi-
lane complex highway settings. Recent advancements in multi-agent imitation learning
have shown encouraging results for simulating the actions of drivers. Nevertheless, it
is difficult to record emergent traffic characteristics that can be observed in real-world
datasets. Such behaviors result from the numerous local interactions between agents that are
frequently overlooked in imitation learning. Bhattacharyya et al. [98] introduced Reward
Augmented Imitation Learning (RAIL), which integrated reward augmentation into the
multi-agent imitation learning framework and allowed the designer to explicitly express
past knowledge systematically. The authors demonstrated that under the use of reward
augmentation, convergence guarantees for the imitation learning process are maintained.
The effectiveness of this approach is validated in a driving scenario in which the proposed
algorithm is used to learn driving rules that control the entire traffic scene. Additionally,
the results showed enhanced performance compared to conventional imitation learning
methods for both the local behaviors of a single agent and the behavior of emergent
characteristics in complicated multi-agent environments.

By reviewing the literature carefully, we highlight some of the main limitations of IL
approaches (i) data-hungry deep learning technique and its performance is limited to the
level of the expert policy; (ii) expensive or even impossible to obtain supervised data in
some circumstances; (iii) due to the real-time nature of many applications, the learning algo-
rithms are constrained by computing power and memory limitations, particularly in robotic
applications that require onboard computation to perform the real-time processing [99];
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(iv) traditional IL methods suffer significantly from learning hierarchical policies when the
imitative agent encounters an unobserved state by the expert agent [100]; (v) the policy
never outperforms the suboptimal expert performance, and the effectiveness of IL is still
heavily dependent on the expert policy’s quality. Furthermore, for a ready reference, we
also direct the readers to some recent surveys [101,102] to deep dive into these approaches.

4. Challenges and Future Recommendations

This section spotlights the research gap, challenges, and future directions for decision-
making and behavioral planning.

4.1. Explainability in Decision Making

The planning component is a crucial aspect of AVs as they execute sophisticated ma-
neuvers in dynamic, complex, less structured, and cluttered environments such as urban
roads, and town centers with a lot of pedestrians, cyclists, and other road participants. Fur-
thermore, the traffic elements such as roadside infrastructures, road networks, road signs,
and road quality are dynamic and can change with time; this makes AVs frequently update
their plans as they operate. A stakeholder riding in an AV might therefore get confused
if the AV modifies its trajectory or execute a maneuver without providing an explanation.
The adoption of increasingly sophisticated techniques does not only have advantages,
as they are becoming more and more opaque. The lack of transparency means that certain
real-time decisions made by AVs are neither recognizable nor understandable to the user,
the developer, nor the legislator. The AI’s opaque behavior is commonly referred to as
“black-box” behavior since only the input and output variables are known to the developer.
Therefore, the internal workings of the black box are still a mystery. Level 1–3 AVs, had
recently caused several road accidents, that resulted in serious injuries or even fatalities.
What caused the mishap? What problem in the driving system caused the accident? Some
questions like these inevitably pose important ethical and security concerns and provide
the motivation for explainable AI (XAI) systems. To improve road safety, the National
Highway Traffic Safety Administration (NHTSA) of the US Department of Transportation
has released a federal guideline on automated vehicle policy [103]. Therefore, both present-
day and upcoming generations of autonomous vehicles must adhere to these new laws,
and their intelligent driving systems must be explainable, understandable, transparent,
and sufficiently secure.

The primary objective of the realization of XAI approaches in decision-making is to
eliminate this opacity and make complex autonomous driving systems understandable
and interpretable. Therefore, explainable planning can play an imperative role in helping
users and enhancing their interactions with autonomous systems during complex decision-
making processes. According to Sado et al. [104], the procedure may involve translating the
agent’s plans into simple understandable formats and creating user interfaces that make this
understanding easier, depending on the stakeholder. Furthermore, for a ready reference,
the readers are highly recommended to look into the explainable planning relevant work
which includes WHY-PLAN [105], XAI-PLAN [106], plan explicability and predictability,
refinement-based planning [107], and plan explanation for model reconciliation.

4.2. Robust Decision-Making for Higher Level Autonomous Vehicles

Behavioral planning, local planning, and inter-vehicular communication for automa-
tion of lower levels are simpler when compared with the envisioned higher automation
levels that involve: congested settings, many lanes populated with vehicles of varying
speeds, roundabouts, intersections, crossings, etc. Conventional decision-making with
a narrow environmental understanding and a short lifespan of decisions in terms of time
and distance for critical maneuvers, compel the AVs to make myopic decisions, result-
ing in long-term erroneous decisions, injuries, fatalities, reduced traffic safety, efficiency,
and comfort. When considering the planning horizon, there is a tradeoff between the
accuracy of the perception and the time horizon. This means that the further the planning
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horizon is considered, the more imprecise the prediction of the environment. This trait
is not a problem for a human driver. They are capable to integrate anticipatory behavior
evaluating the current situation and evolving it with a more reactive behavior based on
immediate maneuvers and perception. However, the current AVs are not capable of adapt-
ing the driving behavior to cope with uncertain dynamics due to limited perception and
instant decision-making. Therefore, higher-level AVs require a self-driving system that
incorporates a decision-making ability capable of dealing with unknown driving scenes
and uncertainty.

