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Abstract: In the discipline of hand gesture and dynamic sign language recognition, deep learning
approaches with high computational complexity and a wide range of parameters have been an ex-
tremely remarkable success. However, the implementation of sign language recognition applications
for mobile phones with restricted storage and computing capacities is usually greatly constrained by
those limited resources. In light of this situation, we suggest lightweight deep neural networks with
advanced processing for real-time dynamic sign language recognition (DSLR). This paper presents a
DSLR application to minimize the gap between hearing-impaired communities and regular society.
The DSLR application was developed using two robust deep learning models, the GRU and the 1D
CNN, combined with the MediaPipe framework. In this paper, the authors implement advanced
processes to solve most of the DSLR problems, especially in real-time detection, e.g., differences
in depth and location. The solution method consists of three main parts. First, the input dataset
is preprocessed with our algorithm to standardize the number of frames. Then, the MediaPipe
framework extracts hands and poses landmarks (features) to detect and locate them. Finally, the
features of the models are passed after processing the unification of the depth and location of the body
to recognize the DSL accurately. To accomplish this, the authors built a new American video-based
sign dataset and named it DSL-46. DSL-46 contains 46 daily used signs that were presented with all
the needed details and properties for recording the new dataset. The results of the experiments show
that the presented solution method can recognize dynamic signs extremely fast and accurately, even
in real-time detection. The DSLR reaches an accuracy of 98.8%, 99.84%, and 88.40% on the DSL-46,
LSA64, and LIBRAS-BSL datasets, respectively.

Keywords: hand gesture; sign language; MediaPipe; hand landmarks; GRU; 1D CNN; DSL-46

1. Introduction

Nowadays, over 5% of the world’s population are hearing-impaired. This percentage
is expected to be 10% by 2050 [1,2]. The hearing impaired community is expected to reach
2.5 billion by 2050, and one in every ten people will be affected by disabling hearing loss.
Those people suffer every day in communication with society.

The hearing impaired communities often use sign language, which is a system that
uses visual-manual modality to convey a meaning. Sign language depends mainly on hand
gestures, body movements, and facial expressions. Sign language recognition (SLR) is a
challenging task, especially the recognition of dynamic signs that depends on movement.
This is why many researchers are interested in developing an SLR application with the goal
of decreasing the barrier between hearing impaired communities and society.

Sign language recognition methodologies are usually divided into two categories:
static and dynamic [3–5]. Static signs are those that only require the processing of a single
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image at the input of the classifier; hence, it can be treated as a screenshot of the hand shape.
Dynamic signs can be treated as a video containing a number of consecutive frames to
construct a sign. Generally, in sign language, the signs are built from a series of quick hand
actions and body expressions; hence, static sign language recognition is not a good solution
for sign language problems as it can not deal with the variation of signs. Therefore, the
dynamic-based solution is more effective and efficient for solving sign language problems.

There are some challenges that face the SLR that can be classified as primary and
secondary factors [6–8].

1. The primary factors:

• Hand Shape: The difference in the shape of the hand changes the sign;
• Hand Location: The hand location relative to the body can change the meaning

of the sign even if the hand shape is the same;
• Hand Movement: The most complex parameter as the sign can contain a set of

movements with different directions and shapes.

2. The secondary factors:

• Facial Expressions: The expressions on the face of the signer play a vital role in
illustrating the sign; it increases the sense and strength of the meaning in the
communication process.

• Orientation of the palm: The direction of the palm when making a sign—whether
it is facing up or down, right, or left.

Although the secondary factors are not essential in recognizing the sign, it is preferred
to take them into consideration. All the primary and secondary factors work together to
give the mean of a sign; they are complementary.

Our paper presents a solution that can deal with both primary and secondary factors to
accurately recognize the sign. We propose a Dynamic Sign Language Recognition approach
by combining deep learning models with the MediaPipe framework.

Our approach provides two reliable deep learning models for Dynamic Sign Language
Recognition (DSLR). The first one is the Recurrent Neural Network (RNN) model: Gated
Recurrent Unit (GRU), while the second is the 1DCNN model [9–11].

