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Abstract: Nonlinear measures have increasingly revealed the quality of human movement and its
behaviour over time. Further analyses of human movement in real contexts are crucial for under-
standing its complex dynamics. The main objective was to identify and summarize the nonlinear
measures used in data processing during out-of-laboratory assessments of human movement among
healthy adolescents. Summarizing the methodological considerations was the secondary objective.
The inclusion criteria were as follows: According to the Population, Concept, and Context (PCC)
framework, healthy teenagers between 10 and 19 years old that reported kinetic and/or kinematic
nonlinear data-processing measurements related to human movement in non-laboratory settings were
included. PRISMA-ScR was used to conduct this review. PubMed, Science Direct, the Web of Science,
and Google Scholar were searched. Studies published between the inception of the database and
March 2022 were included. In total, 10 of the 2572 articles met the criteria. The nonlinear measures
identified included entropy (n = 8), fractal analysis (n = 3), recurrence quantification (n = 2), and the
Lyapunov exponent (n = 2). In addition to walking (n = 4) and swimming (n = 2), each of the remaining
studies focused on different motor tasks. Entropy measures are preferred when studying the com-
plexity of human movement, especially multiscale entropy, with authors also carefully combining
different measures, namely entropy and fractal analysis.

Keywords: nonlinear variables; adolescents; out-of-laboratory; variability; biomechanics

1. Introduction

Human movement can be described as harmonious musculoskeletal synergies con-
ditioned by a continuous interaction of multiple neural networks, making adequate and
efficient motor actions possible [1,2]. Complex motor performances are the consequences
of variability and flexibility, which are needed to adapt each individual to chaotic, always-
changing environments [3]. Motor variability is one of the most common characteristics of
human movement, and it is related to typical variations in kinetic and kinematic patterns
during the repetition of a task [4–6]. It is via variability that healthy biological systems are
able to adjust properly in an unpredictable and constantly changing environment [7,8].

The scientific literature reports linear and nonlinear approaches for processing the
kinetic and kinematic data of human movement [9]. Although they complement each
other, it is known that nonlinear models reveal more of the quality of movement and the
behaviour of movement over time [3]. On the other hand, linear models, although useful,
seem to be insufficient for describing the characteristics of movement in human systems
endowed with complexity, non-linearity, and variability [10].
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Stability and complexity are two parameters that allow the assessment of motor
variabilities [10]. Both can be analysed using different nonlinear measures, such as the
Largest Lyapunov Exponent (LLyE), the Maximum Floquet multiplier, and fractal measures,
for the stability analysis and entropy measures for the evaluation of complexity [10,11]. In
2009, Harbourne and Stergiou [9] suggested LLyE as the most frequently used nonlinear
variable for measuring dynamic stability and entropy measures for evaluating the degree
of an irregularity related to the complexity of movement. On the other hand, Costa
et al., in 2013 [12], systematically reviewed, for the first time, studies that used nonlinear
measures in the processing of kinetic and/or kinematic data among participants up to the
age of 14, and they identified approximate entropy as the nonlinear measure that is most
frequently used. It is important to point out that they reinforced the difficulty in defining the
most appropriate measure due to the study’s variability (e.g., the tasks studied). Another
important factor that can be considered is the environment in which each subject is assessed.
Usually, studies are performed in laboratory facilities and in controlled environments to be
more precise in measurements, but currently, with the advent of wearable and ambulatory
health monitoring devices, it is possible to conduct studies outside the laboratory with a
high degree of precision [13]. It is in the real-life context that problems arise, and probably,
it is in that environment that solutions must be found in order to solve them in an integrated
and adjusted manner relative to each individual in each motor development stage.

Movement complexity and variability may also differ depending on the stages of
human development. For example, the motor learning tasks that are the foundation for all
functional motor tasks are acquired at an early age [14,15]. Despite this fact, adolescence
(the growth spurt phase)—characterized by a rapid increase in body mass and changes
in physiological and psychological aspects related to puberty—is also associated with the
exploration, experimentation, and initiation of behaviours that are determinants of health
throughout life [16]. These aspects suggest the use of a combination of several measures
for a global assessment of motor variability, in which the focus is the exploratory nature of
the movement, with an emphasis on the quality of motor performance [3].

