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Abstract: In the current Information Age, it is usual to access our personal and professional informa-
tion, such as bank account data or private documents, in a telematic manner. To ensure the privacy of
this information, user authentication systems should be accurately developed. In this work, we focus
on biometric authentication, as it depends on the user’s inherent characteristics and, therefore, offers
personalized authentication systems. Specifically, we propose an electrocardiogram (EEG)-based user
authentication system by employing One-Class and Multi-Class Machine Learning classifiers. In
this sense, the main novelty of this article is the introduction of Isolation Forest and Local Outlier
Factor classifiers as new tools for user authentication and the investigation of their suitability with
EEG data. Additionally, we identify the EEG channels and brainwaves with greater contribution
to the authentication and compare them with the traditional dimensionality reduction techniques,
Principal Component Analysis, and χ2 statistical test. In our final proposal, we elaborate on a hybrid
system resistant to random forgery attacks using an Isolation Forest and a Random Forest classifiers,
obtaining a final accuracy of 82.3%, a precision of 91.1% and a recall of 75.3%.

Keywords: electroencephalogram; machine learning; multi-class classifier; one-class classifiers; user
authentication

1. Introduction

The recent development of technology has made it possible to implement sophisticated
software even on small hardware. As a result, common devices such as smartphones, tablets,
and smartwatches are typically equipped with many sensors and complex software. These
portable devices now contain much of our digital lives, allowing us to access essential
services on the go, such as private documents, e-payment, online shopping, and e-banking.
In this context, user-friendly authentication systems that can be used frequently are essential
for privacy and data protection [1]. These systems are often based on something the user
knows (e.g., passwords or pins), owns (e.g., identification cards), or is (e.g., biometric
data such as fingerprints) [2]. However, the first two approaches have disadvantages:
complex passwords are difficult to remember, simple codes can be easily guessed by
attackers, and identification objects can be physically stolen and grant permanent access
after authentication [2]. The use of biometric data is preferable as it provides representative
and unique information specific to each user’s body.

Biometric authentication systems often rely on artificial intelligence (AI) algorithms
to differentiate specific users and prevent identity fraud [3]. AI algorithms are powerful
tools that learn how to classify data based on their structure. To do this, they are trained
and tested on data samples defined by biometric features. These features can be defined
manually (using Machine Learning or ML) or extracted automatically (using Deep Learning
or DL). Additionally, an AI model can be defined as multiclass (MC) if it learns from data
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with different labels (i.e., a classification problem) or as one-class (OC) if it learns from
data from only one group (i.e., outlier detection) [4]. In AI studies, a model is typically
trained using a series of samples called a train set, which allows the model to understand
the pattern that the information follows. The model’s performance is then tested using a
test set that contains similar data to the train set but that the model has never seen before.
In this way, the model is evaluated on previously unseen data that are different from the
train set. It is common to use a portion of the train set as a validation set to study the effect
of the model’s parameters (parameter tuning) and ensure that it generalizes well and does
not simply memorize the train set (overfitting) [4–6].

In the context of user biometric authentication, both ML and DL have been shown to
be useful tools. Both techniques have produced good results when using different biometric
features, including: (1) behavioral characteristics with gyroscopes, accelerometers, and mag-
netometers [7,8], (2) physical attributes such as facial [9], ocular [10], or fingerprint [11]
recognition, and (3) physiological signals such as electroencephalograms (EEG) [12] or
electrocardiograms [13]. It is important to note the difference between the user identifica-
tion problem and the user authentication problem. In the former, the model learns how to
differentiate between multiple users, making it an MC problem with as many labels/classes
as there are users. On the other hand, user authentication involves deciding whether a user
is the legitimate one or not, which is a binary problem (positive data with label 1 for the
legitimate user and negative data with label 0 for impostors). As a result, most AI-based
user authentication systems employ MC (binary) classifiers, using positive training data
from the user of interest and negative training data from other subjects. While this is a
valid approach, it is not always reasonable to assume that information about impostors is
available, and a more realistic scenario would involve using OC classifiers. In this case,
the model would work as an anomaly detector, learning only from the information of the
user of interest. However, this option typically lowers the efficiency of the authentication
system [7].

EEG signals are one of the most unique physiological characteristics of an individ-
ual [14]. EEG is a test that records the bioelectrical brain activity of a subject using multiple
sensors attached to the scalp. These signals are particularly useful for user authentication
applications, as this biometric information provides enough intrapersonal consistency over
time to identify a specific user, while still maintaining interpersonal differences that allow
other individuals to be rejected [15]. By analyzing the frequency content of EEG signals,
different brain waves can be extracted.