The MediaPipe was utilized to offer details on the palm’s orientation, hand location,
hand shape, and track them [12,13]. In addition, it is possible to accurately recognize signs
by extracting facial expressions using the face mesh approach (Appendix A).

Although MediaPipe succeeded in extracting all the needed information from the
primary and secondary factors, DSLR is still a challenging task due to the difficulties facing
computer vision, which particularly impairs the real-time detection of sign language. Some
of those difficulties are:

• The change in the location of the signer: e.g., if the model is trained where the position
of a signer in a specific sign is always to the right, it may fail to recognize this sign if
the signer stands to the left in real-time;

• Depth of the body in the frame: it is the distance of the body from the camera, which
also affects recognition negatively if changed from what the model was trained on;

• The unbalanced number of frames: the number of frames that will be used as input
for the model should be standardized;

• Provide a dataset for training.

To solve these problems, we propose new algorithms to deal with the problems related
to real-time detection, e.g., location and depth processing. We conduct 12 experiments on
the GRU model and 1D CNN model with pose keypoints included or excluded.

In addition, we recorded a new dataset of dynamic sign language that contains 46
daily used vocabularies (signs) named DSL-46. We also used external datasets, which are
LSA64 [14] and LIBRAS-BSL [8,15], so that we could compare our results with other recent
research that used the same datasets.
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Finally, the proposed solution could achieve excellent accuracy in recognizing dynamic
signs, as shown in the experiments.

The following succinctly summarizes the main characteristics that distinguish our
work approach from the other ways in the literature:

• The work approach stands out in its being light-weight and it performing faster than
most of the state-of-the-art SLR methods in both training and testing with an accuracy
of around 99%;

• The method works very well in real-time detection, which is our main goal of the
research; it detects signs quickly and accurately;

• The method has a preprocessing algorithm that deals with the complexity between the
actual input data and the test data, e.g., a frame selection algorithm, a scale algorithm,
and a location processing algorithm; these algorithms allow the model to accurately
determine the sign in the video even if the location and size of the signer or the length
of the video were different from the training;

• The method does not need high-end computational power to work; it can work very
smoothly on medium-end PCs or laptops;

• The method does not contain complex mathematics and calculations in comparison
to others.

In the rest of this paper, we carry out the steps and the methodology of our solution
method. Section 2 shows the related work. Section 3 proposes system details, while
Section 4 explains the details of our dataset. In Section 5, the experiments are discussed.
Finally, the conclusions in Section 6 are a summary of the entire research. In addition,
Appendix A shows the face mesh method.

2. Related Work

The research articles for sign language recognition will be discussed in this section to
compare them to the state-of-the-art, especially with those who used the same datasets.

Motion trajectory and hand shapes are two traditional approaches to DSL recognition
problems. The studies [16–19] used motion trajectory data from sensors such as the electrical
glove, gyroscope, and Kinect to categorize hand motions. These methods are limited to just
a few basic hand motions, such as waving, raising, and lowering the hand.

In the past decade, several methods for dynamic hand gestures of sign language
recognition have been proposed using deep learning algorithms such as RNNs [9–11,20],
CNNs [21–26], and RCNNs [27,28].

Indian sign language (ISL) gesture recognition using CNN with selfie mode sign lan-
guage video methodology was demonstrated by Rao et al. [26]. A recurrent convolutional
neural network (RCNN) utilizing video for dynamic hand sign recognition was developed
by Cui et al. [27].

The purpose of this section is to describe the research and methodologies that were
used on the same datasets that we used for our experiments, which are the DSL-10, DSL-46,
LSA64, and LIBRAS-BSL datasets. In Sections 4 and 5.1, these datasets will be thor-
oughly explained.

Ronchetti et al. [29] proposes a broad probabilistic sign classification model that
includes sub-classifiers based on several sorts of information such as position, movement,
and hand shape. To test the hypothesis that ordering is not necessary for recognition, the
model adopts a bag-of-words strategy in all classification steps. A separate sub-classifier
is used for each hand, and the model integrates the results from both. The series of
segmented hand images and hand locations is recovered from the sample video. The
segmented hand pictures are utilized as input for the hand shape sub-classifier, while
the position information for each hand is provided to the position and movement sub-
classifiers. The final output includes the probabilities produced by the right-hand and
left-hand sub-classifiers for each class.