Therefore, the main objective of this scoping review of the literature was to summa-
rize the nonlinear measures used in the analysis of kinetic and kinematic data of human
movement in healthy adolescents who were assessed in real-life environments. After
the nonlinear measures were identified, the objective was to summarize the method-
ological considerations, namely the tasks under study, measurement instruments, and
outcomes considered.

Review questions
The main review question was “What are the nonlinear measures used in

processing kinematic and kinetic data in the assessment of human movement among
healthy adolescents?”

The review sub-questions are listed as follows:

i. What instruments are used to collect kinematic and kinetic data in the
identified studies?

ii. What kinematic and kinetic variables are considered in the identified studies?
iii. What tasks are covered in the identified studies?

2. Materials and Methods

This scoping review was conducted in accordance with the Preferred Reporting Items
for Systematic Reviewers and Meta-Analysis extension for Scoping Reviews (PRISMA-ScR)
framework [17]. The protocols, namely the review questions and methodology, are specified
on Open Science Framework registries, https://osf.io/bpehv (accessed on 16 March 2022).
The following Supporting Information can be downloaded at https://www.mdpi.com/
article/10.3390/s23010304/s1.

https://osf.io/bpehv
https://www.mdpi.com/article/10.3390/s23010304/s1
https://www.mdpi.com/article/10.3390/s23010304/s1
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2.1. Eligibility Criteria

The eligibility criteria were established a priori using the acronym PCC (Population,
Concept, and Context) in accordance with the Joanna Briggs Institute methodology [18]
(Table 1).

Table 1. Eligibility criteria according to PCC.

Criteria

Population
Healthy teenagers between 10 and 19 years old [16]. Adolescents were also
considered eligible regardless of whether they were in an experimental or
control group or when the studies were experimental or quasi-experimental.

Concept Nonlinear measurements in kinetic and/or kinematic data processing of
human movement.

Context Assess human movement out of the laboratory, i.e., non-laboratory settings; free
living, daily living, or real-life environments.

Studies were also eligible if they met the following criteria:

- Experimental and epidemiological study designs;
- Studies published in English, Portuguese, French and Spanish.

Studies were excluded if they had any of the following characteristics:

- Systematic, narrative, or scoping reviews to avoid the duplication of data;
- Qualitative method designs.

2.2. Information Source

The relevant studies were identified by searching the databases—PubMed, the Web of
Science, and Science Direct—from their inception until March 2022. Google Scholar was
contemplated as unpublished and grey literature. The reference lists of original research
articles and reviews on the topic were manually verified to identify other eligible studies.
The search strategy for PubMed was as follows: ((nonlinear measures) OR (nonlinear
dynamics) OR (entropy) OR (motor variability)) AND ((adolescents) OR (children)) AND
((kinematic) OR (kinetic)). Two reviewers independently carried out the search.

2.3. Selection of Evidence Sources

The selection of evidence sources considered the PCC acronym, purpose, and research
questions. Data were extracted by two independent reviewers, and any disagreements
between them were resolved via discussions or with a third reviewer.

A pilot test was carried out where all reviewers analysed the same 25 publications (the
first 25 titles/abstracts of the PubMed database) [19]. Based on eligibility criteria defined
a priori, an analysis of the titles/abstracts was carried out independently by the two
reviewers. The researchers started the screening process only when there was a consensus
of at least 75% [19].

After the search, all identified records were imported to the Mendeley software (Else-
vier), and duplicates were removed. The titles and abstracts were screened by the same
two reviewers that categorized the studies as “include” or “exclude”. This stage allowed
identifying articles for full-text screening.

2.4. Data Extraction

Data were extracted regarding the authors, year of publication, study design, charac-
teristics of the participants (n, age, % female, and body mass), study setting, the tasks under
study, assessment instruments to capture the human body motion, kinetic and kinematic
variables, and nonlinear measures. The corresponding author of one of the included articles
was contacted by e-mail to request additional data. Two authors independently extracted
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the abovementioned data by using a draft charting table adapted from the original JBI
template. Any disagreements were resolved with a third author.

