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Abstract: Photovoltaic (PV) cell defect detection has become a prominent problem in the development
of the PV industry; however, the entire industry lacks effective technical means. In this paper, we
propose a deep-learning-based defect detection method for photovoltaic cells, which addresses two
technical challenges: (1) to propose a method for data enhancement and category weight assignment,
which effectively mitigates the impact of the problem of scant data and data imbalance on model
performance; (2) to propose a feature fusion method based on ResNet152–Xception. A coordinate
attention (CA) mechanism is incorporated into the feature map to enhance the feature extraction
capability of the existing model. The proposed model was conducted on two global publicly available
PV-defective electroluminescence (EL) image datasets, and using CNN, Vgg16, MobileNetV2, Incep-
tionV3, DenseNet121, ResNet152, Xception and InceptionResNetV2 as comparative benchmarks, it
was evaluated that several metrics were significantly improved. In addition, the accuracy reached
96.17% in the binary classification task of identifying the presence or absence of defects and 92.13% in
the multiclassification task of identifying different defect types. The numerical experimental results
show that the proposed deep-learning-based defect detection method for PV cells can automatically
perform efficient and accurate defect detection using EL images.

Keywords: electroluminescence images; deep learning; defect detection; feature fusion

1. Introduction

In the past decade, solar PV energy, as a clean energy source, has gained considerable
attention and has been developed greatly worldwide due to the increasing problems of
environmental pollution and the energy crisis [1]. Currently, as a key renewable energy
generation technology, PV power generation has achieved rapid development and has
become a clean, low-carbon form of energy with great price competitiveness in many
countries. The International Energy Agency (IEA) reports that from 2010 to 2021, global
PV capacity increased from 17 GWdc to 172 GWdc, and by 2021, global PV installations
increased by 19% annually, with the total cumulative installed PV capacity reaching at
least 939 GWdc [2]. In particular, China’s solar energy consumption is expected to reach
33.0 Mtoe by 2023 [3]. However, the optimization, improvement and operating costs of PV
power plants limit the long-term healthy development of the entire PV industry, of which
PV cell defect detection has become a prominent problem.

In fact, the production, processing and application of PV cell modules will produce
various types of defects. As shown in Figure 1, contamination during the manufacturing
process for PV cells can result in issues including dark cells, broken grids, fractures, lobes
and chipped corners; in addition, PV cells may have hot spots and short circuits in opera-
tion [4]. Various defects in PV cells can lead to lower photovoltaic conversion efficiency and
reduced service life and can even short circuit boards, which pose safety hazard risks [5].
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As a result, PV cell defect detection research offers a crucial assurance for raising the caliber
of PV products while lowering production costs.
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[10], etc. EL imaging is frequently utilized in solar cell surface detection studies because it 
is rapid, non-destructive, simpler and more practical to integrate into actual manufactur-
ing processes [11]. EL imaging is mainly based on the electroluminescence principle of 
silicon materials for detection. By adding forward bias to a crystalline silicon cell module, 
the module will emit light of a certain wavelength, and a charge-coupled device image 
sensor can capture the light in this wavelength range and image it [12]. In order to improve 
the quality and efficiency of PV defect detection and promote the sustainable develop-
ment of the PV industry and new energy applications, the use of cutting-edge computer 
technology to automatically perform the intelligent detection of defects is a necessary 
technical means. With the gradual deepening and improvement of image analysis tech-
nology and deep learning technology, the combination of computer vision technology and 
surface defect detection is becoming more and more closely applied. 

In many fields, including computer vision and speech recognition [13], deep learning 
has achieved considerable success since it was first introduced by Hinton’s research team 
[14]. Deep learning methods far outperform traditional image processing algorithms in 
terms of accuracy and performance for tasks such as target detection and image recogni-
tion. In 2012, deep learning techniques made a large impact in machine vision, are widely 
used in various industrial scenarios and have become the mainstream methods for defect 
detection, e.g., AlexNet [15], VGG [16], GoogLeNet [17], ResNet [18], DenseNet [19], Mo-
bileNet [20], YOLO [21], etc. Defect detection methods based on deep learning technology 
with high accuracy and no damage can satisfy the needs of industrial application sites. 

Deep learning methods have steadily been applied to industrial defect detection 
studies in recent years, and many scholars have studied the automatic detection of PV cell 
defects based on EL imaging methods. Deitsch et al. [22] proposed two deep-learning-
based methods for the automatic detection of PV cell defects with convolutional neural 
networks (CNNs) and SVMs; the results showed that CNN classifier detection has higher 
accuracy. Rahman et al. [23] proposed CNN architecture and CNN integration; integrated 
learning not only improves accuracy but also reduces the risk of relying on a single model. 
However, when the CNN level is too deep, using BP propagation to modify the parame-
ters will change the parameters near the input layer more slowly. Using the gradient de-
scent algorithm will easily make the training results converge to the local minimum in-
stead of the global minimum, and the pooling layer will lose a lot of valuable information 
and ignore the correlation between the local and the whole. A deep-learning-based defect 
diagnosis model was proposed, and a Hessian-matrix-based defect feature extraction 
method and a multi-scale line detector-based defect feature enhancement method were 
used to improve the performance, achieving a classification accuracy of 93% [24]. Akram 
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To detect defects on the surface of PV cells, researchers have proposed methods such as
electrical characterization [6], electroluminescence imaging [7–9], infrared (IR) imaging [10],
etc. EL imaging is frequently utilized in solar cell surface detection studies because it is
rapid, non-destructive, simpler and more practical to integrate into actual manufacturing
processes [11]. EL imaging is mainly based on the electroluminescence principle of silicon
materials for detection. By adding forward bias to a crystalline silicon cell module, the
module will emit light of a certain wavelength, and a charge-coupled device image sensor
can capture the light in this wavelength range and image it [12]. In order to improve the
quality and efficiency of PV defect detection and promote the sustainable development of
the PV industry and new energy applications, the use of cutting-edge computer technology
to automatically perform the intelligent detection of defects is a necessary technical means.
With the gradual deepening and improvement of image analysis technology and deep
learning technology, the combination of computer vision technology and surface defect
detection is becoming more and more closely applied.