Ramos et al. [30] recognize sign language using 3DCNN, standardize, and fix the
number of frames using Nearest Neighborhood Interpolation (NNI) [31].
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In addition, those who followed the approach of the CNN are Escobedo et al. [8]
where they depended on describing the position and movement of the hand. Their method
used texture maps to encode multimodal information (RGB-D). They presented a simple
technique for obtaining a frame that accurately captures the shape of the hand. They then
applied these data as inputs to two CNN models—one with three streams and the other
with two streams—to learn robust features capable of identifying a dynamic sign. Two sign
language datasets (LSA64 and LIBRAS-BSL) were used in the experiments and compared
with state-of-the-art SLR methods.

Konstantinidis et al. [32] relied on VGG16 to extract hand and body skeleton data
before applying a deep learning classifier to detect the sign.

Konstantinidis et al. [33] once more attempted to recognize sign language, but this
time in stronger, more organized ways. They used three parallel extractions—first, image
feature extraction using VGG16, then optical flow extraction using FlowNet2, and finally
skeleton extraction using OpenPose—and then entered each one separately into its own
LSTM model before concatenating them all to extract the result.

With the use of MediaPipe, which was used to estimate the location, shape, and
orientation, Samaan et al. [20] developed three RNN models in order to address the issue
of frame dependency in sign movement. Comparisons were made between the usage of
face keypoints and their removal, as well as between the various RNN model types, such
as GRU, LSTM, and BI-LSTM. The comparisons were conducted using the DSL-10 dataset,
which is a subset of the larger DSL-46 dataset that was created during this study.

3. Methodology

When attempting to address the dynamic sign language recognition challenges, our
approach goes through a series of three ordered phases until it obtains the optimal outcomes.
The first phase begins with gathering and processing data such as video augmentation and
standardization of frame number. The second phase is for extracting the keypoints using
the MediaPipe framework, then processing the retrieved keypoints such as non-standard
depth and location. In the last phase, we ultimately develop two deep learning models that
can process consecutive input types. Figure 1 depicts the workflow for the full solution.

Figure 1. Overview of our proposed Dynamic Sign Language Recognition system.

3.1. Collecting Data

We created a new dynamic sign language dataset called DSL-46, which includes 46
commonly used vocabulary. LSA64 and LIBRAS-BSL, two additional datasets, were also
utilized to evaluate the performance and accuracy of our models.
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3.2. Preprocessing Videos
3.2.1. Augmentation

Throughout this step, all videos in the DSL-46 dataset are horizontally flipped to
accomplish two main objectives. First, broaden the data collected to improve testing and
training procedures. Second, make sure that there are enough videos for both the left and
right hands for the same sign. Figure 2 shows an example of flip horizontal augmentation.

Figure 2. Flip horizontal augmentation.

3.2.2. Standardize Frames Number (Solve Unbalanced Data)

We equalize the number of frames in each video at this step in order to make the video
suitable for use as input to the model, as illustrated in Figure 3.

Figure 3. Selection process.

The following Algorithm 1 determines whether the original video’s frame number is
fewer or more than the desired number of frames. In that scenario, it is doubled or a certain
number of frames are removed until the desired number is obtained.
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Algorithm 1 Frame selection

Require: the original video(vo) which is list of frames.
Require: the number of frames to be extracted(Fn) .

1: vnew ← ListEm pty
2: countF = Size(vo)
3: I ← 1
4: while I 6= (Fn + 1) do
5: idx ← Integer((i/Fn) ∗ countF)
6: f rame← vo.get(idx)
7: vnew.append( f rame)
8: I := I + 1
9: end while

10: return video f ixed

3.3. Extract Keypoints Using MediaPipe

In this step, the videos are now prepared to extract hands and pose keypoints (features)
using MediaPipe. For both hands, the number of keypoints extracted from one frame is
126, since the MediaPipe extracts keypoints in three dimensions (x, y, and z-axes), with 21
keypoints for each dimension [12]. Figure 4 shows the 21 extracted hand’s keypoints. The
extraction model is very well trained in that it can even obtain the coordinates of partially
visible hands.