2.5. Data Presentation

A narrative report was produced to summarize the extracted data around the following
outcomes: nonlinear measures, instruments, kinematic and kinetic variables, and tasks
and contexts. These results were described in relation to the research question and in the
context of the overall study purpose. A tabular form complemented this synthesis of the
main findings.

3. Results

A total of 2572 articles were identified—2571 records via a database search, and one
additional article was identified via a hand search of the reference lists. After removing
338 duplicates, 2233 records remained. The screening process of the titles and abstracts
led to the removal of 2107 articles, leaving 127 for full-text analyses. Of these, 117 were
excluded after full-text analyses since they did not fulfil the inclusion criteria, namely the
population (n = 47), concept (n = 35), and context (n = 35). Hence, 10 articles were included
in this review. The study selection process is provided in the flowchart (Figure 1).
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Figure 1. Flow diagram for the scoping review process adapted from the PRISMA-ScR statement [20].

In total, 10 studies enrolled a total of 261 adolescents. The characteristics of
the participants are listed in Table 2. The mean sample size was 26.1 participants, ranging
from 10 to 42. In total, eight of the ten studies enrolled participants of both sexes: one
study involved only male participants [21], and one study enrolled only female
participants [22] (Table 2).
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3.1. Tasks and Context

Regarding the assessed tasks (Table 2), four studies analysed walking [23–26]; of
those, two studies assessed normal walking (NW) and tandem walking (TW) [25,26]. The
remaining studies focused on the analysis of stair descent walking [22], a quiet upright
stance [27], trunk and upper limb movement [21], swimming [28,29], and long swing-
ing on a high bar [30]. Three studies that assessed walking [23–26] or stair descent
walking [22] used a self-selected speed. The tasks were carried out in real contexts, namely
schools [22,24–27], training centres [21,23,30], and aquatic environments [28,29].

3.2. Nonlinear Measures

The 10 studies included in this review used several nonlinear measures to analyse
human movement (Table 3). Entropy measures were used in eight studies [22,24–30],
namely sample entropy (SEn) [22,29], multiscale entropy (MSE) (calculated by assessing
the SEn) [24–26], approximate entropy (ApE) [28], the complexity index (derived from
MSE) [27], and Simpson entropy [30].

The recurrence quantification measures were used in two studies [26,30], namely the
recurrence rate, determinism, and averaged diagonal line length.

To assess the local dynamic stability, two studies used the Lyapunov exponent; one
used the short Lyapunov exponent (sLe) [26], and the other used the largest Lyapunov
exponent (LLyE) [21], with both using Rosenstein’s algorithm.

Three studies applied fractal analyses. More specifically, the fractal dimension was
assessed in one study [29] to complement the analysis with the SEn; the correlation dimen-
sion was also used in one paper [30], and a detrended fluctuation analysis (DFA) was used
in one study [23] as the temporal structure measurements.

3.3. Instruments

Several instruments were used to assess the kinematic and kinetic variables (Table 3).
Of the ten studies, one study only collected kinetic data [27], one study collected both
kinetic and kinematic data [22], and the remaining eight studies only collected kinematic
data [21,23–26,28–30].

Forces plates [27] and portable handled dynamometers [22] were used to assess the
kinetic data. The muscular activity was assessed using electromyography [22]. When
considering the kinematic data, it was noted that the measurement tools varied according
to the context in which the adolescents were evaluated. In a school context, the studies
used the electronic uniaxial goniometer [22] and two [24,25] or three axial wireless inertial
sensors [26]. In the studies carried out in training centres, whether in athletics or kayak,
the instruments included force-sensitive switches placed on the foot [23], six axial wireless
inertial sensors [21], and a 3D motion capture system [30]. The two studies collecting data
in a swimming pool used a speedometer [28,29].

3.4. Kinetic and Kinematic Variables

In this regard, the use of different instruments to collect human movement data led to
the acquisition of different variables (Table 3). Concerning the kinetic variables, one study
quantified the centre-of-pressure (COP) time series during quiet standing and provided
normalized COP mean velocities in both the anteroposterior (AP) and mediolateral (ML)
directions [27]. The maximal quadriceps torque and the magnitude of the muscle activity
using the root mean square analysis were the main outcomes assessed in one study [22].

