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Abstract: A weigh-in-motion (WIM) system continuously and automatically detects an object’s weight
during transmission. The WIM system is used widely in logistics and industry due to increasing labor
and time costs. However, the accuracy and stability of WIM system measurements could be affected
by shock and vibration under high speed and heavy load. A novel six degrees-of-freedom (DOF),
mass–spring damping-based Kalman filter with time scale (KFTS) algorithm was proposed to filter
noise due to the multiple-input noise and its frequency that is highly coupled with the basic sensor
signal. Additionally, an attention-based long short-term memory (LSTM) model was built to predict
the object’s mass by using multiple time-series sensor signals. The results showed that the model has
superior performance compared to support vector machine (SVM), fully connected network (FCN)
and extreme gradient boosting (XGBoost) models. Experiments showed this improved deep learning
model can provide remarkable accuracy under different loads, speed and working situations, which
can be applied to the high-precision logistics industry.

Keywords: weigh-in-motion; deep learning; Kalman filter; time-series analysis

1. Introduction

Weigh-in-motion (WIM) balance is of great interest in logistical sorting, which detects
the cargo weight during the transport link, with an increasingly intensified contradiction
between logistics demand and labor gap [1–3]. In addition, WIM technology is also widely
used in vehicle weighing apparatus, dynamic railway scales, and automatic agricultural
weight check with full advances of automation [4–6]. In recent decades, the development
of WIM with a weigh data process has been one of the most important topics that have
attracted the attention of various industries [7,8].

In general, the WIM system can be described in the following steps: (i) data acquisi-
tion by using pressure sensors and signal filter [9,10] and (ii) output a filtered signal by
using linear regression (LR), an autoregression model [11,12], a machine learning (ML)
algorithm [13,14] or a deep learning (DL) algorithm [15,16].

In the first aspect, sensors are usually located under a measurement table to measure
the pressure in motion, and the data are sampled by pressure sensors. The signal is mainly
sampled by pressure signal; however, its accuracy is affected due to the inevitable noise
from motor vibration, measurement error, environmental factors [17], etc. Several achieve-
ments have been obtained for filtering noise in motion. A fuzzy logic estimator was used
to filter noise during dynamic weighing by allocating a suitable weight to each sampling
signal [18]. This method shows good performance during low speed. However, as the
speed increases, the noise from the motor increases nonlinearly; thus, fuzzy logic LR models
show poor performance under high speed and heavy load conditions. Autoregression (AR)
models are used in WIM systems to mitigate this effect. Compared with the LR model,
filtered data are decided by the current time and former signal; the filter can extract the
feature from the time series. In addition, a system identification method is widely used
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in WIM systems [19] by using building a spring damping system. The filtered signal is
partially decided by estimating the system identification equation and codetermined via
the probability distributions of environmental noise. A Kalman filter (KF), as the typical
system identification filter, is widely used in the WIM area [20–22]. The filtered signal is
codetermined using a system-state matrix and sensor-sampling value at each time. By
using a covariance matrix for dynamic state update, the KF has been proven to be a strictly
linear optimal filter and is widely used in linear modeling.

The second problem concerns outputting weight by using the filtered signal. The mean
value of the sampled signal is generally directly taken as output weight in low-precision
industrial fields. However, it is inappropriate to assign the same weigh for each sampling
point for the nonstable process of WIM; the lateral and longitudinal acceleration are un-
even. The polynomial and exponential models minimize the fitting error by employing
the least squares method [23]. It shows better performance than the traditional LR or the
averaging model without adding too much operational complexity and is widely used
in low-cost embedded devices. Nevertheless, these models are ineffective for high-speed
and accurate WIM fields; the sampling time of the pressure signal is less than the system’s
steady-state time, which makes the signal unable to reflect the transient response of the
object’s mass precisely due to the nonstatic contact between the measurement tableboard
and object [24]. In addition, the sampled pressure signal exhibits nonlinearity as the increas-
ing of transmission speed and measurement weights. Each pressure sensor’s sampling
frequency is usually larger than 1024 (Hz) during WIM processing. It is difficult to handle
bulk and nonlinear data by using a traditional linear model. The model must have char-
acteristics of nonlinearity and time-series processing capability to handle these problems.
Currently, a deep learning algorithm centered on the convolution neural network (CNN),
FCN and RNN has better performance than machine learning and statistical models in
Big Data analysis, computer vision (CV), natural language processing (NLP) and many
other fields [25]. FCN [26] and SVM [27] were used to perform data processing for WIM
systems. Additionally, a few forefront achievements of deep learning have been reported.
The sampled sequences strictly obey causal conditions [28] during the WIM, i.e., the present
state is decided by the former situation and only affects subsequent states. LSTM [29]
differs from the common regression models (SVM, XGBoost [30] and FCN); as a nonlinear
autoregression structure, the causal features of the signal are considered. The measured
data in the sampling interval are taken as input and a serial recursive structure is applied,
which can tap the time-domain characteristics of the signal without destroying the temporal
continuity of the signal sequence. Owing to these properties, RNN models are widely used
in stock prediction, traffic-flow forecasting and time-series tasks.