Figure 4. The order and labels of MediaPipe’s Hands keypoints [20].

For the pose, the number of keypoints extracted from one frame is 132, since the
MediaPipe extracts 33 keypoints for each dimension plus the visibility [13]. The visibility
of a point is a value that indicates whether it is visible or concealed (occluded by another
body part). The 33 extracted pose keypoints are shown in Figure 5. The extracted keypoints
for each video are saved in a CSV file. Now, the model can locate the hands by determining
their shape, direction, and position relative to the body.
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Figure 5. The order and labels of the pose’s keypoints [20].

3.4. Preprocessing MediaPipe
3.4.1. Scale (Depth Processing)

Once the videos were used as input data for MediaPipe and the keypoints were
extracted, the model encounters a new issue as a result of the variation in the depth of the
object in the image (the object was zoomed in or out through the camera lens) as shown in
Figure 6A.

The depth variation makes it difficult to recognize signs, especially in real-time because
objects at the distance take up less space than those in the vicinity.

To solve this issue, first, identify the area of the object that was extracted using the
MediaPipe and then unify a fixed area (depth) for all objects. Finally, either reduce or
enlarge the portion of the object that was extracted to match the same area that was
identified for all objects. The following Algorithm 2 shows the logical steps to solve
this issue.

Figure 6. Depth processing.
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Algorithm 2 Scale Algorithm

Require: Get all X and Y axes points Extracted from MediaPipe.
Require: Get Highest and lowest points for both X and Y.
Require: Define constant number for the width and height length.

1: width← xmax − xmin
2: height← ymax − ymin
3: divx ← width/constantwidth
4: divy ← height/constantheight
5: for each (x, y) ∈ (X, Y) do
6: x := x/divx
7: y := y/divy
8: end for
9: return new values for X and Y

As shown in Figure 6A, the bodies are at different distances. By extracting their points
from MediaPipe as in Figure 6B, it is clear that the sizes of the bodies are not unified. After
doing the depth processing, all bodies are now unified in size and distance (depth) as
shown in Figure 6C, and the model can recognize signs accurately.

3.4.2. Shift (Relocation Processing)

In this step, a new challenge appears which is the location of the body in the dataset
videos. Suppose a scenario in which the model was trained on a sign in Figure 7 where
the body always appears on the far-right side of the frame, and the model was tested on
a sign in Figure 8, where the body always appears on the far-left side of the frame. It is
obvious that the model will misidentify the sign because of the disparity between training
and testing signs. As demonstrated in Figure 9, the body was shifted to be centered by the
nose at the point (0,0) in order to fix the problem.

Figure 7. Body on the right-side of the frame.
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Figure 8. Body on the left-side of the frame.

After the two preprocessing phases were finished, it was obtained that the dataset size
has been increased while avoiding weakness at any sign, all dataset videos are balanced and
unified, and the issues of body distance (depth) and body positioning have been resolved.

Figure 9. Relocation processing.



Sensors 2023, 23, 2 10 of 20

3.5. The Models

Currently, all of the data are ready to be used as input for the models. The RNN-
related model (GRU) and the CNN-related model (1DCNN) are two deep learning models
that are included in the solution that our work suggests. In this section, the GRU and
1DCNN models are described together with information on their layers, structure, and
data entry methods.

3.5.1. RNN (GRU) Model

A recurrent neural network (RNN) is a type of neural network that analyzes time
series or sequential data [34]. It is distinguished by having a ‘’memory”, which enables it
to use data from earlier inputs to influence the present input and output [35]

The gated recurrent unit (GRU) is a form of RNN [36]. A forget gate on the GRU
makes it resemble an LSTM. LSTM is more accurate when working with datasets that
contain longer sequences, but GRU is faster and uses fewer memory [37]. Additionally,
GRUs address the problem of vanishing gradients that affects conventional recurrent neural
networks [38].