Of the studies assessing the kinematics of human movement, six studies described
spatiotemporal parameters [21–25,28,29], three studies assessed both spatiotemporal and
temporal parameters [22,23,28], and one study assessed only temporal parameters [26].
The joint kinematics were assessed in three studies by considering the range of motion
of the knee [22,30], shoulder and elbow [21,30], hands [21], hip, ankle, and foot [30],
and trunk [21].
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Table 2. Characteristics of the participants, study design, study setting, and tasks.

Author, Year Participants Study Design Study Setting Tasks

Hausdorff et al., 1999 [23]
• 11–14 years: n = 12
• 50% female (F)
• Weight 44.4 ± 2.7 kg

Observational, analytical study 400-m Running track Walking at their self-determined normal
pace for 8 min around a running track.

Pau et al., 2012 [27]

• 10–11 years: n = 42 (50% obese and 50% non-obese)
• Non-obese: 10.5 ± 0.40 years; height 142.9 ± 7.7 cm;

weight 35.5 ± 5.8 kg
• Obese: 10.7 ± 0.30 years; height 145.3 ± 6.7 cm;

weight 48.3 ± 6.3 kg

Observational, transversal,
analytical study School

Quiet upright stance with and without
its backpack in terms of a conventional
COP-based measure.

Rathleff et al., 2013 [22]

• 16.6–17.2 years: n = 29
• 100% f
• height: 168.4 (166.4–170.5) cm
• weight: 59.1 (55.6–62.6) kg

Cross-sectional population-based study School

Stair descent walking at self-selected
speeds: The stairway consisted of two
sets of 12 steps separated by a short
landing. Subjects took approximately
four steps on level ground before
starting the stair descent.

Barbosa et al., 2015 [28] • F: n = 12–12.43 ± 0.78 years
• Boys: n = 13–12.64 ± 0.81 years

Longitudinal study Swimming pool Swimming a maximal 25 m front crawl
trial with a push-off start.

Bisi and Stagni, 2016 [24]
10 groups of different ages (n = 10, each group), of which:

• 10 years: height 145.0 ± 8.0 cm; weight 40.0 ± 5 kg
• 15 years: height 164.0 ± 6.0 cm; weight 61.0 ± 11.0 kg

Observational, transversal,
analytical study School Walking at a self-selected speed in a

corridor longer than 12 m.

Vicinanza et al., 2018 [30]

4 groups of different ages/expertise: (n = 10 gymnasts,
100% male), of which:

• Junior elite (n = 5, release group): 14 ± 2.5 years;
height: 155.0 ± 10.0 cm; weight: 44 ± 9 kg

• Junior national (n = 5, non-release group): 12 ± 3.0
years; height: 150.0 ± 10.0 cm; weight: 42.0 ± 10.0 kg

Observational, transversal,
analytical study Training Centre Performing a series of four long swings

while looped to the high bar.

Bisi and Stagni, 2018 [25]

7 groups of different ages (n = 15, each group), of which:

• 10 years: 7 F, 10.0 ±0 years; height 143.0 ± 8.0 cm;
weight 38.0 ± 6.0 kg

• 15 years: 7 F, 15.0 ± 0.0 years; height 170.0 ± 7.0 cm;
weight 62.0 ± 11.0 kg

Observational, transversal,
analytical study School

Walking at their self-selected speed in
NW and TW back and forth along a 10 m
long tapeline on the floor.



Sensors 2023, 23, 304 7 of 14

Table 2. Cont.

Author, Year Participants Study Design Study Setting Tasks

Hamacher et al., 2018 [21]
• 14.0 ± 1.00 years old (13–16): n = 14 (100% youth

sprint kayak boy athletes)
• Height 178 ± 10.0 cm (158–193)

Cross-sectional study Local Olympic Centre

Performing three minutes of paddling at
each of the following stages with increased
stroke rates: 62–64/min−1 (warm-up);
66–68 min−1, 72–74 min−1, 6–78 min−1,
80–82 min−1, and 86–90 min−1.

