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Abstract: Retinopathy of prematurity is an ophthalmic disease with a very high blindness rate.
With its increasing incidence year by year, its timely diagnosis and treatment are of great significance.
Due to the lack of timely and effective fundus screening for premature infants in remote areas, leading
to an aggravation of the disease and even blindness, in this paper, a deep learning-based collaborative
edge-cloud telemedicine system is proposed to mitigate this issue. In the proposed system, deep
learning algorithms are mainly used for classification of processed images. Our algorithm is based
on ResNet101 and uses undersampling and resampling to improve the data imbalance problem
in the field of medical image processing. Artificial intelligence algorithms are combined with a
collaborative edge–cloud architecture to implement a comprehensive telemedicine system to realize
timely screening and diagnosis of retinopathy of prematurity in remote areas with shortages or a
complete lack of expert medical staff. Finally, the algorithm is successfully embedded in a mobile
terminal device and deployed through the support of a core hospital of Guangdong Province.
The results show that we achieved 75% ACC and 60% AUC. This research is of great significance for
the development of telemedicine systems and aims to mitigate the lack of medical resources and their
uneven distribution in rural areas.

Keywords: retinopathy of prematurity (ROP); artificial intelligence; edge–cloud collaboration;
deep learning; object detection; telemedicine

1. Introduction

Retinopathy of prematurity (ROP) is a disease of immature retinal blood
vessels [1] and is an important cause of vision impairment and even irreversible blindness
in premature infants. It mainly occurs in premature infants with low body weight and
insufficient gestational age. In a survey of about 15 million premature infants, about 1.2%
exhibited ROP, and about 30,000 suffered from permanent visual impairment [2]. The
timely screening, identification, intervention and treatment of ROP in premature infants
as early as possible are important measures to prevent blindness. Due to their proven
efficiency, screening programs for ROP have been increasingly implemented worldwide [3].
However, in China and many other parts of the world, due to the lack of medical resources
and medical equipment in some remote areas, this problem still persists, with the main
reason being the lack of a sufficient number of ophthalmologists with the necessary profes-
sional knowledge and experience [4]. For these reasons, nationwide timely screening and
treatment of ROP is not being carried out effectively.

With the development of the fourth industrial revolution, artificial intelligence (AI),
communication technologies and Industry 4.0 [5,6] have been developed to a remarkable
degree and have seen extensive application. The research on artificial intelligence can be
traced back to the pioneering work of Alan Turing, the father of AI, and its aim is to develop
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systems that can learn and function in a manner similar to humans. Deep learning (DL)
models are the most advanced machine learning approaches [7], and their advancement
constitutes a substantial global trend. DL models are composed of neural networks that
create representations with multiple layers of abstraction to process the input data, and
they can perform automatic feature extraction, eliminating the need for manual feature
engineering. The process mainly involves the automated projection of low-dimensional
data into higher-dimensional spaces. Compared with traditional machine learning tech-
nologies, AI and even DL technologies have a large number of real-world applications in
many fields, including but not limited to speech recognition, image processing, computer
vision, recommendation engines and automatic stock trading.

The most recognized use of AI strategies in retinal disease are the development of
spots intricate to disease characteristics on color fundus photos [8]. In the medical field,
DL has also led to remarkable results, breaking through the limitations of traditional
medical research. For example, it has been successfully applied in the identification of
skin cancer, glioma, lymph node metastasis, macular degeneration, diabetic retinopathy,
etc. [9]. Before DL, the extraction of the characteristics necessary for the automatic detection
of these diseases was a challenging task, and DL technology has provided new ideas and
development directions for tackling these challenges in medicine. When it comes to the
problem of DL-based ROP detection, Attallah [10] developed an intelligent diagnostic tool
based on DL technology using four convolutional neural network (CNN) algorithms to
achieve an accuracy rate of up to 93.2%. Wang et al. [11] developed a robotic automatic
detection system that is used for the automatic identification and classification of ROP
and also designed in parallel two deep neural network models: ID-Net and Gr-Net. The
sensitivity of these network models reached 96.62% and 88.46%, respectively, which has
important research significance. Peng et al. [12] proposed a novel and effective deep neural
network-based five-level ROP staging network, which includes ResNet18, DenseNet121,
and EfficientNetB2 as the feature extractors; the results show that this method has good
validity and advantages. However, the above algorithm cannot be applied well in practice,
so this paper develops a telemedicine architecture based on edge-cloud collaboration,
embeds the algorithm into practical engineering applications and achieves good results.
The algorithm we propose mainly uses the ResNet101 convolutional neural network and
divides the final classification results into four categories. Finally, we integrate the trained
model into the Android terminal and use the edge–cloud system architecture to realize the
application of the entire telemedicine system.