Since the number of frames taken from each video in our case is just 30, it was
preferable to utilize the GRU. Table 1 shows the order of the GRU layers with the values
that were used in the experiments. The structure of these layers stacked on top of one
another is depicted in Figure 10.

Figure 10. GRU Model structure.
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Table 1. GRU model layers and parameters.

Layer Type Number of Neurons Activation

In Input (n_frame, n_keypoints) -

G1 GRU 64 ReLU

G2 GRU 128 ReLU

G f GRU 64 ReLU

D1 Dense 64 ReLU

D2 Dense 32 ReLU

Out Output Number of classes Softmax

3.5.2. 1DCNN Model

Convolutional neural networks (CNNs) are a particular class of neural networks that
have excelled in several computer vision tasks and are becoming more and more common
in various fields. Convolution layers, pooling layers, and fully connected layers are some
of the essential parts of CNNs, which are designed to automatically and flexibly learn and
give advanced data using backpropagation [39,40].

CNN is a great choice for dynamic sign recognition because the input sample is a
2D matrix, the rows denote the number of frames, and the columns denote the extracted
keypoints [41]. The experiments were carried out on a 1D CNN, but they can also be carried
out with a 2D CNN, where the 2D CNN is represented as a matrix and the 1D CNN as a
vector. Table 2 represents the layers and hyperparameters used in the construction of the
1D CNN model. Figure 11 represents the complete structure used in the experiments for
the 1D CNN model.

Table 2. 1D CNN model layers & parameters.

Layer Type Size Kernel Size Stride Padding Activation

In Input (n_frame, n_keypoints) - - - -

C1 Convolution 64 3 1 Valid ReLU

C2 Convolution 64 3 1 Valid ReLU

D1 Droput 0.9 - - - -

M1 MaxPooling1D 2 - 2 valid -

F1 Fully Connected 128 - - - ReLU

F2 Fully Connected 128 - - - ReLU

Out Output Number of classes - - - Softmax

The models’ architectures were selected in our work after we implemented numerous
experiments in which we modified the architectures of the models by changing their
number of layers, parameters, optimizers, and activation functions. This is a collection of
the values that have been tried, as shown in Table 3, as an example.
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Figure 11. 1D CNN model structure.

Table 3. Collection of values that have been tried with model layers.

Layer Value

GRU or CNN layers Between 1 to 3

Dropout layers Between 1 to 3

Dropout layer value Between 0.5 to 0.9

Neurons per layer Between 32 to 256

Hidden layers Between 1 to 5

Activation ReLU or leakyReLU

Output Activation Softmax

Optimizer Adam or Adamax

4. DSL-46 Dataset

The authors of this study generated a dataset (DSL-46) for American sign language
that contains 46 frequently used signs that may be used in challenges involving dynamic
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sign language recognition. None of the participants who contributed to this dataset are
highly skilled signers or sign language users. Participants were taught to watch expert
records and mimic them before starting to make this dataset.

The DSL-46 dataset contains 2910 videos in total that were recorded in two sets. In the
first set, 10 signs were recorded, while, in the second, 36 more signs were added. In Table 4,
the signs of the first set start from the sign ‘Hello’ at ID (1) and end with the sign ‘Wear’ at
ID (10), while the signs of the second set start from the sign ‘Again’ at ID (11) and end with
the sign ‘Wrong’ at ID (46).

Table 4. DSL-46 dataset SIGNS.

ID Name ID Name

1 Hello 24 Name

2 How Are 25 Not

3 Love 26 Right

4 No 27 Come

5 Please 28 Father

6 Mask 29 Give to

7 You 30 Hearing

8 Sorry 31 Learn

9 Thanks 32 Me

10 Wear 33 Need

11 Again 34 Ours

12 Don’t Want 35 Sad

13 Finish 36 Work

14 Good 37 Deaf

15 Help 38 Fine

16 More 39 Go

17 Sign 40 Like

18 We 41 Meet

19 Yes 42 Nice

20 Age 43 Pay

21 Eat 44 See you later

22 Forget 45 Want

23 Happy 46 Wrong

The first set was recorded by five participants in an indoor environment with normal
light, each participant recorded 15 videos for each sign which led to 750 videos in total.
The second set was recorded by four participants in another indoor environment with
another source of light to differentiate between the signs and increase the validity of the
model. Each participant in the second set recorded 15 videos for each sign also, leading to
2160 videos in total.