In many fields, including computer vision and speech recognition [13], deep learn-
ing has achieved considerable success since it was first introduced by Hinton’s research
team [14]. Deep learning methods far outperform traditional image processing algorithms
in terms of accuracy and performance for tasks such as target detection and image recogni-
tion. In 2012, deep learning techniques made a large impact in machine vision, are widely
used in various industrial scenarios and have become the mainstream methods for defect
detection, e.g., AlexNet [15], VGG [16], GoogLeNet [17], ResNet [18], DenseNet [19], Mo-
bileNet [20], YOLO [21], etc. Defect detection methods based on deep learning technology
with high accuracy and no damage can satisfy the needs of industrial application sites.

Deep learning methods have steadily been applied to industrial defect detection
studies in recent years, and many scholars have studied the automatic detection of PV cell
defects based on EL imaging methods. Deitsch et al. [22] proposed two deep-learning-
based methods for the automatic detection of PV cell defects with convolutional neural
networks (CNNs) and SVMs; the results showed that CNN classifier detection has higher
accuracy. Rahman et al. [23] proposed CNN architecture and CNN integration; integrated
learning not only improves accuracy but also reduces the risk of relying on a single model.
However, when the CNN level is too deep, using BP propagation to modify the parameters
will change the parameters near the input layer more slowly. Using the gradient descent
algorithm will easily make the training results converge to the local minimum instead of the
global minimum, and the pooling layer will lose a lot of valuable information and ignore
the correlation between the local and the whole. A deep-learning-based defect diagnosis
model was proposed, and a Hessian-matrix-based defect feature extraction method and a
multi-scale line detector-based defect feature enhancement method were used to improve
the performance, achieving a classification accuracy of 93% [24]. Akram et al. [25] proposed
a new method for identifying EL image defects using an optical CNN structure, combining
data enhancement and regularization strategies to expand the training dataset; the model
achieved a classification accuracy of 93.02% and consumed less computational power
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and time. Huang et al. [26] proposed a multi-round PSOPruner to automatically search
for the optimal DCNN pruning scheme, which deployed the PSO algorithm as a search
engine while employing a multi-round trick to speed up and simplify the search process.
Wang et al. [27] proposed a lightweight dual-stream defect detection network (DDDN)
with a classification accuracy of 88.26%, accelerated using a field-programmable gate
array (FPGA) based on a developed dual-stream parallel computing architecture (DPCA).
Researchers have continued to improve on a single deep learning model to optimize the
training process and reduce computational consumption time; however, model training
relies on a large number of training datasets to ensure a balanced distribution of different
types of data. In recent years, migration learning has shown satisfactory results with limited
training datasets and on smaller, more practical datasets. Demirci et al. [28] proposed a
defect detection model based on migration learning. It showed good results in processing
EL images with simple backgrounds; however, the accuracy decreased significantly in
complex backgrounds. Tang et al. [29] proposed an evolutionary algorithm which combines
traditional image processing techniques, deep learning, migration learning and deep
clustering; this fine-tuned model can detect new defects with high accuracy. Fan et al. [30]
proposed a migration learning and ResNet-based microcrack detection method, which
combines feature fusion and incorporates a self-attention mechanism to aggregate low-level
features and deep semantic strong features to significantly improve defect detection.

In summary, deep learning techniques have achieved good results in the detection of
defects in PV cells but can only basically satisfy the requirements of practical industrial
scenarios; moreover, two difficulties in the existing research still need to be further ad-
dressed: (1) It is difficult to collect data from the actual application scenarios of PV cells,
especially samples with defects, and there are flaws of small and unbalanced datasets;
(2) traditional detection models and existing models based on the accuracy and efficiency
of defect detection cannot fully achieve the practical requirements.

To solve the above problems, this paper proposes a deep-learning-based solution for
the automatic defect detection of PV modules based on electroluminescent images, with
the following key contributions.

(1) Adopting data augmentation and weight class to mitigate the effects of small data
volume and data imbalance on the model performance, respectively.

(2) The fusion network based on ResNet152–Xception enhances the model’s feature
extraction capability. Hybrid pooling is introduced to avoid the defects of traditional
single pooling.