In this work, we introduce the use of Isolation Forest (IF) and Local Outlier Factor
(LOF) models for user authentication based on EEG data, which, to our knowledge, has not
been explored before. Additionally, we aim to construct a hybrid system that combines OC
and MC classifiers to improve the performance of OC models using MC algorithms while
only requiring information from the legitimate user. We also study different approaches
to reduce the dimensionality of the problem. Since AI authentication systems are often
time-consuming and computationally costly [7], it is useful to reduce the dimensions of
the data used by the model. It is important to note that, since we are using EEG data,
we are addressing the problem of user authentication, which is different from and more
appropriate than the problem of device/smartphone authentication.

The rest of this article is organized as follows: in Section 2, we detail the contribution of
this work, while in Section 3 the related work is described. In Section 4, the data acquisition
and preprocessing are explained, while in Section 5 the methodology followed is detailed.
Then, in Section 6, the produced results are presented, and in Section 7, we finish with
some conclusions.

2. Article Contribution

In this paper, we investigate the use of different OC ML classifiers with EEG signals
to develop secure and usable user authentication models and compare their performance
with known successful MC ML classifiers. Our principal contribution is the introduction of
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the IF and LOF models for user authentication. Although they are well-known ML models,
as far as we know, they have never been explored in this application. In this work, we
show their suitability for OC EEG user authentication and improve the performance of
similar works of the literature by studying the impact of their parameters in the security
as well as in the usability aspects of the models. We consider that a model is secure if the
probability of an authenticated user being the legitimate one is high (i.e., a precision above
90%), while a usable model would be the one in which the legitimate user requires a low
number of attempts to be authenticated (i.e., a recall above 75%). Moreover, we aim to
reduce the dimensionality of the problem and, hence, the computational costs of the system,
without affecting the system performance. To do that, we will analyze the contribution of
the information of each EEG channel and brainwave in the authentication process. Finally,
we pretend to develop a hybrid protocol that combines an OC and an MC model that
represents a realistic scenario and improves the results of the OC algorithm. Therefore,
in this work, we address the following novelties:

• Solve the user authentication problem with IF and LOF, OC classifiers that have not
been explored before for this application, increasing the literature authentication
performance. We compared their results with OC–Support Vector Machine (OC–SVM)
and, regarding MC classifiers, SVM, Random Forest (RF), and K-Nearest Neighbors
(KNN). We have selected these models because they are well-known, classical ML
models that have been shown to be useful in the user authentication application [7].
Moreover, as it will be exposed later, for each one of the MC models there is an
equivalent OC model, which means that they have similar ways of working;

• Identify how the security and usability of the systems can be improved by modifying
the parameters of the classifiers. As far as we know, this is the first work that presents
this analysis regarding OC classifiers for EEG signals;

• Analyze the contribution to the authentication process of each channel and brain wave.
We will reduce the dimensionality of the problem by selecting the most important
channels and brain waves, and compare this dimensionality reduction methodology
with Principal Component Analysis (PCA) and the statistical test χ2 [16];

• Construct a hybrid system that combines a OC and a MC model. In this sense, by using
first an OC model, we will still be in a realistic scenario in which only the data of the
legitimate user are needed, and then train a MC model by using the outputs of the OC
model to improve the original results;

• The publication of the used scripts so that the experiments can be replicated with different
databases (Script available at: https://github.com/luishalvarez/EEG-Authentication ).

Our final goal is to implement the proposed mechanism in daily life situations by
employing, for example, portable EEGs that can measure real-world signals in common
and usual places [17]. Following this idea, our proposal could be applied for Continuous
Authentication (CA), performing the authentication automatically and in a transparent
manner. In order to do this, the ML model could be deployed in a smart device of the
user, so that the EEG signals are directly sent to it. Another option could be to outsource
the authentication to an external server in charge of managing, protecting, and process-
ing the data. More evident applications are Brain–Computer Interfaces (BCI) and user
authentication in hospitals. BCIs refer to systems that use the brain’s electrical activity to
create a communications between a user and a computer to, for example, assist subjects
with paralysis. Since these systems already measure the EEG, they could directly employ
the proposed scheme to make sure that the communication includes the legitimate user,
performing CA. In the case of hospitals, patients whose EEG must be acquired could be
authenticated, ensuring that the correct medication/treatment is applied.

3. Related Work

We have divided the related works into two classes: user authentication with MC
(Section 3.1) and OC (Section 3.2) classifiers. Additionally, in Section 3.3, we also include

https://github.com/luishalvarez/EEG-Authentication
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a brief discussion on works that have used IF and LOF with EEG data, but not for the
application of user authentication.