By taking some videos with their right hand and others with their left, or even both
hands, the participants in both sets attempted to maximize the variety of signs. Addition-
ally, the participants recorded the signs while standing or sitting and against various back-
grounds.

An Oppo Reno 3 Pro mobile camera was used in recording all the videos. The duration
of DSL-46 videos is 1 second, recorded in 640 by 480 resolution at 30 fps.
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5. Experiments
5.1. Types of Datasets
5.1.1. DSL-46

We already discussed the contents of that dataset and all of its information in Section 4,
and now we will go through how to split it in order to enter it into experiments. These data
are made up of 2910 videos that were randomly allocated as 60% train, 20% validation, and
20% test, giving us 1746 videos for train, 582 videos for validation, and 582 videos for test.

5.1.2. LSA64

Many experiments were conducted on the LSA64 dataset to evaluate the effectiveness
of our models. LSA64 is a database for the Argentinian sign language; it produces a
dictionary that includes 3200 videos; ten subjects executed five repetitions of 64 different
types of signs. Signs were selected among the most used ones in the LSA lexicon, including
both verbs and nouns [14].

Each sign was executed by imposing a few constraints on the subjects to increase
diversity and realism in the database. All subjects were non-signers and right-handed and
were taught how to perform the signs during the recording session by showing them a
video of the signs as performed by one of the authors and practicing each sign a few times
before recording.

To conduct the experiments, the authors performed a subject-dependent classification
by splitting the dataset randomly into 1920 videos for training, 640 videos for validation,
and 640 videos for testing. Each set is created randomly to avoid bias factors.

5.1.3. LIBRAS-BSL

The LIBRAS-BSL dataset, which is a collection of 37 signs from the Brazilian Sign
Language, is used to train deep learning models for dynamic sign language recognition
tasks. A total of 10 participants—6 females and 4 males—created 4440 videos. Each
participant performed 12 times of 37 different signs. In the LIBRAS-BSL dataset, RGB,
Depth, and skeleton data were gathered using a Microsoft Kinect [8,15].

5.2. Experiments Environment

The experiments were carried out on two distinct machines, one of which used the
CPU and the other the GPU. The experiments were carried out using the CPU on the first
device, an Intel Core i3-10100 PC with a 3.6 GHz clock speed, 16 GB of RAM, and a Crucial
P5 Plus 500 GB SSD. The experiments were carried out using the graphics card (GPU) on
the second device, a laptop with a 2.5 GHz Intel Core i7-7700HQ CPU, 6 GB of NVIDIA
GTX 1060 GPU, 16 GB of RAM, and a 256 GB SSD.

5.3. Experiments’ Results

Five experiments were carried out to calculate the mean accuracy using three different
datasets (Section 5.1). We randomly separated the dataset into three subsets: training,
validation, and testing (60 percent training, 20 percent validation, and 20 percent testing).

In the following tables ( Tables 5–7), the mean accuracy for training, validation, and
testing will be clarified for each used model, and whether it includes the pose points or not.

Table 5. Experiments results on the DSL-46 dataset.

Exp No. Includes Pose Keypoints Model Type Train Accuracy Validation Accuracy Test Accuracy

1 Yes GRU 100 96.74 97.08

2 Yes CNN 100 98.78 98.80

3 No GRU 99.42 95.2 96.91

4 No CNN 99.88 99.1 98.80
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Table 6. Experiments’ results on the LSA64 dataset.