(3) Embedded CA to effectively improve the classification accuracy of the model.
(4) We experimented on two global public datasets to validate the model from the

perspective of dichotomous and multiclassification tasks, respectively. In addition, to the
best of our knowledge, this is the first time that the model has been applied to a dataset
with no defects and nine defect types in studying the PV defect identification problem.

The rest of this paper is organized as follows. The models and methods used for the
experiments are given in Section 2. The experimental steps and details are given in Section 3.
The results obtained from the experiments are reported and discussed in Section 4. Finally,
conclusions and future work are given in Section 5.

2. Methodology

Data are the basis of deep learning method research, and solving the small sample
problem and imbalance problem is the most critical research point in PV cell defect recogni-
tion. Data enhancement techniques are widely used in the field of industrial defect surface
detection; however, defect forms designed for a specific scene are difficult to generalize
to other scenes and cannot fundamentally solve the problem. Therefore, the introduction
of a migration learning model to achieve PV cell defect recognition enhances the feature
extraction ability of the model to achieve a better classification effect on the one hand; on
the other hand, the weights are directly loaded into the new model to reduce the cost of
deep neural network training.
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ResNet is optimized in terms of network structure, utilizing residual blocks to ensure
good network performance even in deeper networks. In addition to the network depth
problem, how to extend the neural network without increasing the computational cost is a
key issue. Inception sets differently sized convolution kernels in each layer of the model and
performs dimensionality reduction with 1× 1 convolution. Xception improves on Inception
by mapping spatial correlations for each output channel separately and then performs
1 × 1 convolution to obtain cross-channel correlations, separating the relationships on
the channels from the spatial relationships for identification. Therefore, we chose to fuse
the features of the two neural network models, ResNet and Xception, to combine the
feature representations extracted from the deeper network level by ResNet and from the
wider network level by Xception, enhancing the information extraction capability for yet
defective regions.

Figure 2 shows the overall framework diagram of our experiment design. First, the
images input to the training set were augmented with data enhancement method; second,
the preprocessed data were input to ResNet152 and Xception pre-training models to
extract features, and the features are pooled using hybrid pooling method; then the hybrid
pooled features were combined along the spatial dimension to complete the feature fusion;
subsequently, the features are fused with CA, and the location information is embedded
into the channel attention; finally, Classweight is introduced in the classification layer to
weight the classification probabilities of different categories, and the maximum probability
is selected to input the classification prediction results.
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2.1. Transfer Learning

Transfer learning [31] exploits the correlation between data to transfer the knowledge
learned by the model on the source domain, Ds, and source task, Ts, to the target domain,
Dt, and target task, Tt, and to enhance the prediction of the target task learning function
ft(·) with the knowledge of Ds and Ts in the case that Ds 6= Dt or Ts 6= Tt. The domain
consists of the feature space X and the probability distribution P(X), which generates these
data, and the task consists of the labeling space Y and the learning function f(·).

In this paper, we introduce a model-based learning approach in migration learning,
where the parameters of the already trained model are migrated to the new model to help
with training. The first n layers of the model are frozen and are not involved in training, and
only the last few layers of parameters are trained after copying the weights, thus reducing
the training time cost. The model-based migration learning model is shown in Figure 3.
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2.2. ResNet152 Model

Deep residual networks (such as ResNet) solve the degradation problem caused by
increasing the number of network layers in neural networks by stacking residual structures
and effectively using the information of multiple layers in the network [18]. ResNet forms a
residual unit by partially convolving layers and a short connection and then by stacking the
residual units to form a residual network, which only needs to learn the residual function
during the training process without adding additional parameters and computational
complexity. The residual unit is shown in Figure 4, where X denotes the input of the
residual block; F(X) denotes the mapping result of X after two layers of weights; relu is the
modified linear unit; and the output of the residual block is F(X) + X.
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The ResNet152 model used in this study was a ResNet network with 152 layers, which
is 8 times deeper than VGG-19, but with a lower complexity and better ability to extract
features [32]. The ResNet152 network uses a three-layer convolutional structure to form
one residual network cell, with four feature extraction layers, Conv2_x, Conv3_x, Conv4_x
and Conv5_x, corresponding to 3, 8, 36 and 3 residual network cells, respectively, plus the
input convolutional layer Conv1 and the fully connected convolutional layer FC, for a total
of 152 convolutional layers.
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2.3. Xception Model

Google has proposed an improved Xception (Extreme Inception) to Inception v3, the
ultimate Inception [33]. Depthwise separable convolution is used to replace the convolution
operation in the original Inception v3. The problem of incomplete separation of channel
correlation and spatial correlation is effectively solved, and the model is improved while
maintaining the same number of parameters as InceptionV3.

The Xception network consists of 14 modules, including 36 convolutional layers, of
which except for the first 2 convolutional layers and the convolutional layers connected by
residuals, all adopt depth-separable convolution, and the basic network is constructed by
stacking depth-separable convolution. The introduction of depth-separable convolution
can effectively reduce the number of parameters to reduce the complexity of operations;
moreover, the linear residual connection is used in all modules except the first and the last
module, which can effectively solve the degradation problem caused by the network being
too deep. The output of GlobalAveragePooling in the last module, i.e., a one-dimensional
vector of length 2048, was used in this study.