3.1. Multi-Class EEG User Authentication

Several MC AI techniques have been studied and demonstrated to be useful regarding
EEG-based user authentication. For instance, in [12], the authors employ an Artificial
Neural Network (ANN) to authenticate users based on energy features extracted from the
wavelet decomposition of their EEG signals. The reported results achieve the greatest values
of 95% and 3.92% for True Positive Rate (TPR) and False Positive Rate (FPR), respectively,
although their database only included five subjects. A comparable approach is followed
in [18], where a Multilayer Perceptron (MLP) and a correlation model are utilized to identify
the users, obtaining a final accuracy of 75.8%. Similar results were obtained with different
configurations of ANNs in [19,20]. Convolutional Neural Networks (CNN) have also been
studied in this field, as in [21–23], with results around 95% and 5% in accuracy and TPR.

The article included in [24] focused on the ML algorithms SVM, RF, KNN, and Naive
Bayes. Positive outcomes were produced with all of them obtaining a greatest accuracy
of 98.28% with an RF. These models have been analyzed with features extracted from the
time domain [25] and the frequency domain [26]. Comparable results have been recently
reported in [27,28]. Other suitable models include Hidden Markov Model (HMM) and
Gaussian Mixture Models (GMM) [15].

3.2. One-Class EEG User Authentication

The research of OC classifiers for user authentication is based on the OC–SVM model.
For example, a Support Vector Data Description (SVDD) is used in [29] to authenticate
users based on their visual evoked potentials. The strategy consisted of combining the
users in groups of three, and the result obtained was 98% of correctness. The accuracy
(best value of 80%) and FPR (best value of 2.2%) of a OC–SVM were analyzed in [30] by
increasing the number of blinks while measuring the EEG signals. In [31], the authors used
an OC–SVM as a first security layer of an intruder detection/user identification system.
In [32], OC–SVM and CNN were combined to construct a biometric authentication system.
The study presented in [33] uses an OC–SVM to extract unsupervised features of EEG
signals and explore their robustness against intra-subject variability.

3.3. IF and LOF with EEG Data

Recently, the combination of EEG signals with IF and LOF have been proposed in
other works, but, to our knowledge, not for user authentication protocols. As an example,
the study presented in [34] evaluates the use of IF to detect epileptic seizures in EEG signals.
A similar objective is achieved in [35] utilizing fuzzy classifiers.

Similarly, in [36], outliers of eye state EEG signals were detected and eliminated by
using IF. Alternatively, in [37], a pipeline for artifact removal in newborn EEG signals using
LOF is introduced, employing it as an outlier detection algorithm. Approximated results
are achieved in [38]. Another example of EEG outlier detection with LOF is [39], in which
the EEG signals were used to classify breast tumors.

Based on the described literature, we can say that the IF and LOF models have not been
explored for EEG-based user authentication. Even in other applications, the importance
of IF and LOF was minimal compared to MC algorithms. However, in this work, we
aim to study the suitability of these models to perform user authentication independently
based on features already known to be successful. In the latest step, we pretend to build
a hybrid system that improves their performance and only needs the information of the
legitimate user.

4. Data Preparation

In this section, we describe how the EEG signals were acquired and the process
followed to extract the features from which the AI models are going to learn.
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4.1. Data Acquisition

To develop the measurement campaign, we took as reference the one described in [40].
The bioelectrical brain activity of 39 volunteers (23 women and 18 men between 18 and
60 years old) was measured. All volunteers were students or professors of the University
of Florence and agreed to participate in the dataset collection only for research purposes.
The signals were acquired with the Emotiv Epoc+ V1.1 wireless headset [41] at a sampling
rate of 256 Hz. This device is commercially available and consists of 18 contact sensors on
flexible and fixed plastic arms that are placed on the scalp of the user. The device contains
14 EEG channels and four references that correspond to the following locations in the
International 10–20 system: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4
for channels, and P3, P4, TP9, and TP10 for references [41]. In Figure 1, the location of the
channels in a scalp is included. Additionally, the headset applies digital fifth-order sinc
and 50 Hz notch filters that improve the quality of the signal acquired.