Exp No. Includes Pose Keypoints Model Type Train Accuracy Validation Accuracy Test Accuracy

5 Yes GRU 99.89 97.65 97.96

6 Yes CNN 100 99.21 99.84

7 No GRU 99.79 97.18 96.87

8 No CNN 99.73 98.90 98.75

Table 7. Experiments results on the LIBRAS-BSL dataset

Exp No. Includes Pose Keypoints Model Type Train Accuracy Validation Accuracy Test Accuracy

9 Yes GRU 89.58 87.75 87.86

10 Yes CNN 90.12 89.29 88.40

11 No GRU 87.73 87.18 86.87

12 No CNN 88.23 87.10 86.95

Table 5 shows those experiments on our DSL-46 dataset while Table 6 on the LSA64
dataset and Table 7 on the LIBRAS-BSL dataset.

Determining the position of the hand relative to the body helps in differentiating
between signs, as two or more signs can be made with the same hand shape, but the
different locations relative to the body change the meaning of the sign. Therefore, in order
to determine the location of the hand in relation to the body, use one of the two ways. The
first way is the pose keypoints, which are used to determine where the hand is in relation
to the body. The second way is by excluding the pose key points, but, before that, we move
the body to the point (0,0) on the x- and y-axes (see Section 3.4.2). Thus, the position of the
hand will be known in relation to the axes.

Therefore, the authors considered conducting an experiment to see if the pose points
might be eliminated following this preprocessing. Since the relocation is processed in
Section 3.4.2 using the pose points, it should not be dispensed before this stage.

5.4. Discussion

We initially draw the conclusion that the proposed system work is effective based on
prior experiments. Second, CNN is more effective than the GRU, and the inclusion points
of the pose are sometimes given with a 1% higher accuracy and, other times, there is no
difference, as we see in experiment No. 4 that does not contain pose points, so we find that,
in the test accuracy, it is higher than Experiment No. 1 and equal to No. 2, and they are the
ones who include the pose points. The comparison between these three tables (Tables 5–7 )
shows that the significant degree of similarity displayed in the primary parameters of the
LIBRAS-BSL dataset is one of its difficulties.

5.5. Comparison with State-of-the-Art SLR Methods

The mean accuracy calculated from five experiments using the LSA64 and LIBRAS-BSL
datasets, respectively, is summarized in Tables 8 and 9.

Here, we will compare a series of research studies that used the LSA64 and LIBRAS-
BSL datasets to recognize sign languages, and we will compare the numbers of our findings
to theirs. A comparison with state-of-the-art SLR methods has been executed under the
same conditions on the datasets, with the same training and test partitions. This comparison
shows that, despite the simplicity of our method, it outperforms competitors in accuracy,
although they employ more complicated and demanding networks.

In Table 8, it is clear that our results, especially in the 1D-CNN, are more accurate
than the other techniques and are equal to No. 6 [33] and that the No. 9 [8] technique
gives a greater result than us, but let us talk about the differences that distinguish us from
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No. 6 [33] and No. 9 [8], so we can almost be certain and not confirm that our technology is
much faster and lighter the others, which they use complex techniques to identify.

Table 8. Comparison with state-of-the-art SLR methods on the LSA64 Dataset.

No. Method Mean Accuracy

1 3DCNN [30] 93.90

2 ALL-BF-SVM [29] 95.08

3 ALL-HMM [29] 95.92

4 ALL(sequence agnostic) [29] 97.44

5 Deep network [32] 98.09

6 VGG16+FlowNet+OpenPose
[33] 99.84

7 3S-CNN [8] 96.92

8 2S-CNN-C [8] 99.82

9 Later Fusion (3S + 2SC) [8] 99.91

10 GRU 97.96

11 1D-CNN 99.84

Table 9. Comparison with state-of-the-art SLR methods on the LIBRAS-BSL dataset.