Attention mechanism is a remarkable achievement in deep learning. The perfor-
mance of RNN can be greatly improved due to the simulation of human attention distri-
bution. In which, the appropriate weight is allocated to each time during extensive data
analysis [31–33].

Six DOF dynamic discrete-response models are built and the acceleration response un-
der different load and belt velocity is analyzed in this paper. The corresponding improved
KFTS is built by using the dynamic response system and actual sensor signals as the state
estimation and measurement matrix. The key-value, attention-based LSTM data processing
model is built and finds that the NAdam optimizer is optimal above SGD, RMSprop and
Adamax. The measurement error of the SVM, XGBoost, FCN and attention-based LSTM
models is compared. Drawbacks and conclusions are summarized at the end.

2. Establishment of the WIM Filter
2.1. Establishment and Analysis of the Dynamic Model

It is difficult to directly measure the accelerated response of pressure sensors due to the
transfer table and kinds of limit protection devices. Normally, analytic models approximate
the sensor response as equal to the instantaneous stress suffered by the tableboard. A
typical WIM balance is shown in Figure 1.
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Figure 1. Structure of the WIM scale.

In Figure 1, the main components of WIM scale are shown.
The response of the sensors and the motor’s cyclical electric force are used as input.

The WIM system as its equivalent model with six degrees of freedom is shown in Figure 2.
The system is poweredby one motor, and the measuring module comprises four pressure
sensors to detect the instantaneous change in force on the table’s vertical direction. Consider
the table’s steady center of gravity as the origin; the system’s generalized coordinate X can
be expressed as follows:

X = {x, xm, x1, x2, x3, x4} (1)

where x, xm, x1, x2, x3, x4 are the vertical displacements of table, motor, sensor-1, sensor-2,
sensor-3 and sensor-4. Similarly, the velocity matrix and acceleration matrix by can be
achieved by discrete differential operation.
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Figure 2. Equivalent model with six degrees of freedom.

In Figure 2, the structures of fixation and connection can be simplified as a spring
damping system (c1, c2, cm, cg, k1, k2, kg, km), and each objection’s stiffness and damping
coefficient have been measured during the design process.

The vertical pressure is not directly affected to avoid damaging the pressure sensor
(1~4). The inhibiting devices are installed between the table and sensor, which can be
assumed as a spring damping system with a high damping coefficient and low stiffness;
mt is the weight of measurement object. The acceleration of the table in the vertical
direction can be measured using an acceleration sensor (sampling frequency is the same as
the pressure sensor). The corresponding varying response Fm(t) can be calculated using
Newton’s second law.
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The input force Fm(t) is driven by the motor. Its transient response directly determines
the whole system’s steady state response as the only power source. The theory electric
force of the driving motor in the vertical direction can be defined as follows:

Fm(t) =


Te
R cos

( aπ
30 t
)
− i2(Lmin+

aπK
30 (t−nT))√

b2( πar
30 )

2
( 7T

20−(t−nT))
2 sin

( aπ
30 t
)
, nt ≤ t ≤

(
n + 7

20
)
T

0,
(
n + 7

20
)
Tt ≤ t ≤ (n + 1)T, (n = 0, 1, 2, . . .)

(2)

where R, a, Nr, b, I, K, Te and Lmin are inner radius of stator, motor speed, rotor speed,
minimum air gap length, winding current, rate of change in winding inductance with
respect to position angle, rated torque and winding minimum inductance, respectively.

For the table’s shock and vibration in up and down directions, Equation (3) can be
achieved based on the model shown in Figure 2.

M
..
x = F0(t)− km (x− xm)− 2 (k1(x− x1)− k2 (x− x2)− c 1

( .
x− .

x1
)
− k2

( .
x− .

x2
)
) (3)

The motor’s shock and vibration in up and down directions can be defined by
Equation (4):

mo
..
xm = Fm(t)− km (xm − x)− cm

( .
xm −

.
x
)

(4)

The shock and vibration to pressure sensor-1 and pressure sensor-2 in up and down
directions can be defined by Equation (5) if the differences in stiffness and damping caused
by the assembly are ignored.

m1
..
xm = −k1 (x1 − x)− c1

( .
x1 −

.
x
)
− kg (x1 − x)− cg

( .
x1 −

.
x
)

(5)

A similar conclusion can be achieved in Equation (6) for sensor-3 and sensor-4:

m2
..
x2 = −k2 (x2 − x)− c1

( .
x2 −

.
x
)
− kg (x2 − x)− cg

( .
x2 −

.
x
)

(6)

The speed of the belt v (m/min) and weight m (kg) determine the steady-state response
of the balance under actual engineering use for the object to be measured. The precise
measurement is greatly affected due to object’s vibration during its transport. When
the object makes contact, the balance table causes self-excited vibration under certain
combinations of object weight and speed. This noise, which is a typical high frequency
interference noise, greatly disturbs the pressure signal acquisition if it cannot be filtered.