1.1. Contributions

In this paper, a DL automatic identification system based on an edge–cloud collab-
orative architecture is introduced, and the necessity and significance of the system are
discussed in detail. This work’s contributions are multi-faceted:

• First, a detailed overview of the most advanced state-of-the-art DL algorithms is
provided, along with their specific applications in the field of ROP detection.

• Second, the necessity of the proposed ROP telemedicine system is discussed in de-
tail, focusing on the edge–cloud collaboration and the DL algorithms discussed in
this paper.

• Finally, the relevant medical image datasets used in this study are introduced in
detail, along with the specific algorithm development process and the embedding
of the algorithm into mobile terminals. Furthermore, future research challenges and
development directions in this field are discussed.

1.2. Outline

The structure of this paper is as follows. In the second section, the most-mainstream
DL algorithms and related applications are introduced; in the third section, applications of
our proposed algorithm are presented. In the fourth section, the edge–cloud collaborative
architecture system is introduced, and its specific implementation and application are
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analyzed. The core part of this paper is the fifth section, where the datasets, algorithms,
edge–cloud collaborative architecture and the mobile app of the system are introduced.
Finally, in the sixth section, a brief overview of the results achieved using the proposed
architecture is provided and the potential impact of the ROP telemedicine system studied
in this paper is discussed, including its research and social significance as well as future
challenges and development directions.

2. Deep Learning (DL) Algorithms and Applications in ROP Research

Deep learning is one of the most important techniques in machine learning [13],
with good convergence and generalizability [14], and it mainly involves the use of neural
networks to realize low-dimensional mapping of high-dimensional data. The input of the
neural network is fed through the input layer and several hidden layers in turn. Each layer
learns the intrinsic characteristics of the data through its neurons, and the optimal decision
of the multi-layer neuron operation is output from the final layer of the network [15], as
shown in Figure 1.

Figure 1. Architecture of a deep CNN.

In addition, DL has also achieved excellent research results in the fields of natu-
ral language processing, text detection, image processing, speech recognition, remote
sensing, medical image recognition, etc. by applying deep learning and processing to
information [16,17]. In the following, some outstanding achievements of DL in these fields
are presented briefly. Patoary et al. [18] developed a DL model for Bengali language
recognition using the Parts-of-Speech (POS) tagging algorithm, and the model achieved a
recognition accuracy of 93.90%. Alsukhni [19] constructed a DL model to solve the classi-
fication problem of Arabic multi-label text using a multilayer perceptron and a recurrent
neural network with long short-term memory. The experimental results showed that the
test accuracy in the memory reached 82.03%, while that of the MLP model reached 80.37%.
Saba et al. [17] developed a deep learning-based automated system that detects and grades
papilledema through U-Net and Dense-Net architectures, which is the first effort in the
state-of-the-art for clinical purposes.

In remote imaging research, Li et al. [20] first tried to generate a semantic representa-
tion of remote scene categories through a remote sensing knowledge graph representation.
A novel deep alignment network with a series of constraints was proposed for cross-modal
alignment between visual features and semantic representations, and experimental results
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showed excellent performance. Zhao et al. [21] adopted a receptive field block net detector,
which embedded a receptive field module into a single-shot detector network architecture
and obtained higher-level feature representation. The experimental results showed that the
algorithm model reached a mean average precision accuracy of 91.56%, which constitutes
excellent network performance.

For the analysis of color fundus photos of medical images and coherence tomography
angio-graphy (OCTA) [22], the use of artificial intelligence technologies such as DL has
developed quite maturely [23]. In medical research, compared with the systematic research
of traditional manually defined features, the use of DL neural networks allows effective
automatic feature extraction, which not only reduces the complexity of system design but
also greatly improves system recognition accuracy, efficiency and precision. To determine
possible correlations between different levels of blood pressure (BP) control and retinal
microvascular changes in the macula and optic nerve head, Hua et al. [22] used OCTA in
hypertensive patients without hypertensive retinopathy. In their research on ROP fundus
images, Yildiz et al. [24] developed two datasets with 100 and 5512 posterior retinal fundus
images, respectively, and applied them on classifiers such as logistic regression, a support
vector machine and a neural network. The extraction and analysis of ROP-related features
for the Plus and No Plus categories achieved 99% and 94% Area Under Curve (AUC)
accuracy on the two datasets, respectively, showing excellent performance.