The structure is shown in Figure 5. (1) Depthwise convolution convolves each input
feature channel individually, assuming that the number of input feature maps is S and
the convolution kernel size is k × k so that each input feature map will correspond to a
separate k × k convolution kernel for convolution and output S feature maps; (2) pointwise
convolution uses a standard convolution of 1 × 1 to correlate the feature channels between
correlation output features.
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2.4. CA

In image feature extraction, attention mechanisms can enhance feature selection.
Position-based attention mechanisms act in two ways: one is by large-scale kernel convolu-
tion, such as squeeze excitation (SE) and the convolutional block attention module (CBAM);
two is to decompose feature images, such as CA.

Compared with the large-scale kernel convolution operation to obtain spatial informa-
tion, decomposing the feature image can make full use of the captured location information
so that the region of interest and the relationship between channels can be accurately
and effectively captured. The overall flow of the CA mechanism module is shown in
Figure 6, which decomposes the feature image into two one-dimensional codes through a
two-dimensional global pool operation to effectively capture the location information and
channel relationship; the specific location of the target is analyzed, and the related feature
values are output.
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The CA structure obtains accurate location information by two-dimensional encoding,
which includes two steps of coordinate information embedding and coordinate attention
generation, and can effectively enhance the performance of the deep network. The CA
mechanism is processed by first encoding each channel along the horizontal and vertical
directions; the calculation process is as follows:

zc =
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j) (1)

In Equation (1), H is the height of the feature map, and W is its width; xc is the feature
map of the cth channel. A pair of direction-aware feature maps of c × 1 × w and c × 1 × h
in size is obtained as:

zh
c =

1
W

W

∑
i=0

xc(h, i) ; zw
c =

1
H

H

∑
j=0

xc(j, w) (2)

In Equation (2), zh
c is the output of the cth channel with height h; zw

c is the output
of the cth channel with width w. The global perceptual field is obtained after the above
transformation, and precise position information can be obtained. After combining the
operations and using the 1 × 1 convolutional transform function F1 to transform them:

f = δ(F1([zh, zw])) (3)

In Equation (3), zh is the output of all channels with height h; zw is the output of all
channels with width w; [zh, zw] is the continued combination operation along the spatial
dimension; δ is the nonlinear activation function; and f is the intermediate feature mapping,
which encodes the spatial information in the horizontal and vertical directions. After
decomposing into f h and f w along the horizontal and vertical dimensions and using the
1 × 1 convolutional transform functions Fh and Fw to transform f h and f w into tensors with
the same number of channels, respectively, the calculation process is:

gh = σ(Fh( f h)) ; gw = σ(Fw( f w)) (4)
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In Equation (4), σ is the sigmoid activation function. After expanding the output gh

and gw as the dimensional weights of vertical and horizontal attention, the output feature
image is:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (5)

In Equation (5), gh
c and gw

c are expanded by gh and gw as the dimensional weights of
vertical and horizontal attention; xc is the feature map of the cth channel; and yc(i, j) is the
output attention-weighted image.

2.5. Feature Fusion

To improve the feature extraction ability of the network and to enrich the feature
expression, this study fused ResNet and Xception. Firstly, the outputs of ResNet and
Xception networks were mixed pooling compared with the traditional pooling; mixed
pooling introduces pooling selection coefficients during the training process, which in turn,
determines the pooling method and changes the rules of pooling adjustment randomly.
This method is better than the traditional single pooling method and is also beneficial in
the prevention of overfitting to a certain extent. Then the features after hybrid pooling are
combined along the spatial dimension, and finally, the fused features are pooled global
averages to complete feature fusion. The feature fusion implementation process is shown
in Equations (6) and (7).

yp
out = GAP

(
yres_mix ⊕ yx_mix

)
(6)

ymix
kij = λ · max

(p,q)∈Rij
xkpq + (1− λ) · 1∣∣Rij

∣∣ ∑
(p,q)∈Rij

xkpq (7)

In Equation (6), yp
out is the output feature map; GAP is the global average pooling;

yres_mix is the output of the ResNet network after hybrid pooling, which indicates the
output of the Xception network after hybrid pooling; and

(
yres_mix ⊕ yx_mix) indicates the

combination operation of yres_mix and yx_mix along the spatial dimension.
In Equation (7), ymix

kij denotes the mixed pooling output value of the rectangular region,
Rij, associated with the kth feature map; λ is a random value of 0 or 1, indicating the choice
of using maximum pooling or average pooling; xkpq denotes the element located at (p, q)
in the rectangular region, Rij, in the kth feature map; and

∣∣Rij
∣∣ denotes the number of

elements in the rectangular region, Rij.