Equations (3)–(6) can be expressed as a vector matrix:

M· ..x(t) + C· .x(t) + K·x(t) = L·U(t) (7)

where
..
x,

.
x, x are the displacement velocity, accelerated velocity and displacement vectors;

M, C and K are the matrix of mass, damping and stiffness; L is a constant vector to locate
random excitation and U(t) is the nonstationary excitation vector.

The dynamic response, Equation (7), can be written in the form of a state equation:

.
X(t) = g(X, θ, f ) = A·X(t) + B·F(t) (8)

where θ is the matrix of structure that contains the information of the system’s rigidity and
damper. A is a 2n-by-2n matrix, B is a vector with length 2n, X is a vector with length 2n
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which contains the vector of acceleration and displacement. These can be described by the
following equation: 

A =

[
0 I

−M−1K −M−1C

]
B =

[
0

M−1

]
F(t) = L·U(t)

X(t) =
[

x(t)
.
x(t)

] (9)

Equation (9) is the continuous state equation; using e−At to multiply both sides can
achieve the following relationship:

e−At(X−A·X) = e−A·tB·F(t) (10)

Integrating t over the interval (t0,t) in Equation (10), and substituting the initial
conditions of t0, then the continuous equation of state solution can be achieved:

X(t) = Φ(t, t0)·X(t0) +
∫ t

t0

Φ(t, τ)·B·F(τ)dτ (11)

where Φ(t, t0) = eA(t−t0) state transition matrix, which is used as the state estimation
matrix in KF; Equation (11) is the standard solution of a continuous state equation, and its
essence is equivalent to the Duhamel integral of a dynamical system.

However, in the WIM’s six DOF system, the actual signal is described as a discrete
matrix and measured in each discrete sampled time by the pressure and acceleration
sensors. Equation (11) needs to be transformed into discrete state equations to obtain the
measurement matrix and corresponding covariance matrix:

X(tk+1) = Φ(tk+1, tk)·X(t0) +
∫ tk+1

tk

Φ(tk+1, τ)·B·F(τ)dτ (12)

where this equation is a discrete equation and determined by the sensor sampling frequency
(1024 Hz), defined in the time interval ∆t = tk+1 − tk. Equation (12) can be rewritten as:

Xk+1 = ΦkXk + ΓkFk, Γk = B
∫ ∆t

0
eAτdτ (13)

where Xk and Fk represent the state matrix at time t; Φk represents the state transition
matrix from t to t + 1 and if the ∆t is small enough, then Φk can be calculated approximately
by the following Taylor expansion:

Φk = eA∆t = I + A∆t +
1
2!

A2∆t2 + · · ·+ 1
k!

Ak∆tk ≈ I + A∆t (14)

where I = A0 is a 2n-by-2n unit matrix; Equation (14) is the discrete state expression.
The discrete differential equation was solved in the Python 3.8.0 environment using

the SymPy and SciPy Toolkits. Set the time step ∆t as 1/(1024)s, Ft(t) is the real response-
accelerated velocity under different belt speed. Figure 3 shows the accelerated velocity
response of four pressure sensors under different weight and belt speeds.
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Figure 3. The time-varying accelerated velocity response of pressure sensors under different weight:
(a) the response of sensor-1 and -2 under v = 45 (m/min), (b) the response of sensor-3 and -4 under v
= 45 (m/min), (c) the response of sensor-1 and -2 under v = 90 (m/min), (d) the response of sensor-3
and -4 under v = 90 (m/min), (e) the response of sensor-1 and -2 under v = 120 (m/min), (f) the
response of sensor-3 and -4 under v = 120 (m/min).

In Figure 3, simulation results show:

(1) The valid sampling point is reduced with increasing belt speed. Compared with
Figure 3a,b, the signal is mainly influenced by low-frequency noise in low speed.
Vibration noise shows more obvious effects, especially under high load due to sensor-
1 and sensor-2 being closed to the cargo input side.
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(2) The signal indicates a nonlinearity and nonstationary process with increasing belt
speed. More seriously, the measuring process is less than the system steady-state time
with the decreasing sampling point, as shown in Figure 3c–f.