Huang et al. [1] trained and applied transfer learning using five neural network
models, namely VGG16, VGG19, MobileNet, InceptionV3 and DensetNet. The final
experimental results showed that the VGG19 model is superior to other models in the
recognition of ROP fundus images, reaching an accuracy of 96%. These studies and find-
ings have promoted the development of DL methods for ROP diagnosis. In addition,
Tong et al. [25] trained a 101-layer ResNet CNN and a Faster-RCNN object detection model
using 36231 ROP medical images for classification and recognition of fundus images, and
ten-fold cross-validation was used for training and optimization. The experimental results
showed that the recognition accuracy of the ROP classification reached 90.3%, and the
model had extremely high robustness and practicality. Many scholars have made outstand-
ing contributions to the research of DL in the field of ROP identification, some of which are
summarized in Table 1.

Table 1. Several studies on DL techniques in the field of ROP.

Authors Dataset Neural
Network Classification Results

Huang et al. [1] 2452 Images

CNN: VGG16,
VGG19,

MobileNet,
InceptionNet V3,

DenseNet

NOROP/ROP,
Mild-

ROP/Severe-
ROP

96% ACC,
98.82% ACC

Wang et al. [2] 52,249 Images

CNN: ResNet18,
DenseNet121,

and
EfficientNetB2

Plus/Normal,
Any stage

98.27% AUC,
99.81% AUC

Brown et al. [9] 5511 Images CNN: U-Net,
and Inception V1 Normal/Pre/Plus 91% ACC

Yildiz et al. [24] 5512 Images CNN: U-Net
Plus/Not-Plus,
Pre-Plus/Worse

Normal

94% AUC, 88%
AUC

Zhang et al. [26] 19,543 Images
DNN: AlexNet,

VGG16, and
GoogLeNet

ROP/No ROP 99.8% AUC

Hu et al. [27] 2668 Images
CNN: VGG16,
inception V2,

and ResNet-50

Normal/ROP,
Mild/Severe

99.22% AUC,
92.12% AUC
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Table 1. Cont.

Author Dataset Neural
Network Classification Results

Wang et al. [28] 11,000 Images
CNN: Inception
V2, Inception V3,

and ResNet-50

Normal/ROP,
Mild/Severe

92.7% ACC,
78.5% ACC

Ours 900 Images CNN: ResNet101
Normal/Stage

1/Stage 2/Stage
3 and above

75% ACC 60%
AUC

3. Dataset and Proposed ROP Classification Algorithm
3.1. Dataset

In this study, 900 color fundus images collected from Guangdong Maternal and Child
Health Hospital using a RetCam3 (Natus Medical Incorporated, Pleasanton, CA, USA) in
the past five years were used as a dataset; the image resolution was 1200 × 1600 pixels
and the dataset included 500 ROP images and 400 normal images. Among them, ROP
images were divided into 153 images in the first stage, 239 images in the second stage
and 108 images in the third stage and above, and all fundus images were graded by a
professional ophthalmologist. In accordance with the provisions and restrictions of the
Declaration of Helsinki, the consent of the patients’ guardians were obtained. ROP images
have a significant imbalance compared to the 400 normal images. Table 2 describes the
division of the training set and the test set.

Table 2. Dataset used for training and testing the proposed method in this study.

Class of Stage Training Set Test Set Total

Normal 340 60 400
Stage 1 123 30 153
Stage 2 209 30 239

Stage 3 and above 78 30 108
Total 750 150 900

3.2. Proposed ROP Classification Algorithm

In order to overcome the impact of data imbalance on the diagnosis of neural network
models, in the training stage, the data is resampled; that is, the majority classes are un-
dersampled while the minority classes are oversampled. The minority and majority class
sampling ratios are the reciprocals of the number of valid samples, which are defined by
the following equation:

En = (1 − βn)/(1 − β) (1)

where n is the total number of samples for each class and β is a hyperparameter, with 0.999
taken in this paper. Furthermore, Label-distribution Margin Loss (LDML) [29] is introduced
to broaden the decision-making space of minority classes and improve the generalization
ability of minority classes. The Python OpenCV library is used to preprocess all raw ROP
fundus images, including removing the patients’ private information from fundus images.
Finally, all images are scaled to a size of 224 × 224 pixels in batches for neural network
training based on the Resnet101 model. The process of our ROP staging networks is shown
in Figure 2.