3. Dataset Introduction

In this study, the two global public datasets of EL images used for the experiments
were from the field of photovoltaic power generation. Dataset 1 [34] was a sample of
2624 PV cell images obtained from 44 PV modules with different degrees of defects, of
which 18 modules were monocrystalline and 26 were polycrystalline; in addition, all
samples were normalized by normalizing the size and view angle to 8-bit grayscale images
of 300 × 300 pixels [35]. The critical detail of whether a PV cell is defective or not exhibited
uncertainty due to the possible noise and unknown defect type of PV cells. Therefore, the
image samples in the dataset were expertly labeled as “0%”, “33%”, “67%”, and “100%”, as
four probabilities of the occurrence of PV cell defects. In order to check the performance of
the model in identifying the presence of defects on the PV cell surface, we only selected
two types of data, “0%” (without defects) and “100%” (with defects), to complete the
experiment. Figure 7 shows the number of samples of these two types.
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Dataset 2 [36] was a high-resolution image sample of PV cell defects collected from
actual industrial manufacturing, which was jointly published publicly by the Hebei Uni-
versity of Technology and Beijing University of Aeronautics and Astronautics. Compared
with dataset 1, this dataset had higher resolution and more diverse and comprehensive
types of anomalies, such as different types of defects including cracks (linear and stellate),
broken grids, black cores, unaligned, thick lines, etc. Figure 8 shows the defects in dataset
2. In addition, any distortion issues in the images have been addressed, which helped to
fully validate the model proposed in this paper.
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Therefore, based on the detection of the presence or absence of defects by the model,
we further validated the performance of the model in identifying different types of defects
on the PV cell surface on dataset 2. Figure 9 shows the number of samples with “no defects”,
and the nine defect types in dataset 2.
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According to the distribution of category samples in dataset 1 and dataset 2, two
problems can be found: (1) the number of samples in different categories is unbalanced,
with large disparities; (2) the number of images trained based on deep learning is relatively
small. Therefore, in order to balance the distribution of samples within different categories
and to make full use of the value of limited data, we adopted data enhancement and
category weighting strategies.

3.1. Data Enhancement

Large-scale datasets are an important prerequisite for the successful application of
deep learning techniques. Therefore, in this study, a series of stochastic changes was
applied to the training set using a data enhancement strategy to improve the generalization
ability of the employed deep learning model and to avoid overfitting problems. First,
all images were normalized in order to improve the speed and possibly the accuracy of
gradient descent for optimal solutions. Second, to obtain more images with different defect
patterns, all the images were row–row swapped, randomly flipped vertically and flipped
horizontally. We did not use random cropping and panning because some key regions
that affect the model judgment would be cropped or panned, resulting in the model’s
failure to learn the features during training. Furthermore, the blurring process reduced the
influence of dark areas in EL images, and we randomly chose from Gaussian blur, motion
blur and center blur. Finally, image brightness, contrast and saturation enhancement
techniques were applied to the original EL images to produce new images with different
and useful information.

3.2. Category Weights

As mentioned in the previous section, the dataset in this paper had the problem of
data imbalance, and to address this problem, this study used type weights to weight the
categories; the weight balance formula is shown in Section 3.1. Each sample was given a
different weight value according to the number of samples in its category, and the category
with a small number of samples is weighted more, i.e., the loss of sample misclassification
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is greater, which acts on the loss function during the training process, thus making the
model pay more attention to the category with a small number of samples.

wj =
n_samples

(n_classes ∗ n_samplesj)
(8)

where wj is the weight of category j; n_samples is the total number of samples in the dataset;
n_classes is the number of categories; and n_samplesj is the total number of samples in
category j.

4. Experimental Setting

For dataset partitioning, we selected 80% of the EL images as the training set and
the remaining 20% as the test set; in addition, stratified sampling was used to randomly
partition the original data while preserving the distribution of samples within different
categories in the training and test sets. Table 1 shows the partitioning results of dataset 1,
separated by the type of PV cells, and Table 2 shows the partitioning results of dataset 2.

Table 1. The numbers of dataset 1 given for the 80%/20% training/test split.

Photovoltaic Cell Type Train Test Total

0% 100% 0% 100%

Monocrystalline 470 251 118 62 901
Polycrystalline 737 321 183 81 1322

Total 1207 572 301 143 2223

Table 2. The numbers of dataset 2 given for the 80%/20% training/test split.

Defect Category Train Test Total

black_core 790 197 987
Crack 397 99 496
Finger 938 234 1172

horizontal_dislocation 213 53 266
vertical_dislocation 86 21 107

short_circuit 394 98 492
star_crack 56 13 69
think_line 491 122 613

multiple defects 289 72 361
free_defects 1143 285 1428

Total 4797 1194 5991

The experiments were conducted with Ubuntu OS, an Intel i5-6600 processor, 16 GB
RAM, and Nvidia RTX2080 latform for GPU, and the program was written in Python lan-
guage based on the Tensorflow environment. The optimizer was Adam; the experimental
batch size was set to 16, which means that the number of samples input to the model was 16
for each iteration; the learning rate was initialized to 0.01; the minimum learning rate was
0.0001; the maximum number of iterations was 2000; l2 regularization was introduced to
alleviate overfitting; and the learning rate update strategy was the warm-up phase (warmp-
up) using one-dimensional linear interpolation. The cosine annealing algorithm [36] was
used after the warm-up phase, and the pseudo-code for the learning rate update is shown
in Algorithm 1.
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Algorithm 1 Learning Rate Update Algorithm

1. Input: Learning rate lr; minimum learning rate min_lr; initial learning rate init_lr;
maximum number of iterations τ; warm-up iterations τ *

2. β = 1
3. while Termination conditions are not met, do
4. if β < τ *
5. One-dimensional linear interpolation g = [0,τ *]
6. Update lr = g
7. β = τ *
8. else

9. Update lr = min_lr + (init_lr-min_lr)*((1 + cos(π β
τ ))/2)

10. end if
11. β = β + 1
12. end while
13. Output: Update learning rate lr *

5. Results
5.1. Evaluation Metrics

Accuracy, recall, precision and F1 score are the four metrics commonly used to evaluate
and compare good models; we chose to measure the classification effect and performance
of our proposed model. Notably, for the accuracy, precision, recall and F1 scores, a larger
value represents a better result.