(3) The pressure sensor is typically oscillatory underdamped; it is crucial to reduce the
various internal and external noise from various working conditions. Self-excited
vibration is mainly influenced by the genetic frequency, as a high frequency noise, it
differs from other signals and can be filtered by a low-pass filter.

The Fourier and Butterworth filters are widely used in WIM systems. These are useful
and easy to implement under the certain speed when the cutoff bandwidth is appropriate.
However, the responses show different features under different belt speeds and loads,
which must be carefully handled to avoid filtering the basic signal. The WIM system based
on KF is proposed in the following section.

2.2. Algorithm of KFTS

The filtering steps of the improved KFTS are similar with traditional Kalman: (1)
Discrete state equation X̂k and transition matrix Φk are calculated by the WIM system’s
estimation matrix. (2) Calculate the Kalman gain Kk according to the actual measurement
matrix Zk, system process noise matrix Wk ~N (0,Qk) and measurement noise matrix εk~N
(0,Rk). Qk and Rk are the corresponding covariance matrices at time t, which are used to
describe the environmental and random factor interference.

The filtering process of improved Kalman can be summarized in the following stages:

(1) Prediction: Calculate least-square (LS) state X̂k based on the state transition matrix
Φk−1 and process noise matrix Wk−1. The station of k + 1 can be calculated as follows:

X̂k+1 = Φk·X̂k + Γk·Fk + Wk (15)

where X̂ (tk−1) is the WIM system’s state estimation matrix at time tk−1; the state
prediction covariance matrix can be described as:

∑X̂k
= Φk·∑x̂k−1

·Φk
T + Qk/αk−1 (16)

where ∑Xk
is the WIM’s state-prediction covariance matrix at time tk; ∑x̂k−1

is the
WIM’s state estimation covariance matrix at time tk−1 and αk−1 is the adaptive factor
at k − 1.

(2) Measurement: Calculate the error vector i(tk) based on the pressure sensor’s actual
signal Z (tk), and i (tk) can be described as:

i(tk) = Z(tk)− J(tk)·X(tk) (17)

where J is the Jacobian matrix of the measurement signal and can be calculated using
a numerical differential.

(3) Calculate Parameter: The theoretical innovation matrix Ck, actual innovation matrix
Ĉk, adaptive factor αk and Kalman gain Kk can be calculated from the following
equations:

Ĉk =
1
N ∑N

i=1 ik−1·iT
k−1 (18)

Ck = E
[
ik−1·iT

k−1

]
= JkPkJT

k + Rk (19)

αk =
c0

‖ik‖
·

‖Ĉk‖/
√

tr
(
Ĉk
)

‖Ck‖/
√

tr(Ck)

 (20)

where N is the length of time scale, determined by the sampled frequency, belt speed
and length of the tableboard, i.e., the number of sampling points; tr (Ĉk) is the trace
of the innovation matrix. The updated value usually deviates from the actual value
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due to the noises that are from model and measurement error. It is necessary to apply
the actual innovation matrix Ĉk to codetermine adaptive factor αk. When updating
Kk, the self-adapting equation is given as Equation (21):

Kk = ∑X̂k
·JT

k

(
Jk·Pk·JT

k + αk·Rk

)−1
(21)

Qk and Rk are reversely adjusted matrices to enhance the estimation accuracy. When
αk is a constant value, the KFTS degrades into the traditional extended Kalman filter.

(4) Output: Calculate the filtered signal at time k:

Xk+1 = X̂k+1 + Kk·
(
Z(tk)− J(tk)·X(tk)

)
(22)

The traditional KF estimate of the state of the linear system is based optimally on the
principle of recursive least variance estimation. Unlike the former, the extended Kalman
filter extends this algorithm to nonlinear systems. The extended Kalman filter algorithm
linearizes the model via the high-order Taylor expansion, which avoids the fitting error.

2.3. Performance Comparison

The system’s state matrix is defined by the system’s dynamic equation of mechanical
structure (Section 2.1) and amended via the sampled signals in our improved KFTS algo-
rithm. Figure 4 shows the performance under the different speeds (60, 90 and 120 m/min):

In Figure 4, our algorithm has been marked with the sign “*”. The fluctuation am-
plitude of the original gradually presents a nonlinear growth trend with the increase in
transmission speed under the calibration weight of 20 kg. The acceleration is unavoidable
during measurement due to the unevenness of the belt and balance, and the transmission
error of the motor. The feature of the peak is used in the EMD filter, but the original state of
the signal is excessively filtered and not applicable in the WIM system. The wavelet filter
with a different base function shows poor performance under the high-speed state for the
same reason. In addition, the effective measurement time(s) is directly affected by the belt
speed (v), and the sampling time meets the following formula:

s = (l − 2d)/v (23)

where l is the length of balance and d is the length dimension in the speed direction.
Traditionally, the average value of filter data is taken as the output weight in gen-

eral industrial area, the corresponding data handling process can be described as the
following formula:

out = ∑s
i=1 αimi (24)

where out is the final output weight, αi is the weight of each sampling point (in the direct
averaging method, the value is a constant 1/s).