Bartolomeu et al., 2018 [29] • 14.20 ± 1.71 years old (25 F): n = 49 Observational, transversal,
analytical study Swimming pool

Performing 25 m all-out sprints at
front-crawl, backstroke, breaststroke,
and butterfly (counterbalanced
randomly assigned crossover design),
each one at a full stroke (FS); only the
arms’ stroke and only leg kicking in a
total of 12 bouts at 6 per day.

Bisi et al., 2019 [26]

7 groups of different ages (n = 15, each group), of which:

• 10 years: 7 F, 10.0 ± 0 years; height 143.0 ±8.0 cm;
weight 38.0 ± 6.0 kg)

• 15 years: 7 F, 15.0 ±0.0 years; height 170.0 ± 7.0 cm;
weight 62.0 ± 11.0 kg)

Observational, transversal,
analytical study School

Walking at their self-selected speed in
NW and TW back and forth along a 10 m
long tapeline on the floor.

F: Female; NW: normal walking; TW: tandem walking.

Table 3. Assessment instruments, kinematic and kinetic variables, and nonlinear measures.

Author, Year Assessment Instrument Kinematic and/or Kinetic Variables Nonlinear Measures

Hausdorff et al., 1999 [23] Two force-sensitive switches (placed inside the right shoe): 1
underneath the heel and 1 underneath the ball of the foot.

Spatiotemporal parameters:

• Walking velocity (m/s)
Temporal parameters:
• Stride time (s)

Temporal structure measures:

• Detrended fluctuation analysis (DFA)

Pau et al., 2012 [27] Force plate Footscan1 0.5 system (RS Scan
International, Belgium).

Kinetic variables:
• COP mean velocities: AP and ML directions (m/s)

• Complexity index
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Table 3. Cont.

Author, Year Assessment Instrument Kinematic and/or Kinetic Variables Nonlinear Measures

Rathleff et al., 2013 [22]

Electronic uniaxial goniometer (BioVision, Werheim,
Germany): placed around the tibia and femur.Two-foot
switches: 1 under the heel and 1 under the
halluxElectromyography (BioVision, Werheim, Germany):
bipolar surface electrodes (Ambu A/S, Neuroline, Ballerup,
Denmark) were placed on the muscle bellies of VM and VL
with an interelectrode distance of 2 cm.A portable handheld
dynamometer (Power track II commander, Chiroform, Viborg,
Denmark) was positioned perpendicularly to the anterior
aspect of the tibia, 5 cm proximal to the medial malleolus.

Spatiotemporal parameters:
• Cadence (steps/m)
Temporal parameters:
• Stance phase time (s)
Joint kinematic:
• Knee (º)
Electromyography activity:
• Vastus medialis
• Vastus lateralis
(Magnitude by root mean square (mV))Kinetic variables:
• Maximal quadriceps torque (Nm)

• Sample Entropy (SEn): values of sEMG from
vastus medialis and vastus lateralis muscles at
the start, middle, and end of the stair descent.

Barbosa et al., 2015 [28]

Speedometer (Swim speedometer, Swimsportec, Hildesheim,
Germany), placed on the forehead wall of the swimming pool,
about 0.2 m above the water surface. Its cable was attached to
the swimmer’s hip.

Spatiotemporal parameters:
• Swimming velocity (m/s)
• Horizontal velocity of the hip (m/s)
• Speed fluctuation (dimensionless)
Temporal parameters
• Stroke length (m)
• Stroke frequency (dimensionless)

Temporal structure measures:

• Approximate entropy

Bisi and Stagni, 2016 [24] Two tri-axial wireless inertial sensors (OPALS, Apdm, USA): 1
placed on the lower back and 1 placed on the right leg.

Spatiotemporal parameters:
• Trunk acceleration (m/s2)—vertical (V), anteroposterior

(AP), and mediolateral (ML) components
• Right leg acceleration (m/s2)

• Multiscale entropy (MSE): applied separately
to the AP, vertical (V), and ML direction of the
collected trunk acceleration (SEnV, SEnAP,
and SEnML)

Vicinanza et al., 2018 [30]

Two 3D motion capture systems (CODA) sampling at 100 Hz
(CODAmotion, Charnwood Dynamics Ltd., UK).Active
markers were placed on the lateral aspect of each participant’s
right side:mid forearm, greater trochanter, femoral condyle,
lateral malleolus, fifth metatarsophalangeal, and the centre of
the underside of the bar.