The measurements were conducted in an environment with controlled illumination
and sonority, and without protection against electrical and electromagnetic interference.
Before starting the experiment, the individuals were asked to sign an agreement, declaring
that they did not suffer any form of neurological disorder, agreed to participate in the cam-
paign, and allowed the use of their information for research purposes only by researchers
of the University of Florence. Hence, due to ethical and privacy issues, the database used
in this work is not publicly available. Once the headset was placed on the subjects, and it
was verified that the signal was being measured successfully, the experiment started. Each
session started with a black screen (5 s), followed by an image (20 s) and another black
screen (5 s). As a focused state in the participant was desired, the image selected consisted
of three bottles of wine with different and complex labels, so that the user had enough
stimuli. This process was repeated in four different sessions with four different images
during the same day for each user. The four EEG signals were then joined, forming a single
EEG signal for each user with an approximated duration of 2 min.

Figure 1. Measure map of Emotiv Epoc+ Headset [41].

4.2. Data Preprocessing

For each subject i, 14 continuous EEG signals (one signal per each channel c) over time
t, Si,c(t) were obtained. It is important to notice that signals of different users were not
recorded for the same exact time interval and, therefore, the length of the signals varies
from user to user. We defined the following data preprocessing procedure:

1. We divided the EEG signal of each channel and user in smaller signals of 240 ms.
In other words, each Si,c(t) is separated in ji smaller signals, si,c,ji (t) of 240 ms each.
These smaller signals si,c,ji (t) represent different samples of the same subject i. We
chose 240 ms as time interval for two reasons: (1) it was viable to extract the frequency
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content (i.e., the brainwaves) we are interested in, and (2) a sufficient number of
samples for each user were obtained. Since signals of different users had a different
duration, the number of smaller signals j is different for each user (from here the
notation ji), and it goes from 1 to mi, where mi is the total number of smaller signals
for the user i.

2. Then, we computed the wavelet decomposition of each si,c,ji (t) for i ∈ {1, . . . , 39},
c ∈ {1, . . . , 14}, and ji ∈ {1, . . . , mi}. Specifically, we employed a five-level wavelet
decomposition using the order 2 Daubechies wavelet with Matlab, version R2021b.
From this decomposition, we acquired the wavelet coefficients D1, D2, D3, D4, D5,
and A5 as real-valued vectors. In Table 1, the frequency content and the corresponding
brain wave of each coefficient are reported.
We decided to use the wavelet decomposition for several reasons: (i) the implementa-
tion of the Fast Wavelet Transform is computationally fast, (ii) it offers a simultaneous
signal feature localization in time and frequency domain, (iii) it is able to identify
details of small parts of the signal, better than its general characteristics, and (iv) it
has been shown to be suitable to an AI model with EEG data [25].

3. Finally, for each wavelet coefficient vector D1, D2, D3, D4, D5, and A5 in each si,ji (t),
we calculated the following eight metrics [25]: maximum, minimum, mean, standard
deviation, variance, skewness, Shannon entropy, and average power.

Table 1. Correspondence between Wavelet Coefficients, Brain Waves, and Frequency Content.

Wavelet Coeff. D1 D2 D3 D4 D5 A5
Brain wave γ γ β α θ δ
Freq. (Hz) 64–128 32–64 16–32 8–16 4–8 0–4

Taking into account that the Emotiv Epoc+ headset acquires a signal from each of its
14 channels that six coefficients are calculated for each signal, eight metrics are computed
for each wavelet coefficient, and the final number of features is 14× 6× 8 = 672.

5. Methodology

In this section, we explain the authentication strategy, which includes how the AI
models are going to be trained and tested, and provide a brief explanation of the models
that we will use, as well as of their more important parameters. Additionally, we include a
threat model of our proposal.

5.1. Authentication Strategy

ML algorithms learn from data whose features have to be defined manually. In the
previous section, we described how we conducted this procedure. Additionally, as already
explained, we are going to divide the data into a train set, a validation set, and a test set to
improve the model as much as possible and avoid overfitting.

A user authentication protocol is composed by two phases: the first one is the En-
rollment Phase, in which data from the user of interest are collected and used to train a
model. Once the model is constructed, the user can be authenticated by introducing a new
measurement; this corresponds to the Authentication Phase. We associate the Enrollment
Phase with the model training, whereas the model testing represents the Authentication
Phase. To execute each phase, we differentiate between OC and MC classifiers:

• Multi-Class classifiers: they need both positive (from the legitimate user) and negative
(from an impostor) samples to be trained. In our case, the positive samples of the
train set are the 80% of the total samples of the legitimate user, and the remaining
20% is used for testing. In addition, 15% of the train set represents the validation set.
The negatives samples are randomly selected from the other 38 subjects for all sets,
and the proportion of positive and negative samples in each set is defined as 50%.
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• One-Class classifiers: in this case, the train set consists of 80% of the total samples
of the legitimate user, as these models only need positive samples. The test set is
composed of the remaining 20% (positive samples), and the same number of negative
samples, randomly selected from the other 38 users.