The signal’s characteristics under different speeds show nonlinearity, according to
Figure 4. Traditional linear algorithm is inappropriate to extract data feature and output
exact weight. A deep learning-based model is built to handle the bulk signal and achieve
an accurate weigh-in-motion result.
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3. Building the Deep Learning Model
3.1. Training Dataset

Deep learning is a typical sample-learning model with feature self-organization. The
completeness, adequacy and comprehensiveness of learning samples directly influence
model performance. Factors of belt speed (v), load (m) and temperature C(T) are taken in
our dataset to comprehensively contain various WIM’s working conditions. A three-factor
and five-level (L35) orthogonal table was designed and is shown in Table 1.

Table 1. The L35 orthogonal test table.

A—Belt Speed (m/min) B—Load Weight (kg) C—Temperature (◦C)

A1B1C1 45 1 −10
A1B2C2 45 5 0
A1B3C3 45 10 10
A1B4C4 45 20 20
A1B5C5 45 30 40
A2B1C2 60 1 0
A2B2C3 60 5 10
A2B3C4 60 10 20
A2B4C5 60 20 40
A2B5C1 60 30 −10
A3B1C3 90 1 10
A3B2C4 90 5 20
A3B3C5 90 10 40
A3B4C1 90 20 −10
A3B5C2 90 30 0
A4B1C4 120 1 20
A4B2C5 120 5 40
A4B3C1 120 10 −10
A4B4C2 120 20 0
A4B5C3 120 30 10

Table 1 contains 25 combinations of the of v, m and T factors. Five hundred tests were
conducted under each combination to avoid the randomness of a single measurement.
Totally, 10,000 sample data were obtained. The entire experiment was conducted within
the China Coal Research Institute to avoid environmental disturbances.

3.2. Residual Connection Module

The convolution operation at position t for a signal series x with length s is defined
as follows:

yt = ∑m
k=1 wkxt−k+1 (25)

where m is the length of convolution kernel and wk is the kernel’s value at position k.
Additionally, the vector convolution can be defined as follows:

y = {yi}s−m+1
i=1 = w∗x (26)

Several studies proved that the depth of the neural network (NN) directly determined
the model’s feature extraction capability [25]. However, as the model layer is increased,
the vanishing gradient problem becomes inevitable. The residual network [34] (ResNet)
greatly improved the efficiency of information transmission via adding a short connection
to the nonlinear convolution layer. The process is described by Equation (25):

h(x) = x + (h(x, θ)− x) (27)

where the forward function is split into two parts: the identity function x and the residue
function h(x) − x. A nonlinear element composed of a neural network has sufficient ability
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to approximate the original objective function or residual function, but the latter is easier to
learn in practice, according to the universal approximation theorem [35]. The data flow of
the residual connection module is shown in Figure 5.
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In Figure 5, θ is the learning parameter related to the convolution kernel, convolu-
tion channel and convolution times. The original characteristics of the signal are main-
tained in addition to creating constant functions to facilitate model training. Combining
Equations (25)–(27), the forward function can be defined as follows:

F(x) = ∑sc
i=1 Relu

(
∑Ni

j=1 wij ∗ x + bij
)
+ x (28)

where wij is the j-th filter’s weight in i-th layer bij represents the bias, and they are both
learnable parameters. Ni is the number of kernels in i-th layer.

3.3. Multiscale Feature Extraction

As described in Section 3.2, the data are processed by the residual connection module.
The specific scale convolution kernel is used to extract specific features in the convolution
network. Three kinds of kernel size are used to enrich the features of the signal, and the
number of filters in each layer is 32, 96 and 32. The multiscale convolution layer combined
with the residual connection module is shown in Figure 6.
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In Figure 6, three convolution kernels with different scales are designed to extract data
features. The corresponding features are fused by matrix stacking. It is inappropriate to as-
sign the same weight to each feature during the entire WIM process. The strategy of weight
distribution is crucial and directly influences the deep learning model’s performance.