Accuracy is an evaluation metric that approximates a model’s performance across all
classes. It is calculated using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where TP and TN are the number of true positives and true negatives, respectively, and FP
and FN are the number of false positives and false negatives, respectively.

The recall metric is the ratio between the correctly classified positives (true positive)
and total number of positives (true positive and false negative). It is calculated using the
following formula:

Recall =
TP

TP + FN
(10)

Precision is a metric which is calculated as the ratio between true positives and the
total number of positives (true positives and false positives). It is calculated using the
following formula:

Precision =
TP

TP + FP
(11)

The F1 score is a comprehensive evaluation metric which takes the harmonic mean of
recall and precision. It is calculated using the following formula:

F1 score = 2× precision× Recall
precision + Recall

(12)

5.2. Binary Classification Experiments

The surface of the normal PV cell EL images was uniform, although there were
shadow areas or impurities in the background of the images and there were clear textured
backgrounds, which were normal and could not be classified as having defective types,
which puts some pressure on the model to identify defects. The defects on the surface of
abnormal PV cells were different from the background in the image, but these defects were
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generally similar in appearance to the background in the EL image, so it was difficult to
distinguish them.

In this subsection, performance evaluation experiments of the binary classification
task using the final model are presented, including three comparative demonstrations to
verify the effectiveness of the proposed model in the process of identifying the presence
of defects in PV cells. First, the results of data enhancement are introduced to compare
the performance of the model before and after the data enhancement strategy. Second,
the proposed binary classification model was tested and compared with other commonly
used neural network models to analyze the advantages of the proposed model in terms of
quantitative results and qualitative results. Finally, to highlight the power of the proposed
hybrid model again, we compared the model with the advanced PV defect recognition
models in recent years.

5.2.1. Comparison with Data Augmentation

Training deep learning models on small datasets is a major challenge because too
small a training set can risk overfitting the module, which is a problem that needs to be
addressed. Applying our proposed data augmentation strategy to the original training
set gave the neural network model more valuable information to help train a superior
classifier. The data enhancement treatment improved the accuracy of the model based on
reducing the risk of overfitting; this reduced the variance between images and helped the
model learn more representative feature representations, thus significantly improving the
recognition accuracy. Experiments were conducted using ResNet152, Xception and the
model proposed in this paper, and the training set images were enhanced by interchanging
and flipping the image ranks from the image space level and by randomly varying the image
brightness, contrast and saturation from the pixel value level. From the results presented
in Tables 3 and 4, the data enhancement strategy had the highest accuracy, leading to
the conclusion that the chosen data enhancement operation is effective in improving the
model performance.

Table 3. Results before using the enhancement procedure.

Model Accuracy F1 Score Recall Precision

ResNet152 0.7973 0.7313 0.7110 0.8089
Xception 0.8288 0.7914 0.7765 0.8182

Our model 0.9414 0.9317 0.9238 0.9410

Table 4. Results after using the enhancement procedure.

Model Accuracy F1 Score Recall Precision

ResNet152 0.8221 0.7702 0.7476 0.8346
Xception 0.8694 0.8385 0.8174 0.8789

Our model 0.9617 0.9557 0.9516 0.9603

5.2.2. Comparison with Other Methods

To demonstrate the performance of our proposed model, we compared our model with
the following methods for PV cell defect detection: (1) CNN, (2) VGG16, (3) MobileNetV2,
(4) InceptionV3, (5) DenseNet121 and (6) InceptionResNetV2.
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Quantitative Comparison

The quantitative results are shown in Table 5. In the experiments, our model was
compared on the image classification evaluation metrics accuracy, F1 score, recall and
precision. Notably, our model was based on ResNet152 and Xception, and the results show
that it effectively utilizes the advantages of both to extract more representative features
from images. Compared with six typical classification models, our model shows significant
improvements in all four evaluation metrics. Notably, for a fair comparison, all these
methods were retrained using the same settings as the proposed method.

Table 5. Comparison with other methods.