It should be mentioned that, in both cases, the data are normalized attending to the
standard normalization.

5.2. Classifiers and Dimensionality Reduction

As described, both MC and OC ML classifiers have been used to develop user authenti-
cation mechanisms based on EEG data. On the one hand, MC models usually achieve better
performances, as they learn the information structure of both the legitimate user and a
potential impostor. Nevertheless, the information of the impostor is commonly represented
by randomly selected data from the remaining subjects in the database. On the other hand,
despite OC classifiers not being as efficient, they only need the information of the legitimate
user to be trained.

Below, we describe the MC models proposed.
SVM : A model that constructs a hyperplane in a high-dimensional space to separate

two set of points (classes). To find the optimal hyperplane, SVMs maximize its distance to
the nearest element of each class, called the functional margin. We employ a Radial Basis
Function (RBF) kernel function to simplify the calculations of the SVM, defining a 10-fold
cross–validation process to optimize the value of the parameters C and gamma. The param-
eter C indicates how small the margin hyperplane is, while gamma defines the relevance
of each training sample [1,4,5]. The specific values studied in the cross–validation process
were C = {0.1, 1, 10, 100, 1000} and gamma = {auto, scale, 0.001, 0.01, 0.1, 1, 10, 100} [5].

RF: Bagging method that combines several individual decision tree classifiers [5],
and whose result is the most voted class. Decision tree classifiers are models in which
the leaves represent features, while branches represent labels. In this sense, the model
learns how to differentiate the labels depending on the value of the features, hence creating
new branches from each leave. In this work, we construct ensembles of 500 decision tree
classifiers with default maximum depth (number of leaves and branches) [4,5].

KNN: It predicts the label of a new sample by looking at the most voted label of the k
nearest known samples. In this sense, several metrics can be used to define distance, as,
for example, the Euclidean distance of the features. In our case, we will set the number of
neighbors to 25 (k = 25) and use the default values for the rest of parameters [4,5].

The OC classifiers evaluated are the following:
OC–SVM: Schölkopf et al. [42] proposed a similar technique to SVM to construct a

hyperplane that separate regions with and without data, called OC–SVM. Thus, OC–SVM
has the same parameters of SVMs but also include the ν parameter. This new parameter
is both a lower bound for the number of samples that are support vectors and an upper
bound for the number of samples that are on the wrong side of the hyperplane. This is a
difficult parameter to cross–validate and, certainly, we are going to explore its effect in the
security and usability of the model [43].

IF: This algorithm detects anomalies by individually isolating points with binary tree
classifiers, instead of modeling the normal points. This fact implies that IFs are a fast
anomaly detector, with linear time complexity. Its parameters are the ones of RF and,
consequently, we will use 500 estimators. Additionally, its contamination parameter is
the analogous to the ν parameter of OC–SVM and, hence, we will analyze it also in this
case [44].

LOF: Proposed by Breunig et al. [45], LOFs detect anomalous samples by measuring
the local deviation or local density of each point with respect to its neighbors. Hence, this
model is similar to KNN, but including the “contamination” parameter, which has the
same meaning as for IF and OC–SVM [44].

From the included classifiers’ descriptions, it can be inferred that an OC model corre-
sponds to each MC model (and vice versa). That is, the pairs SVM and OC–SVM, RF and
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IF, and KNN and LOF have approximated methodologies and, despite the fact that there
are some important differences, their basic functioning is similar. As a result, we expect the
best individual models (and, thus, the models of the hybrid system) to be one of these pairs.

As stated in Section 4.2, the initial number of features of our data are 672. It would
be interesting to reduce this number, so that the models could be more computationally
efficient (i.e., consume less time), while avoiding the reduction in their performances. We
will explore the following dimensionality reduction techniques:

PCA: New features are going to be defined as linear combinations of the original ones.
In this study, 32 and 64 new features were obtained with PCA, as we found that their
representation percentage was sufficient (see Section 6.2).

Statistical Test χ2: This test enables us to identify the most significant original features.
We will evaluate the models considering only the 32 and 64 most significant features (see
Section 6.2).

Channel/brainwave: Alternatively, to reduce the problem dimensionality, we propose
the study of each EEG channel and brainwave individually to test their contribution to
the authentication model. Each channel contains 6× 8 = 48 features, and each brainwave
14× 8 = 112 features. Thus, detecting the most representative channels and brainwaves
would allow us not only to reduce the dimensions of the problem, but also to extract the
biological meaning.