3.4. Attention Mechanism Layer

For the linear model, the best weight distribution can be calculated by the least square
method, maximum likelihood estimation and other probability estimation methods. The
deep learning model is self-organizing and training is based on the error gradient; therefore,
the traditional method is not applicable. The attention mechanism as a resource allocation
strategy allocates limited computer resources on key features, which is the main method to
improve model efficiency and solve information overload. A key-value pair-based attention
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layer was designed to allocate suitable weight to each channel and restructure the signal
(the input and output have the same shape) to adapt the signal’s sequence feature. The
channel-based attention module’s processing flow can be described as follows:

For the input channel sequence C, the output sequence H has different shapes. The
corresponding three sequences can be defined as a linear transformation of the input
sequence by Equations (29)–(31):

Q = WQX ∈ Rd3×N (29)

K = WKX ∈ Rd3×N (30)

V = WVX ∈ Rd2×N (31)

where Q, K and V denote the query vector sequence, the key vector sequence and the value
vector sequence, respectively; d3 denotes the channel adjustment factor, and the nonlinear
fitting capability of the model is enhanced when the value increases.

The output sequence can be calculated by the following equation:

hi = att((K, V), qi) = ∑N
j=1 αijvj = ∑N

j=1 so f tmax
(
s
(
kj, qi

))
vj (32)

In addition, the weight vector α can be directly defined and dynamically adjusted
according to the error gradient for each iteration via a Fully Connected Layer. By combining
the information presented in Sections 3.1–3.4, the signal feature handle path and the shape-
change flow of the matrix can be described, as shown in Figure 7.
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In Figure 7, the input signal was processed in two stages:
(1) Four convolution paths were designed in the multiscale convolution module to

extract the input signal’s time-domain features except for the short-cut path. All paths
are up-sampled twice to enrich the receptive field and down-sampled once to adjust the
number of channels and deepen the layer depth. The short-cut path is aimed to build the
identity mapping between input and the processed value, which is beneficial in the training
stage and avoids the degeneration of the network. Additionally, channel max-pooling was
used to reduce computational complexity and to smooth local noise.

(2) A key-value pair-based attention layer was designed to allocate suitable weight to
each channel and restructure the signal (the input and output have the same shape).
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3.5. Long Short-Term Memory (LSTM) Layers

In Sections 3.1–3.4, the attention-based preprocessing filtering module was constructed,
and in this section the data processing issues are discussed. This problem is equal to using
filtered signals to output an object’s mass as accurately as possible. The back propagation
(BP) algorithm, which can also be called as FCN, is widely used in weight-in-motion
systems. However, as a supervised regression model, it can only build the nonlinear
mapping connection with input and output, since time-series signals x with length t tend
to exhibit time dependence and time-domain coupling. In this process, features are lost
if autoregressive theory is not applied. If the look-back coefficient (LBC) is set to k, the
autoregressive model can be described as:

yt = c +∅1yt−1 +∅2yt−2 + · · ·+∅kyt−k + et (33)

where c is a constant term, ∅1 . . .∅k are the parameters of the model and et is the vector of
white noise.

Similarly, conclusions can be achieved in LSTM; each output yi (k ≤ I ≤ t − k) is
influenced by former output yi−k to yi−1 and input xi to extract the time sequence feature.
These features were dropped in FCN, LR and common ML models limited to model
structure. LSTM controls cell state using the forgetting gate, input gate and output gate.
Sigmoid layer is used to dot the data to complete the addition and deletion of data features
in these gate structures. It can effectively solve the problem of long-term dependence of
RNN under bulk data: set the current time index as t; the data input is x; the predicted
output is H; and C is the memory unit. The LSTM structure is shown in Figure 8.
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In Figure 8, σ is the sigmoid activation function; [ht−1, xt] is the composite matrix of
the network’s state parameters at t − 1 and the input xt at this round; W f, Wt, Wc, and Wo
are the weight matrices of the forgetting gate, input gate, output gate and state control gate.
If the learnable bias is defined as b, then these gates can be described by Equation (34):

ft = σ
(

W f [ht−1, xt] + b f

)
it = σ(Wi[ht−1, xt] + bi)
ct = σ(Wc[ht−1, xt] + bc)
ot = σ(Wo[ht−1, xt] + bo)

(34)

By setting the weight matrix W for each gate in Equation (34) to 0 or 1, features of the
input parameters can be effectively added and deleted through a dot product operation,
and the output range of the sigmoid function is (0, 1). The final output of LSTM at time t is
determined by the present input x and the output gate, which can be described as follows:

ht = ottanh(ct) (35)
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After the extraction of the time-series feature, a classic FCN is linked to the output
weight. The entire model is shown in Figure 9.

Sensors 2023, 22, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 9. Structure of the entire model. 

In Figure 9, the training dataset is shown in Table 1; 80% of the dataset is used for 
model training and the remaining for model validation. The deep learning model consists 
of the feature extraction and aggregated output modules; the model’s training is described 
in the next section. 