Joint kinematic:

• Shoulder, elbow, hip, knee, ankle, and foot (º)

• Correlation dimension
• Determinism: Poincaré and Recurrent

Quantification Analysis (RQA)
• Frequency analysis: Simpson entropy

Bisi and Stagni, 2018 [25] Two tri-axial wireless inertial sensors (OPALS, Apdm, USA): 1
placed on the lower back and 1 placed on the right leg.

Spatiotemporal parameters:

• Trunk Acceleration (m/s2), for TW and NW: V, AP, and
ML components

• MSE: applied separately to the AP, V, and ML
direction of the collected trunk acceleration
(SEnV, SEnAP, and SEnML), in both NW and TW
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Table 3. Cont.

Author, Year Assessment Instrument Kinematic and/or Kinetic Variables Nonlinear Measures

Hamacher et al., 2018 [21]

Six inertial sensors (MTw2, Xsens Technologies B.V., Enschede,
The Netherlands): 1 placed on the athletes’ back (T1), 1 placed
on mid of a kayak ergometer paddle, 1 placed on the dorsa of
each hand, and 1 placed on the mid of each upper arm.

Joint Kinematic:
• Hands, upper arm, and trunk (º)
Spatiotemporal parameters:
• Hands, trunk, arms, and paddle angular velocity (m/s)

• Largest Lyapunov exponent (using Rosenstein
et al.’s algorithm)

Bartolomeu et al., 2018 [29]
Speedometer (swim speedometer, Swimsportec, Hildesheim,
Germany), placed on a starting block in the headwall of the
swimming pool. Its cable was attached to the swimmer’s hip.

Spatiotemporal parameters:
• Swimming velocity (m/s)
• Speed fluctuation (dimensionless)

• SEn
• Fractal dimension

Bisi et al., 2019 [26]
Three tri-axial wireless inertial sensors (OPALS, Apdm, USA):
1 placed on the lower back (L5 level) and 1 placed on each
shank (above lateral malleolus).

Temporal parameters:

• Stride time (s)
• Stance time (% stride time)
• Double support time (% stride time)
• Fundamental frequency (Hz)

• Short Lyapunov exponent (sLe): sLeV, sLeML,
and sLeAP

• MSE: calculated by assessing SEn on the 3
acceleration components (SEnV, SEnML,
and SEnAP)

• RQA: recurrence rate, determinism, and
averaged diagonal line length for each
acceleration component (calculated on AP and
ML directions)

• Poincaré Plots

DFA: Detrended fluctuation analysis; COP: centre-of-pressure; AP: anteroposterior; ML: mediolateral; SEn: sample entropy; sEMG: surface electromyography; MSE: multiscale entropy;
sLe: short Lyapunov exponent; RQA: recurrent quantification analysis.
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4. Discussion

This scoping review summarized the body of literature concerned with the biome-
chanical data of human movement, and the data were processed and analysed using
nonlinear measures, such as innovative tools, to characterize different aspects of motor
control performances, namely variability, stability, and the complexity of movement.

The gathered information allows a deeper understanding of how research has been
conducted in real contexts among adolescents and which tasks, instruments, kinetic and
kinematic variables, and nonlinear measures have been used in this field.

There is a lack of uniformity in the nomenclature used to describe the nonlinear
measures in the included studies. This fact makes the interpretation and comparison of the
data difficult. Considering that the study of the complexity of daily life tasks is a key point
in human movement analyses, and it is crucial to adopt intervention strategies centred
on nonlinear approaches, given that the human being’s movement is nonlinear, this lack
of standardization of concepts may hinder the translation of these findings into human
movement knowledge. This is a barrier to the implementation of a practice based on recent
evidence, which makes us look at human movement as something that is highly complex,
nonlinear, and endowed with variability.

4.1. Nonlinear Measures and Tasks

Given the complexity of human movement and since its variability translates into
functionality, the analysis of a task using a combination of different nonlinear measures is
important, as it will provide information about the different characteristics of movement
variability [31]. Among the studies included in the review, the synthesis showed entropy
as a measure that is mostly reported in kinetic and kinematic data processing (with an
emphasis on MSE), followed by fractal analysis.