5.3. Threat Model

Several security requirements should be pinpointed in the suggested authentication
methodology. Considering that, in general, the user’s information is outsourced to an
external server, the first security concern is the preservation of the user’s privacy. This
means that protocols that guarantee data confidentiality, integrity, availability, and non–
repudiation should be implemented. In addition, all parties that participate in the protocol
should be authenticated before it is started. These needs can be established by defining
a secure channel for data transmission and employing symmetric key cryptosystems.
In fact, other works have studied the user authentication problem by using encrypted
data as input to AI models [7], so that the clear information does not need to leave the
sensor. Alternatively, although the general authentication protocol (data acquisition and
preprocessing, and the ML models used) should be public, the specific parameters of
the preprocessing step and models should be secret. By doing this, if an attacker has
access to the user’s data, he will not be able to construct a new model that can imitate the
original one.

The fulfillment of these requirements is crucial to avoid dataset poisoning attacks,
model substitution attacks [46], stealth attacks [47], and membership inference attacks [48],
among others [49]. Apart from this, an adversary may attack the protocol itself, trying to
fool the model with false data. In this case, we distinguish two scenarios [50]:

• Random or substitution attack: an adversary uses his own EEG signal to be (incor-
rectly) authenticated. As described, our models are tested by using positive and
negative samples. Therefore, we are already considering and overcoming this attack.

• Skilled forgery attack: an adversary tries to reproduce the user’s EEG signal as closely
as possible to be (incorrectly) authenticated. The execution of this attack is more
evident with authentication systems based on gestures; the attacker tries to reproduce
the legit user’s movement. However, EEG signals cannot be imitated so easily. Conse-
quently, we think that the best approximation for this attack is to train a Generative
Adversarial Network (GAN) that generates similar EEG signals to the real user. De-
spite this attack not being addressed in the presented work, it is our objective to work
on it shortly.

Lastly, we should also consider that there might be different factors affecting the
acquisition of the EEG signals, thus decreasing the performance of the protocol. Some
examples of them might be a malfunctioning sensor, software failures, or undesired user
conditions (e.g., stress, intoxication, etc.).
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5.4. Results Acquisition

As explained before, we aim to compare the performance of OC and MC ML classifiers
(while evaluating the effect of dimensionality reduction techniques), the influence of each
channel and brainwave, and the impact of the ν/contamination parameter related to the
security and usability of the authentication system. To do that meaningfully, the following
steps are followed:

1. Firstly, we carry out some baseline results with the MC and OC algorithms and
compare their performance using the whole set of features (Section 6.1);

2. Then, we compare the baseline results with the outcomes after applying the dimen-
sionality reduction procedures PCA and χ2, decreasing the dimensions to 32 and 64
in both cases (Section 6.2);

3. Next, the contribution of each channel and brainwave is evaluated by solving the
authentication problem with just the data of each channel/brainwave (Section 6.3);

4. After that, we evaluate the effect of the ν and “contamination” parameter in the OC
classifiers in order to obtain more secure/usable authentication systems (Section 6.4);

5. Finally, taking into account the obtained results, we explore the most promising
combinations of OC and MC classifiers using the data with greater contribution in the
authentication problem (Section 6.5).

These comparisons are made attending to different metrics: precision, recall, F1-score,
accuracy, and FPR. All of them are based on the number of True Positives (TP), False
Negatives (FN), False Positives (FP), and True Negatives (TN) of each case. The definition
of the metrics are included in the following formulas:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

,

F1–Score = 2
Precision · Recall

Precision + Recall
,

Accuracy =
TP + TN

TP + FP + TN + FN
, FPR =

FP
FP + TN

According to these definitions, we could associate the precision (percentage of times
a predicted positive was a true positive) and FPR (percentage of times an impostor was
identified as the owner from his total number of attempts) with the security of the model.
In other words, we can say that our model is secure if it shows a high precision (above
90%) and a low FPR (less than 10%). On the contrary, the usability of the system is directly
proportional to the recall (percentage of times the owner is correctly authenticated). The F1-
score is the harmonic average of precision and recall, which means that it can be analyzed
to identify balanced systems. Finally, the accuracy can give us an insight into how well the
model performs, and if there is something undesired happening (i.e., a constant accuracy
of 0.5 would mean that the model is either rejecting or accepting all samples and, therefore,
is not generalizing).

Apart from the above measures, we are also going to use the Area Under the Receiver
Operating Characteristic (ROC) Curve (AUC) and the Equal Error Rate (EER) to evaluate
the MC classifiers. The axes of the ROC curve are typically false positive rate (x-axis)
and true positive rate (y-axis) and the greater its area, the better the performance. On the
contrary, a smaller EER is associated with higher accuracies, and it is defined as the point
of the ROC curve in which the false acceptance rate and false rejection rate are equal.
However, these two metrics are obtained from probabilities and, since the OC classifiers
directly accept or reject a sample, their use does not make sense with OC models.