As shown in Figure 2, the accuracy (ACC), area under the ROC curve (AUC) and F1
score (F1) of the training method can gradually converge to 1.0 as the iteration progresses.
During the testing phase, ACC gradually converges to 75%, AUC to 60% and F1 to 60%.
The confusion matrix is shown in Figure 3. This shows that the proposed training method
overcomes the influence of the unbalanced dataset to a certain extent. However, there is
still a certain gap in the performance of the current ROC diagnostic model, which is closely
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related to the characteristics of the small sample and unbalanced dataset used. In the future,
the ROP telemedicine diagnosis system based on edge–cloud collaboration architecture
proposed in this paper will be further optimized, and the ROP dataset will continue to be
amplified to improve the performance of the model.

Figure 2. Schematic diagram of our ROP staging networks.

Figure 3. Confusion matrix of our ROP staging networks.
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4. Edge–Cloud Collaboration
4.1. Introduction

With the substantial increase in the usage of intelligent terminal equipment and the
generation of massive heterogeneous data, traditional cloud computing can no longer meet
the requirements of some delay-sensitive applications [30]. In the medical and health fields,
a series of applications such as computer-aided diagnosis (CAD) and telemedicine have
also appeared, placing more stringent requirements on network loads. CAD incorporates
multidimensional analysis of medical images, which has great significance in decision
making for medical doctors [31]. For telemedicine, it requires patient diagnosis images or
allied information to recommend or even perform diagnosis practices while being located
remotely [32]. Wan et al. [33] analyzed the development status of biomedical Internet-
of-Things-related technologies and pointed out that the demand for lower delays, higher
bandwidths, privacy and other aspects have created great challenges to cloud computing.
They also proposed that edge computing is one of the pillars of intelligent medical care,
which is one of the most feasible methods.

In recent years, more and more studies have proposed edge and cloud computing
solutions. Cloud computing along with the Internet of Things (IoT) is proving to be
an essential tool for delivering better healthcare services [34]. Edge–cloud collaboration
approaches have been fully developed in the medical field and play an important role in the
realization of low-latency, low-energy and high-precision computing-intensive tasks [35].
Rahmani et al. [36] defined an intelligent middle layer between sensor nodes and the cloud
platform and implemented an IoT-based health analysis system. Aujla et al. [37] proposed
a computational offloading scheme for edge–cloud collaboration in order to ensure the
quality-of-service requirements of users and verified the superiority of the scheme through
calculation of specific performance parameters and a security evaluation of the system.
Ding et al. [38] proposed a computer-aided gastroscopic image analysis system based
on an collaborative edge–cloud framework that realized real-time lesion localization and
fine-grained disease classification in gastroscopic images. Chakraborty et al. [39] designed
a framework for integrating body area networks on telemedicine systems based on WBAN,
including information gathering, data processing and storing, and monitoring of patients,
and the framework provides new ideas for future research in telemedicine.

Within edge–cloud collaboration frameworks, the advantages of the cloud and the
edge are complementary and synergistic, and edge devices can utilize the resources of the
cloud to supplement their function so as to meet the user’s demand for resources.

4.2. Proposed System Architecture

In this paper, an ROP telemedicine diagnosis system is proposed based on an edge–
cloud collaborative architecture. The system is divided into a three-layer architecture, with
a cloud service layer, a network layer and an edge layer, as shown in Figure 4.

The cloud service layer provides data sharing, service sharing, resource sharing
and other services for edge nodes. Sample data are collected from each edge service
node and are massively processed through a dynamically expandable computational
infrastructure using a DL-based ROP intelligent diagnostic model. The network layer
guarantees the data transmission for the entire system and mainly relies on various optical
fiber, wireless and other communication base stations, while a content distribution network
(CDN) arrangement is adopted to improve data transmission speed. The edge layer directly
provides ROP screening services to users. A1 in Figure 4 represents edge devices deployed
at medical service sites in remote rural areas, while B1 represents edge devices such as
mobile and small fundus examination equipment and mobile application clients. The edge
layer has data collection capabilities and certain computational capabilities. The network
layer connects the cloud server and cooperates with the cloud to form a complete ROP
telemedicine system architecture.

During the data collection process, the cloud server can connect multiple edge service
nodes. While providing services for multiple places, it can also collect medical record data
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from various places to enrich its own dataset and thus obtain more comprehensive and
accurate lesion characteristics. When the system collects data, the cloud server sends data
collection instructions to each edge device, and the edge device returns the response state
after receiving the instructions. The cloud sends a random code and stipulates the data
transmission protocol with the edge device. Then, the edge device begins to mine the
medical record data in the local database, removes the private data and then encodes it,
and uploads it to the cloud service according to the agreed protocol.