Entropy is a probabilistic complexity measure used in physiological signal analysis to
quantify a time series’ irregularity [32]. While Costa et al. [12] identified the ApE as the most
important entropy measure to assess kinetics and kinematics parameters in children and
adolescents up to the age of 14, our review identified MSE as the most common measure of
entropy reported in the included studies. In comparison with previous entropy measures,
such as SEn or ApE (both identified alone in this review), MSE stands out due to the fact
that it permits the assessment of complexity at shorter and longer time scales relative to
the quantification of the overall complexity of a system [33,34]. It is known that ApE and
SEn and their variants assess entropy only on a time scale, which seems to be insufficient
for conveniently detailing physiological signals [10]. Thus, the choice of MSE in most
of the studies included in our review seems to indicate a growing concern in the use of
measures that can better reflect the complexity of movement, even in a more non-controlled
environment, such as out-of-laboratory assessments [33].

Regardless of the applicability of the MSE, it is important to note that, in the studies
included in this review, SEn and ApE were used when the data were collected in an aquatic
environment. The ApE was used to quantify the regularity of fluctuations over the time
series data [28], although the authors themselves stated that this measure has not been used
previously to assess competitive swimming or any other competitive techniques. The SEn
was applied to provide insight into the randomness of the intra-cyclic variations over the
time series [29]. Preatoni et al. [35] suggested that these measures can be considered particu-
larly appropriate for the study of sports movements, where variability is likely to have both
a deterministic and a stochastic origin. Rathleff et al. [22], on the other hand, reported that
SEn was used as an indicator of the complexity of the surface electromyography (sEMG)
time series during stair walking movements. Based on the above-mentioned studies, it
seems that the term complexity acquired synonyms, such as “randomness” or “regularity”,
in accordance with the research question of the studies. This single- scale entropy analysis
can be used to quantify regularity/predictability/probability/randomness; however, they
do not capture the structural richness and wide-range component characterization of a
complex system operating across multiple spatial and temporal scales [36].
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Regarding the use of entropy measures, fractal analysis is another main nonlinear
measure to highlight. While the included studies that used fractal analysis focus on differ-
ent tasks, such as gait, swimming, and long swing, it seems to share common ground with
the comparison of the same fractal characteristics. Since it is known that fractal analysis
aims to quantify self-similarity and fractal or multifractal-like behaviours [37], this choice
seems fully justified by the fact that it exhibits a statistical probability of self-similarity
and, therefore, fractal-type behaviour. In two studies, fractal analyses, specifically fractal
dimension and correlation dimension, were combined with entropy or RQA measurements,
respectively. The fractal dimension was calculated by using Higuchi’s algorithm, and
it is a suitable measure for time series data analyses, providing information about the
intra-cyclical complexity and the irregularity of the variations in a given series [29]. Bar-
tolomeu et al. [29] showed that swimming exhibits nonlinear properties and that the fractal
dimension differs depending on the style of swimming and the level of specialization of the
athlete. On the other hand, Vicinanza [30] applied the correlation dimension to calculate
the fractal dimension of a time series in gymnastics [38]; moreover, while the participants
looped the high bar, the findings showed that the dynamical degrees of freedom of the
centre-of-mass in the skilled performance were reduced compared to those of novices,
representing a more efficient and predictive technique rather than an exploratory one.
Therefore, it seems that this measure can contribute to an improved understanding of the
level of complexity of a cyclic movement that a subject develops relative to a specific skill
in clinical practice.