6. Results

In this section, we include the outcomes obtained following the procedure described pre-
viously.
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6.1. Baseline OC and MC—All Features

The first step is to obtain the baseline results, shown in Table 2. These results represent,
for each metric, the average of the 39 users, and were obtained with the total number of
features (672).

An important consideration is that, since the negative samples were randomly selected
from the data of the remaining users, we repeated each experiment three times. In any case,
the standard deviation of the outcomes obtained was higher than 0.02. We do not include
this information in the tables to facilitate the results’ visualization to the reader, but the
data justify that the randomization does not affect the performance of the models.

Table 2. Results with 672 features.

No Dim.
Red. AUC EER Prec. Recall F1 Acc FPR

SVM 0.980 0.056 0.943 0.955 0.948 0.948 0.059
RF 0.991 0.033 0.970 0.957 0.962 0.964 0.029

KNN 0.899 0.157 0.775 0.905 0.823 0.802 0.301

OC–SVM - - 0.871 0.547 0.652 0.730 0.087
IF - - 0.910 0.537 0.663 0.741 0.054

LOF - - 0.821 0.621 0.691 0.730 0.160

If we compare the MC models, the SVM and RF offer better security (greater precision
and FPR values) and accuracy than KNN, although their usability (recall) are approximated.

With respect to the OC classifiers, although they maintain comparable results with
MC in terms of security (specially in the case of IF), they experience a dramatic reduction
in usability and accuracy. This means that it is more difficult to balance the security–
usability relation for OC models and, thus, they are either severe or usable. Interestingly,
IF and LOF present similar accuracy values, but LOF shows a more equilibrated security–
usability balance.

In Figure 2a,b, the ROC curves of the 39 users for the SVM and RF are respectively
represented. It can be appreciated that the curves behave similarly for every subject,
with the exception of two users in the case of SVM (green and orange curves) and one user
in the case of RF (orange curve). This leads us to think that the configuration of the models
is appropriated.

(a) (b)

Figure 2. ROC Curves of the 39 users (colored lines) with 672 features for SVM (a) and RF (b).

6.2. Dimensionality Reduction

We applied the traditional dimensionality reduction techniques PCA and statistical
test χ2 and performed the same tests as in the previous section. We analyzed the results
produced by reducing the dimensions to 8, 16, 32, 64, and 128. However, we observed
that, for PCA, the results improved as the number of features increased until there were
32, the point at which the performance started to deteriorate. In the case of χ2, the results
are better with a higher number of features, but, for consistency, we decided to maintain
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the same number of features in both methods. As a result, Table 3 includes the outcomes
obtained with 32 (best case for PCA) and 64 features. In both cases, the representation of
the new features was greater than 99.999%.

Table 3. Results with PCA and χ2—32 and 64 features.

PCA χ2

AUC EER Prec. Recall F1 Acc FPR AUC EER Prec. Recall F1 Acc FPR

32 Features

SVM 0.887 0.176 0.834 0.780 0.797 0.814 0.152 0.752 0.300 0.682 0.725 0.690 0.690 0.344
RF 0.967 0.087 0.911 0.898 0.900 0.906 0.087 0.781 0.285 0.707 0.748 0.723 0.718 0.312

KNN 0.794 0.269 0.722 0.635 0.648 0.681 0.273 0.683 0.363 0.636 0.616 0.610 0.632 0.352

OC–SVM - - 0.624 0.525 0.547 0.589 0.346 - - 0.633 0.568 0.587 0.606 0.355
IF - - 0.624 0.527 0.547 0.588 0.351 - - 0.649 0.551 0.581 0.613 0.326

LOF - - 0.705 0.627 0.651 0.669 0.290 - - 0.585 0.579 0.575 0.570 0.439

64 Features

SVM 0.909 0.161 0.818 0.853 0.823 0.828 0.198 0.811 0.251 0.733 0.793 0.756 0.747 0.299
RF 0.962 0.090 0.901 0.898 0.893 0.900 0.098 0.845 0.223 0.768 0.807 0.784 0.779 0.248

KNN 0.777 0.262 0.727 0.559 0.587 0.652 0.255 0.736 0.302 0.687 0.689 0.673 0.680 0.329

OC–SVM - - 0.592 0.511 0.527 0.565 0.381 - - 0.662 0.571 0.599 0.623 0.324
IF - - 0.571 0.510 0.520 0.552 0.407 - - 0.713 0.545 0.604 0.651 0.242

LOF - - 0.658 0.609 0.620 0.632 0.345 - - 0.616 0.594 0.600 0.603 0.388

Comparing the results with the ones presented in Section 6.1, we can see that the
performances of the models have become worse, more abruptly for the OC classifiers. RF
and SVM are still working remarkably better than KNN and, in light of these results, we
decided to focus on SVM and RF for the remaining experiments, discarding KNN.