A2

RouterRouterRouter

Ai+1
B1

RouterRouter

A1 Ai An

Bm

Server

Cloud

Intermediate 

data

detection 

result

Edge

Figure 4. Remote ROP diagnosis system architecture based on cloud–edge collaboration.

During the ROP diagnostic process, the edge device collects the original retinal image
data of premature infants, performs necessary preprocessing, and transmits the intermedi-
ate data obtained to the cloud server through the network layer. The cloud server receives
the intermediate data, and the detection results are obtained through the intelligent ROP
diagnosis model. Then, the detection results are transmitted to the edge terminal, where
users can process them. Compared with traditional cloud-based medical diagnosis systems,
the proposed ROP telemedicine system architecture based on edge–cloud collaboration pro-
posed in this paper allocates some of the data processing tasks to edge devices for execution,
which effectively reduces the bandwidth pressure of the network and the consumption of
cloud computational resources.

5. Results and Application

For the design of the ROP telemedicine system, the following modules were imple-
mented: collection of medical image data sets, preprocessing of medical images, ROP
diagnosis and analysis, and a mobile application. Using these modules, the complete ROP
diagnosis edge–cloud collaborative system was realized, and a telemedicine scheme was
successfully implemented. Due to the limitation of the data set itself, the algorithm we
adopted cannot get very high precison, but it still has many advantages and availabilities.

First, the medical image datasets were collected from the Guangdong Maternal and
Child Health Hospital. Following the regulations and constraints of the Declaration of
Helsinki, the consent of the guardians of the patients was obtained. A total of 900 fundus
images (including 500 ROP images and 400 normal images) were collected. The Python
OpenCV library was used to preprocess all the original ROP fundus images, including
removing the patients’ private information from the fundus images and batch-scaling all
the images to a size of 224 × 224 pixels for neural network training.

Following that, the LabelImg open-source algorithm was used to manually label
all fundus images, mark the degree of lesions and whether they were Plus disease, and
divide the diseased areas, as shown in Figure 5. Due to the difficulty in obtaining medical
images, transformations such as pixel inversion of all pixels, up–down/left–right inversion,
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Gaussian blur, translation, rotation and contrast enhancement were randomly applied on
all images in order to expand the scale of the dataset. Then, the augmented dataset was
input into the DL network, and the object detection algorithm was applied to the medical
images. This formed the ROP diagnosis and analysis module of the system.

Figure 5. Manual labeling for ROP Images using LabelImg.

In the development process of the edge terminals, we used Google’s Android inte-
grated development tool Android Studio, which has a fast and feature-rich simulator and
a large number of testing tools and frameworks to help developers design applications
that meet the requirements, to develop a mobile app. We successfully embedded the
algorithm mentioned above into the application. The application interface can be seen in
Figure 6. The application includes multiple modules, such as an image detection module, a
medical science popularization module and an information module, that are installed on
the edge devices. The execution flowchart of the mobile application is shown in Figure 7.
The diagnostic results of the data are obtained in collaboration with the cloud server and
rendered on the detection view. In this manner, a comprehensive edge–cloud collaboration
system is formed for remote ROP.

(a) Information module. (b) Image detection module.

Figure 6. Mobile application interface for the Android system.



Sensors 2023, 23, 276 10 of 12

Figure 7. The execution flowchart of mobile application.

6. Conclusions

In this paper, an edge–cloud collaborative architecture system based on DL that
integrates a variety of advanced AI technologies for the diagnosis of ROP and the imple-
mentation of a telemedicine system is presented. The adopted intelligent ROP diagnosis
model based on DL greatly improved the screening and diagnosis ability of ROP. At the
same time, the data resampling and undersampling method adopted in this study effec-
tively solved the problem of small ophthalmic medical datasets and led to an improvement
of the model’s accuracy and applicability. The results show that we got 75% AUC and 60%
ACC. Further, the resource architecture based on edge–cloud collaboration adopted in this
study realizes various collaborative methods for resource and data management between
the edge terminal and the cloud platform, which ensures that the system can obtain data
from multiple sources and improves the robustness, scalability and sensitivity of the system
as well as the specificity of the diagnostic models.

The results show that this study can be used to effectively solve the problem of un-
balanced medical resources and the lack of professional ophthalmologists in remote areas,
and it has high social significance and value. However, the insufficient data leads to low
accuracy. For future development, more fundus images will be collected to establish a
larger dataset to continuously improve the efficiency and accuracy of algorithm recog-
nition; and we will be gradually improving and developing additional features for the
mobile application.
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