The decision-making processes for current AVs are designed for relatively straightfor-
ward settings. It is not feasible to generalize the scenes, especially when making choices that
affect the dynamics of several scenes within a scenario. Therefore, there is little interaction
between the various decision-making instances. Accurate scenario-specific learning and
decision-making present a significant challenge in the complex urban environment due to
the rapid change in road dynamics. Furthermore, the restricted self-learning capabilities
keep us from developing a fully developed and autonomous autopilot. Furthermore, it is
still difficult to have the right computations at the right times and places. The decision-
making instances of L5 AD need extensive and plentiful data to train the decision-making
and learning models. The uncertainty and uninterpretability of the dynamic environ-
ment make it hard to achieve a full-fledged decision-making system for a higher level of
autonomous vehicles.

4.3. Vehicle→ Pedestrian Interaction

According to the World Health Organization (WHO), 1.35 million people died in
traffic-related accidents in 2018, with pedestrians contributing to 21% of all fatalities [108].
The successful interaction between the AV and vulnerable road users (VRUs), particularly
pedestrians, determines traffic safety in urban environments. Therefore, an understanding
of these interactions is required to determine the behavioral requirements for L4 and
L5 AVs.

The algorithms designed for decision-making must consider the interaction with other
VRUs. However, the majority of the research works pay attention to decision-making
under V2V interaction and rarely model vehicle-to-pedestrian (V2P) interaction. Since
pedestrians are vulnerable traffic participants, making decisions with interaction with
them is essential for safe driving. Future solution approaches for the decision-making
system must integrate the contextual pedestrian perception, analysis and prediction of
pedestrian actions, and modeling of multi-modal pedestrian behavior. As pedestrians are
essentially multi-modal in nature and can feasibly travel various courses, AVs may have
significant difficulties in accurately and reliably detecting and recognizing them. Besides,
it is also challenging to detect, predict, and protect them. Pedestrians are challenging to
perceive because of their changing physical attributes, appearance in a variety of situations,
and various backgrounds, obstacles, and weather conditions. Therefore, the vehicle-based
sensors may fail to recognize pedestrians even in ideal conditions, especially when the
pedestrians are small, too far or too close to the AV, or partially obscured by other neighbor-
ing objects. To cope with these challenges the best suit of sensors, extended perception of
the environment, Perception as a Service (PaaS), V2X, and intelligent sensor fusion solution
approaches would also be required.

4.4. Collaborative Decision Making

As of now, AVs can drive more naturally due to the driving policies they have picked
up from miles of actual driving environments. However, to further improving the auton-
omy of AVs; requires cooperation in every decision-making. AVs will be able to drive
autonomously in various environments such as urban roads, highways, and freeways.
An essential component of that is predicting the intentions of other AVs and coordinating
maneuvers with them jointly. These kinds of cooperative maneuvers have the potential
to significantly enhance traffic efficiency and safety. The ability to communicate and react
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to each other much faster and more precisely than humans ever could enable the possi-
bility of collaborative, coordinated maneuvers among automated vehicles by leveraging
the V2V and V2I communication technologies. Furthermore, collaborative maneuvering
would guarantee safe and efficient navigation among multiple AVs, and intelligent strate-
gies in situations like driving in an urban environment, multi-lane changing, overtaking,
and entering/exiting highways would be taken to optimize traffic flow and minimize
traffic congestion.

It is essential to note that the idea of collaborative decision-making may correspond to
different decision-making situations instances and approaches in different AD use cases.
This means that, in some circumstances, the decision to collaborate is simple because the
vehicles just exchange information. However, in other circumstances such as; vehicle
platooning—the decision to cooperate is followed by several other decisions. Now that
the autonomous driving paradigm has quickly advanced to a more developed and mature
stage, it is believed that it is important for the research community and industry to make
a clear distinction between different types of collaborative decision-making mechanisms.
Therefore, collaborative decision-making should be reflected in future decision-making
frameworks which would resultantly improve maneuver planning. For a ready refer-
ence, the readers are highly recommended to look into detailed surveys on collaborative
autonomous driving mechanisms [13,109].

4.5. Blended Approaches for Decision Making

Traditional approaches have clear levels, high scalability, and adjustability, with the
advantage of breadth traversal, while learning-based approaches e.g., deep learning and
reinforcement learning have a succinct structure and are ideal for processing particular
scenarios with the advantage of deep traversal. Both methods have pros and cons, therefore,
we believe that the fusion of different approaches at different stages of decision-making has
the potential to achieve complementing benefits that should be considered in the future.
For instance, to develop a highly intelligent decision-making system that integrates both
breadth and depth, the top-level system may employ the FSM approach for quick decisions
while the bottom level could train a distributed learning model based on particular scenarios
for more complex decisions. However, among other challenges, one of the challenges
would be ensuring the efficient and successful integration and fusion of different solution
approaches. Along similar lines, Thurachen [32] proposed an algorithm to enable a vehicle
to avoid a potential collision with a pedestrian crossing by integrating reinforcement
learning and a well-defined rule-based technique. The proposed algorithm designed
the reward function by considering safety, efficiency, and comfort. Experiments on the
proposed algorithm were conducted in four different training scenarios in a simulated
setting. The findings demonstrated that the algorithm has mastered the execution of
longitudinal control when environmental uncertainty is introduced.

5. Conclusions

The autonomous vehicle is an all-encompassing intelligent system that integrates
technology for environment understanding, path planning, decision-making, and motion
control. The decision-making system in AVs plays an all-important role in executing
safe and efficient maneuvers, therefore, how to build highly intelligent and trustworthy
decision-making systems eventually becomes the primary research area. In this survey, we
analyzed the solutions relevant to behavioral decision-making approaches in autonomous
driving. Furthermore, also highlights the research gap, challenges, and potential directions
for behavioral motion planning.
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