3.6. Model Training 
The MultiConv1d−attention−LSTM model was built under Python 3.7.3 and the 

Pytorch 1.8.0. Toolkit. The training process is mainly about matrix calculation and gradi-
ent spread; the graphics processing unit (GPU)’s performance is remarkable faster than 
the center processing unit (CPU). By using CUDA11.0 and CUDNN 8.0.1, the model can 
be deployed in GPU. The computer configuration follows: CPU (i9−10900k), GPU 
(RTX3080) and RAM (32G 3200). Figure 6 shows the training loss and validation loss un-
der different optimizations. 

In Figure 10, diagrams show the training and validation loss curve with different 
optimizers under 100 iteration epochs. The optimizer determined the strategies of the 
learning rate. The SGD and SGD with Momentum update the learning parameters accord-
ing to the loss gradient by randomly selected samples. This strategy is valid in the early 
period. However, the loss diverges in the end as the corresponding training process 
shown in Figure 10b,d. SGD optimizer amends the model according to the gradient. How-
ever, the loss showed the tendency of divergence due to the learning rate is fixed at each 
stage of the iteration. The models cannot attain an ideal state at the end of iteration. Adam 
is an optimizer that combines the advantages of Adadelta and RMSprop. Adam adap-
tively computes the learning rate for the training parameters via computation and stores 
each parameter’s exponentially decaying average of previous gradients and squared gra-
dients. However, as shown in Figure 10a, the later period also shows the tendency of di-
vergence. The loss of training and validation shown in Figure 10c indicates decreasing 
continuity when using NADAM. This method combined Adam and Nesterov accelerated 
gradient (NAG), which is superior to other optimizers; the final validation loss is conver-
gent at 0.02. 

Figure 9. Structure of the entire model.

In Figure 9, the training dataset is shown in Table 1; 80% of the dataset is used for
model training and the remaining for model validation. The deep learning model consists
of the feature extraction and aggregated output modules; the model’s training is described
in the next section.

3.6. Model Training

The MultiConv1d-attention-LSTM model was built under Python 3.7.3 and the Py-
torch 1.8.0. Toolkit. The training process is mainly about matrix calculation and gradi-
ent spread; the graphics processing unit (GPU)’s performance is remarkable faster than
the center processing unit (CPU). By using CUDA11.0 and CUDNN 8.0.1, the model
can be deployed in GPU. The computer configuration follows: CPU (i9-10900k), GPU
(RTX3080) and RAM (32G 3200). Figure 6 shows the training loss and validation loss under
different optimizations.

In Figure 10, diagrams show the training and validation loss curve with different opti-
mizers under 100 iteration epochs. The optimizer determined the strategies of the learning
rate. The SGD and SGD with Momentum update the learning parameters according to
the loss gradient by randomly selected samples. This strategy is valid in the early period.
However, the loss diverges in the end as the corresponding training process shown in
Figure 10b,d. SGD optimizer amends the model according to the gradient. However, the
loss showed the tendency of divergence due to the learning rate is fixed at each stage of
the iteration. The models cannot attain an ideal state at the end of iteration. Adam is an
optimizer that combines the advantages of Adadelta and RMSprop. Adam adaptively
computes the learning rate for the training parameters via computation and stores each
parameter’s exponentially decaying average of previous gradients and squared gradients.
However, as shown in Figure 10a, the later period also shows the tendency of divergence.
The loss of training and validation shown in Figure 10c indicates decreasing continuity
when using NADAM. This method combined Adam and Nesterov accelerated gradient
(NAG), which is superior to other optimizers; the final validation loss is convergent at 0.02.
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4. Performance under a Practical Engineering Situation
Building the Testing Environment

A TW155 dynamic scale in the factory was used to set-up a three-stage drive system
to test each algorithm’s robustness and portability. The weights and the three-stage drive
system (front and rear drive and measurement system) are shown in Figure 11. The weights
of the measurement objects were measured using a high precision dynamic balance (static
measurement error less than 0.001 g).

Sensors 2023, 22, x FOR PEER REVIEW 18 of 21 
 

 

 

 
(a) (b) 

Figure 11. Testing environment: (a) measurement object and (b) three−stage drive system. 

The measure errors for each model were measured under the data sets indicated 
above. Each target was measured 100 times under different speeds (30, 60, 90 and 120 
m/min).The mean absolute error (MAE, �̅�(kg)), mean relative error (MRE, 𝛿 (%)) and 
mean maximum error (MME, 𝑚𝑎𝑥(kg)) were used to estimate each algorithm’s accuracy 
and stability. The performance of each algorithm is shown in Tables 2–4. 

Table 2. SVM. 

SVM 𝒆 (𝐤𝐠) 𝒎𝒂𝒙 (𝐤𝐠) 𝜹𝒆 (%) 
v = 30 (m/min) 0.054 0.071 0.0700 
v = 60 (m/min) 0.077 0.115 0.0997 
v = 90 (m/min) 0.121 0.157 0.1568 

v = 120 (m/min) 0.238 0.329 0.3084 

Table 3. FCN. 