Model Accuracy F1 Score Recall Precision

CNN 0.7838 0.7184 0.7010 0.7786
Vgg16 0.8401 0.8115 0.8031 0.8226

MobileNetV2 0.8739 0.8510 0.8409 0.8645
InceptionV3 0.8896 0.8720 0.8672 0.8773
DenseNet121 0.8761 0.8546 0.8462 0.8651

InceptionResNetV2 0.8896 0.8682 0.8544 0.8883
Our model 0.9617 0.9557 0.9516 0.9603

Qualitative Comparison

The qualitative results are shown in Figure 10. To further validate that our model
is more focused on the category imbalance problem, the confusion matrix was used to
compare our model with other classification models more intuitively. In the test dataset,
the distributions of both defect-free and defective types of data were unbalanced, and
the amount of defect-free data was twice as large as that of defective data, thus requiring
a classification model with better performance to make accurate judgments. Both CNN
and ResNet152 models performed poorly on the entire test dataset, and the number of
incorrect classifications was greater than the number of correct classifications. Although
the other six models had improved various evaluation metrics compared with the first two
models, they still performed poorly on the “defective” type, which exhibited a relatively
small percentage of data. Figure 10i shows the classification performance of our model
in a confusion matrix. The classification accuracy of our model in the “flawed” category
was significantly improved, and the confusion matrix comparison results were sufficient to
demonstrate a significant improvement in the accuracy of our model compared with the
traditional classification model.
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5.2.3. Comparison with State-of-the-Art Methods

Our model was compared with some of the more effective methods for PV defect
identification in recent years. For a fair comparison, these methods were chosen for
experimentation and evaluation on the same dataset as our proposed model; the results of
the method comparison are shown in Table 6.

Table 6. Comparison with state-of-the-art methods.

Reference Model Accuracy

[35] SVM 82.44%
[37] L-CNN 89.33%
[25] Light CNN 93.02%
[37] DFB-SVM 94.52%
[24] Hessian matrix 93.00%

Our model 96.17%

(1) SVM [3]: the SVM was trained based on various features extracted from the
EL images of solar cells; (2) L-CNN: a lightweight CNN architecture containing three
convolutional layers, three pooling layers and a batch normalization layer added after the
third pooling; (3) Light CNN: a novel convolutional neural network architecture which
used light to automatically detect PV cell defects in electroluminescent images; (4) DFB-
SVM: a CNN which extracted feature vectors of images and classified the extracted features
with various combinations of connections using different machine learning methods; (5)
Hessian matrix: a defect feature extraction method based on the Hessian matrix and a
defect feature enhancement method based on a multi-scale line detector were used to
improve the performance.
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5.3. Multi-Classification Experiments

This subsection presents experiments on the performance evaluation of the multi-
classification task using the final model, including three comparative demonstrations to
verify the effectiveness of the proposed model in the process of identifying different defect
types in PV cells. First, the proposed multi-classification model was tested and compared
with other commonly used neural network models in terms of four common classification
evaluation metrics; in addition, we demonstrated the performance effectiveness of all
models on each type of data in detail. Second, to ensure the authenticity of the experimental
process and the stability of the models, we demonstrate the changes in each model during
the training process in the form of graphs. Finally, we conducted ablation experiments on
the proposed models to again demonstrate the effectiveness of the models in the multi-
classification task.

5.3.1. Comparison with Other Methods

There has been considerable research carried out on the surface defects of PV cells in
recent years, but most of the data used in these experiments only cover four or five types of
defects; thus, it was particularly important to apply public datasets covering more different
defect types in our study. The more types of defects, the more pressure on the model’s
ability to identify them. In addition, the data of particularly subtle defect types, such as
“think_line” and “crack”, pose a significant challenge to the model.

We compared the final model with the eight commonly used neural network models
in terms of both comprehensive and detailed evaluation. Table 7 clearly shows that our
proposed model had a significant improvement effect on the four classification evaluation
indexes compared with other models, and the recognition accuracy reached 92.13%. These
traditional models performed poorly on the multi-classification task in terms of classifica-
tion ability and did not effectively address the problems brought by the solution dataset to
meet the needs in practical application scenarios.

Table 7. Comparison with common methods.

Model Accuracy F1 Score Recall Precision

DenseNet121 0.7655 0.7244 0.7108 0.7482
MobileNetV2 0.7680 0.7298 0.7186 0.7479

Xception 0.7379 0.6792 0.6678 0.7077
ResNet152 0.6809 0.5837 0.5933 0.6153

Vgg16 0.7772 0.7326 0.7181 0.7751
InceptionV3 0.7605 0.7113 0.6945 0.7540

CNN 0.6432 0.5737 0.5824 0.6111
InceptionResNetV2 0.7898 0.7662 0.7551 0.7819

Our model 0.9213 0.8898 0.8961 0.8872

In order to be able to more clearly observe the details of the significant improvements
in our proposed models, Table 8 details the recognition accuracy results of all models for
each defect type; notably, the training parameters and datasets are identical for all models,
and the bolded values in each column of the table mean the best results for that type.

The images exhibiting “black_core”, “horizontal_dislocation” and “short_circuit”,
three different defect types in the images, had good discrimination, and all the models could
accurately extract the feature representations of them in training, achieving good recogni-
tion results. The images exhibiting “finger”, “vertical_dislocation” and “free_defects” were
not as clear; however, our proposed model still performed better, having more power to
extract information from the image, which was the desired result. The other four types of
defects were not as conducive: the defects were more similar to the background texture, and
the “think_line” defects were particularly subtle and challenging to identify with the naked
eye. However, our model had the advantage of its feature fusion, and the powerful feature
representation extraction capability significantly improved the classification performance.
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Table 8. Recognition accuracy of different models for each defect type.