Concerning the quantification of the local dynamic stability of complex nonlinear sys-
tems, the LLyE, which allows quantifying the rate of trajectory convergence or divergence
in an n-dimensional state phase, was the measure applied in walking (NW and TW) [26]
and performing paddling [21]. Both studies calculated the LyE using the algorithm of
Rosenstein [39], which is the most frequently used algorithm in biomechanical studies [40].
Indeed, a review on gait demonstrated that 79% of the studies among young participants
used Rosenstein’s method to calculate the LyE [41]. Raffalt et al. [42] described that its
effectiveness is highly dependent on the applied times series normalization procedure,
which did not happen in this study during the walking analysis [26]. Bisi, Tamburini, and
Stagni [26], in order to complement the LyE and entropy measures, also applied the RQA to
quantify the pattern regularities on NW and TW by using the calculation of the recurrence
rate (its simplest measure) [43], determinism (which reflects the predictability/regularity
of a time series) [44], and averaged diagonal line length. Assuming that the temporal
gait parameters are nonlinear, nonstationary, and noisy by nature, and the RQA does not
rely on assumptions, such as nonlinearity, nonstationarity, and noiselessness, and works
well on short-length gait time series [45], this nonlinear measure helps us understand the
periodicity and randomness of the gait.

4.2. Assessment Instruments and Kinematic and Kinetic Variables

Inertial measurement units (IMUs) were the preferred instruments [21,24–26] used to
evaluate the kinematic data during walking or paddling. Moreover, foot switches were
used during walking [23] or stair descent walking [22]. The motion capture system was
used only when the data collection was carried out in a training centre [30]. Currently, it
is known that wearable systems allow physiotherapists and other professionals working
with movement to assess human movement in a more robust, rigorous, valid, and reliable
manner in a real context [46]. The number of IMUs or their placement was not consistent
between the studies; however, in the gait analysis, the right leg and upper/lower back were
always analysed. It should be noted that none of these articles presented an explanation
for the choice of the right leg for the placement of the IMU. However, it is known that as
gait is a symmetrical activity, the use of one sensor only allows us to improve mobility and
reduces power consumption [47].

A higher variety of kinematic outcomes was observed, and as expected, the most
pointed outcomes were related to spatiotemporal parameters. Some authors propose
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combining these variables with joint kinematics or temporal parameters. Indeed, the
sensor-based movement analysis generates a large volume of kinematic data for the sagittal,
transverse and frontal planes, and joints simultaneously [48].

Regarding kinetic data, the studies included in this review analysed the COP mean
velocity and maximal quadriceps torque using a force plate [27] and portable handheld
dynamometers [22], respectively. The force plate is a gold standard in the kinetic analysis
of human movement in several functional tasks, and it is a reference in the comparison
of measurements obtained with other instruments and, therefore, is frequently used in
scientific research [49–51]. However, given the characteristics of the force plates, its use
was only possible because the data collection took place at the adolescents’ school. These
data reinforce the difficulty of collecting kinetic data in a real context, and in fact, only two
studies focused on the kinetics of human movement [22,27].

Some limitations should be highlighted. First, the search was limited to four databases.
Hence, we cannot exclude the possibility of having missed some of the relevant literature.
Second, we deliberately defined a board search strategy to minimize the risk of not identi-
fying key papers. However, it may have restricted the initially identified studies. Moreover,
there was significant heterogeneity between studies in the nomenclature used to describe
nonlinear measures; therefore, our results must be interpreted cautiously.

5. Conclusions

This review demonstrated that, in adolescents assessed in a real context, entropy
measures are the preferred ones when studying the complexity of human movement,
especially when examining multiscale entropy. Over the years, authors have shown care in
combining different measures, namely entropy measures and fractal analysis.

The non-laboratory contexts identified were schools and training centres (either on
the ground or in aquatic environments). The kinematics of human movement has been the
subject of more studies compared to kinetics, with a focus on walking.

Future Directions

Despite the interesting studies included in this review, there are significant gaps in
knowledge that remain in the literature on adolescent movement analyses that benefit
from additional research. Gait is the most-studied task; however, there is a wide range
of tasks, complex in itself, that was not studied in a real context. Exploratory studies
assessing tasks, such as reaching, sit-to-stand, and stand-to-sit, which could contribute to
an improved understanding and monitoring of motor development in adolescence due to
their representativeness in daily life, are clearly needed.

Furthermore, although the world of nonlinear measurements is continuously growing,
the definition of the objectives of the studies centred on the standardization of concepts
can be presented as a suggestion for future investigations. Well-designed studies with stan-
dardised concepts, measures, and assessment protocols are needed for a better translation
of knowledge into clinical practice. We also suggest research focusing on the kinetics of
human movement.
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