No. Method Mean Accuracy

12 3S-CNN [8] 79.95

13 2S-CNN-C [8] 81.12

14 Later Fusion (3S + 2SC)[8] 84.71

15 GRU 87.86

16 1D-CNN 88.40

Let us start with No. 6 [33] first, as they use a mixture of VGG16, FlowNet, and
OpenPose, and it has been proven in Valentin et al. [13] that the MediaPipe is faster than
the OpenPose with an average between 25 and 75 times. In addition, the VGG16 structure
is more complex and requires more layers than 1D-CNN [42]. Training VGG-16 on the
DSL-46 dataset takes 1 h 12 m 15 s, while the training time of 1D-CN on the same dataset is
39 m 40 s. In the second paper [8], in this research, they use three methods, first 3S-CNN
and second 2S-CNN-C while third Later_Fusion (3S + 2SC). In the first and second method,
although they use more complex models and methods than us, our results were higher,
while the third method, which is higher than ours, relies on very complex processes to
recognize it. They use a combination of two prediction models, the first consists of three
stream CNN and the second consists of two stream CNN, while we only use one stream
CNN, which makes us see the power difference between the complexities of the models.
Besides all that, all the research in the table is concerned with identifying sign language
in its ideal form only in the dataset. However, our paper is more concerned with the
accuracy of the recognition during real-time because in real-time the ideal environment is
not available.

5.6. Limitations

Despite the fact that our method has very high accuracy in recognizing signs and a
preprocessing algorithm to deal with the scale of the bodies, the location, and the duration
of the input videos, as with any work, there must be limitations. The limitation of our
research is that the dataset size is still not big enough, the model faces difficulties in
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separating signs with the movement speed of hands in real-time, and the anomaly signs
could be detected as signs, and this is wrong.

6. Conclusions

In this paper, we propose lightweight deep learning models combined with the Medi-
aPipe framework based on pre-processing techniques, e.g., location and depth processing,
to increase the performance of our approach, especially in real-time. Our approach can
locate the hands by determining their shape, direction, and position. relative to the body in
each frame. Then, we use these data as input for the GRU model from the RNN class and
the CNN model to train from the landmarks features to be able to recognize signs even in
real-time streams.

Our experiments were conducted on three different sign language datasets. The first
one is DSL-46, which is our dataset for the American sign language, the second one is LSA64
for Argentinian sign language, while the third is the LIBRAS-BSL dataset for Brazilian
sign language.

The result of the experiments showed that our solution method succeeded in recogniz-
ing dynamic signs with an accuracy of more than 99% on both datasets. Comparisons were
made with other papers that used the same dataset, and the results were discussed. The
include and exclude of the pose were tested by showing the difference between them.

The main conclusions of this paper can be summarized as follows: deep learning
models combined with the MediaPipe framework were used to create a lightweight model
for dynamic sign language recognition, and a pre-processing technique was developed to
adapt the model for recognizing signs in a real-world video. A new dataset of dynamic
sign language named DSL-46 with 46 vocabularies was recorded, and 12 experiments on
the GRU model and the 1D CNN model were conducted. The results show that 1D CNN
performs better than GRU in both training and testing, and it was found that, in most of
the author’s experiments, including the pose keypoints increases the accuracy by 1%.

In the future, we will work on recording more signs and expanding the dataset size,
working on the difficulties in separating signs with the movement speed of hands in real-
time detection, creating a lighter model to be compatible with mobile devices, comparing
the DSL46 with state-of-the-art methods, and make a complex real-time sign sentence
detector application.
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Appendix A

This section demonstrates the face keypoints inclusion approach using the Face mesh
method from MediaPipe. The MediaPipe Face Mesh is an approach to extract 3D landmarks
from the human face, with 468 keypoints for each dimension with a total of 1404 keypoints
as shown in Figure A1. Real-time identification is also possible with the Face Mesh technol-
ogy, and it can also distinguish between distinct facial expressions that aid in accurately
recognizing sign language. The Face Mesh approach has been tested in the past in our
previous work [20], where we conducted six experiments to compare the effects of utilizing
and not using the Face Mesh in DSLR. In conclusion, the research findings indicate that it is

https://osf.io/t92sd
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possible to accurately recognize signs by determining the facial expression using the Face
Mesh approach. However, a speedier recognizer model was created as a result of the Face
Mesh method’s abandonment since it saves 468 keypoints in 3D (1404 keypoints).

Figure A1. Face Mesh keypoints [20].
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