Model D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

DenseNet121 0.9848 0.5152 0.8205 1.0000 0.9048 1.0000 0.3077 0.4590 0.3333 0.7825
MobileNetV2 0.9898 0.4949 0.7778 1.0000 0.9524 1.0000 0.3077 0.4426 0.4028 0.8175

Xception 0.9949 0.4949 0.7393 1.0000 0.9048 1.0000 0.1538 0.4098 0.1806 0.8000
ResNet152 0.9898 0.4141 0.7564 1.0000 0.9048 1.0000 0 0.1066 0 0.7614

Vgg16 0.9797 0.6768 0.7991 1.0000 0.9048 1.0000 0.2308 0.3279 0.4306 0.8316
InceptionV3 0.9949 0.5354 0.7778 1.0000 0.9048 0.9898 0.2308 0.4262 0.2639 0.8211

CNN 0.9645 0.4343 0.7521 1.0000 0.9048 0.9898 0.0769 0.0492 0.0139 0.6386
InceptionResNetV2 0.9898 0.5253 0.7778 1.0000 0.9048 0.9898 0.5382 0.5000 0.4722 0.8526

Our model 1.0000 0.8081 0.9188 1.0000 0.9524 1.0000 0.8462 0.9016 0.5694 0.9649

Note: D1–D10 represent 10 types of defects: black_core, crack, finger, horizontal_dislocation, vertical_dislocation,
short_circuit, star_crack, think_line, multiple defects and free_defects, respectively.

5.3.2. Training Process

Figures 11–14 show the changes in two metrics, accuracy and val_accuracy, of CNN,
ResNet152, Xception, and the final model during the training process, respectively. Al-
though the CNN and ResNet152 models eventually converged to a certain value, there were
fluctuations throughout the whole process. Even the Xception model started to converge
after 40 rounds of training and performed more stably, but the final convergence did not
reach the ideal state. Our proposed model exhibited a large fluctuation in the early training
period, and the model automatically adjusted the parameters, started to converge after
56 rounds of training, and was more stable in the late training period, with a significant
improvement in the convergence value compared with other models.
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5.3.3. Ablation Study 
To further verify the effectiveness of the model proposed in this paper, we performed 

ablation experiments to analyze the performance of our model on various metrics. The 
results are shown in Table 9. We fused the features of two models, ResNet152 and Xcep-
tion, and added CA to significantly improve the parameters of the model in all aspects of 
metrics. For the problem of scant and unbalanced data, using a data enhancement strategy 
and class_weight approach to balance the weight of dataset types, our model greatly alle-
viated the problem of small samples of a certain class affecting the performance of the 
model and effectively solves the problem of unbalanced data classification, which is suf-
ficient to prove that our proposed model to identify PV cell defects is effective. 
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5.3.3. Ablation Study

To further verify the effectiveness of the model proposed in this paper, we performed
ablation experiments to analyze the performance of our model on various metrics. The
results are shown in Table 9. We fused the features of two models, ResNet152 and Xception,
and added CA to significantly improve the parameters of the model in all aspects of metrics.
For the problem of scant and unbalanced data, using a data enhancement strategy and
class_weight approach to balance the weight of dataset types, our model greatly alleviated
the problem of small samples of a certain class affecting the performance of the model and
effectively solves the problem of unbalanced data classification, which is sufficient to prove
that our proposed model to identify PV cell defects is effective.

Table 9. Results of the ablation experiments.

Model Accuracy F1 Score Recall Precision

ResNet152 0.6809 0.5837 0.5933 0.6153
Xception 0.7379 0.6792 0.6678 0.7077

ResNet152 + Xception 0.8702 0.8689 0.8624 0.8349
ResNet152 + Xception +

class_weight 0.8875 0.8625 0.8478 0.8598

ResNet152 + Xception +
class_weight + Data Enhancement 0.9032 0.9143 08970 0.8744

Our model 0.9213 0.8898 0.8961 0.8872
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6. Conclusions

In this paper, we have proposed a framework for the automatic detection of defective
PV modules in EL images with a limited sample size based on deep learning. First, an
effective data enhancement and category weight assignment method is proposed, which
can generate a large number of high-resolution EL images for model training and solve
the problem of uncategorized samples in the dataset. Then a hybrid neural-network-based
defect detection model is proposed, which also combines the advantages of ResNet152
and Xception networks, and uses a feature fusion algorithm to extract more effective
features of the images and incorporates attention to enhance the detection capability of the
model. The experimental results demonstrate that our proposed model completed binary
classification experiments and multi-classification experiments on two global public PV
defect datasets, with significant improvements in several evaluation metrics compared
with eight common single models. The numerical experimental results demonstrate the
effectiveness of the model.

In the future, there are some directions in the EL field that deserve further research
and development. First, more defective EL images need to be considered to increase the
generalization capability of the model to assess the healthy operating state of PV cells. Then
the rapid development of EL sensors and high-performance computing hardware can be
used to deploy the models in practical large-scale PV plant application scenarios.

7. Data Availability

The following information was supplied regarding data availability:
Dataset 1 is available at GitHub: https://github.com/zae-bayern/elpv-dataset (ac-

cessed on 21 August 2022).
Dataset 2 is available at http://aihebut.com/col.jsp?id=118 (accessed on 15 June 2022).
The code is available at GitHub:
https://github.com/Zayn-Wang/Photovoltaic-cell-surface-defect-detection (accessed

on 20 December 2022).
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