FCN 𝒆 (𝐤𝐠) 𝒎𝒂𝒙 (𝐤𝐠) 𝜹𝒆 (%) 
v = 30 (m/min) 0.074 0.091 0.0959 
v = 60 (m/min) 0.107 0.183 0.1386 
v = 90 (m/min) 0.143 0.294 0.1853 

v = 120 (m/min) 0.278 0.410 0.3603 

Table 4. XGBoost. 

FCN 𝒆 (𝐤𝐠) 𝒎𝒂𝒙 (𝐤𝐠) 𝜹𝒆 (%) 
v = 30 (m/min) 0.046 0.0053 0.0596 
v = 60 (m/min) 0.097 0.0063 0.1256 
v = 90 (m/min) 0.115 0.0074 0.1490 

v = 120 (m/min) 0.218 0.0137 0.2824 

Each algorithm’s performance under different speeds is shown in Tables 2–5. As the 
speed increases, each model’s MAE, MME and MRE shows nonlinear growth. The speed 
directly determined the valid sampling points and the stability of test objects in motion. 
The improved Kalman filter combined with the LSTM−attention algorithm shows the best 
performance under different speeds and loads. 

Table 5. Our Model 

Our Model 𝒆 (𝐤𝐠) 𝒎𝒂𝒙  (𝐤𝐠) 𝜹𝒆  (%) 

Figure 11. Testing environment: (a) measurement object and (b) three-stage drive system.

The measure errors for each model were measured under the data sets indicated above.
Each target was measured 100 times under different speeds (30, 60, 90 and 120 m/min). The
mean absolute error (MAE, e(kg)), mean relative error (MRE, δe (%)) and mean maximum
error (MME, max (kg)) were used to estimate each algorithm’s accuracy and stability. The
performance of each algorithm is shown in Tables 2–4.
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Table 2. SVM.

SVM ¯
e (kg) max (kg) δe (%)

v = 30 (m/min) 0.054 0.071 0.0700
v = 60 (m/min) 0.077 0.115 0.0997
v = 90 (m/min) 0.121 0.157 0.1568

v = 120 (m/min) 0.238 0.329 0.3084

Table 3. FCN.

FCN ¯
e (kg) max (kg) δe (%)

v = 30 (m/min) 0.074 0.091 0.0959
v = 60 (m/min) 0.107 0.183 0.1386
v = 90 (m/min) 0.143 0.294 0.1853

v = 120 (m/min) 0.278 0.410 0.3603

Table 4. XGBoost.

FCN e (kg) max (kg) δe (%)

v = 30 (m/min) 0.046 0.0053 0.0596
v = 60 (m/min) 0.097 0.0063 0.1256
v = 90 (m/min) 0.115 0.0074 0.1490

v = 120 (m/min) 0.218 0.0137 0.2824

Each algorithm’s performance under different speeds is shown in Tables 2–5. As the
speed increases, each model’s MAE, MME and MRE shows nonlinear growth. The speed
directly determined the valid sampling points and the stability of test objects in motion.
The improved Kalman filter combined with the LSTM-attention algorithm shows the best
performance under different speeds and loads.

Table 5. Our Model.

Our Model ¯
e (kg) max (kg) δe (%)

v = 30 (m/min) 0.034 0.041 0.0441
v = 60 (m/min) 0.057 0.091 0.0739
v = 90 (m/min) 0.084 0.132 0.1089

v = 120 (m/min) 0.108 0.194 0.1401

5. Conclusions

An improved Kalman filter together with a dynamic equation of mechanical structure
was used in this paper to estimate the system’s state matrix under different speeds. A
deep learning base was built to process bulk data and output the weight. The results
showed that:

(1) The pressure signal’s noise indicates increasing nonlinearity, greatly affecting the
accuracy and stability of the weight check in motion as the speed increases.

(2) The improved Kalman filter can efficiently use the WIM system’s state matrix to
estimate the system’s actual situation and filters the noise under different speeds.

(3) Compared with the traditional models, a deep learning-based model decreases error
and can greatly improve the system’s measurement accuracy.

Although the measurement accuracy of the WIM is improved with our Kalman and
LSTM-attention algorithm, the personnel and resources necessary to construct the training
sample set are costly. The calculated performance is also required in framework deployment
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and is not applicable for common embedded devices. Additional work needs to be carried
out in the future:

(1) In logistics weighing, the sampling process can be approximately identified as a
uniform velocity compared with vehicle scales, bridge vehicle weighing and other WIM
fields. The applicability of the model to other WIM domains needs to be investigated.

(2) A method to simplify the neural network models is required so that the model can
be deployed in low-cost embedded devices.
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