Looking at each procedure individually, it can be inferred that χ2 has more troubles
when working with MC models than PCA, but they perform similarly with OC classifiers.
RF remains the best MC model in both cases and, for the OC ones, LOF is the best for PCA
and IF for χ2.

6.3. Channel and Wave Comparison

Now, we analyze the user authentication problem taking into account each channel
and brainwave individually. In Tables 4 and 5, the results obtained for the channels and
brainwaves in the case of MC classifiers are respectively presented. The same information
regarding the OC models is included in Tables 6 and 7.

For SVM and RF, the results suggest that the most important channels are P8, T8, FC6,
and F4. Additionally, channel AF3 also contributes to the security for the RF. For the case
of brainwaves, both models coincide, with gamma (D1 and D2) and beta (D3) waves as
the most influential ones. It should be noticed that, despite the classifiers coinciding in the
importance of channels and waves, the results are always better with RF. In other words,
for the same channel or the same brainwave, the metrics present better values for RF than
for SVM. This leads us to think that RF should be a preferred option.
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Table 4. Results per Channel with MC—48 features.

SVM RF

AUC EER Prec. Recall F1 Acc FPR AUC EER Prec. Recall F1 Acc FPR

AF3 0.789 0.277 0.712 0.781 0.743 0.732 0.316 0.833 0.233 0.756 0.801 0.777 0.771 0.258
F7 0.756 0.296 0.688 0.766 0.720 0.705 0.356 0.794 0.266 0.720 0.776 0.745 0.736 0.300
F3 0.795 0.268 0.713 0.790 0.745 0.734 0.323 0.828 0.238 0.751 0.798 0.771 0.764 0.270

FC5 0.801 0.260 0.718 0.808 0.756 0.743 0.321 0.833 0.237 0.747 0.806 0.773 0.766 0.274
T7 0.757 0.301 0.688 0.765 0.718 0.707 0.351 0.799 0.275 0.717 0.753 0.732 0.732 0.290
P7 0.781 0.283 0.707 0.817 0.752 0.734 0.348 0.828 0.242 0.743 0.802 0.767 0.760 0.281
01 0.788 0.272 0.710 0.803 0.748 0.734 0.336 0.830 0.239 0.748 0.810 0.776 0.769 0.273
02 0.782 0.275 0.714 0.778 0.737 0.726 0.326 0.836 0.236 0.756 0.804 0.777 0.769 0.267
P8 0.821 0.240 0.742 0.819 0.774 0.766 0.287 0.863 0.208 0.780 0.840 0.807 0.800 0.240
T8 0.802 0.252 0.727 0.818 0.766 0.752 0.314 0.839 0.226 0.755 0.809 0.779 0.774 0.262

FC6 0.792 0.273 0.716 0.823 0.762 0.741 0.340 0.824 0.244 0.742 0.819 0.776 0.764 0.292
F4 0.804 0.248 0.740 0.785 0.754 0.755 0.275 0.868 0.194 0.801 0.826 0.809 0.809 0.208
F8 0.766 0.294 0.695 0.768 0.724 0.708 0.353 0.792 0.267 0.726 0.766 0.743 0.736 0.295

AF4 0.766 0.288 0.700 0.775 0.730 0.716 0.344 0.820 0.241 0.748 0.779 0.759 0.757 0.264

Table 5. Results per Wave with MC—112 features.

SVM RF

AUC EER Prec. Recall F1 Acc FPR AUC EER Prec. Recall F1 Acc FPR

D1 0.969 0.065 0.927 0.956 0.940 0.939 0.079 0.985 0.044 0.955 0.947 0.950 0.951 0.044
D2 0.962 0.071 0.927 0.935 0.929 0.930 0.074 0.980 0.055 0.948 0.931 0.938 0.940 0.051
D3 0.969 0.066 0.927 0.943 0.935 0.934 0.075 0.985 0.048 0.956 0.935 0.945 0.946 0.042
D4 0.955 0.088 0.900 0.922 0.909 0.907 0.108 0.973 0.070 0.935 0.927 0.930 0.931 0.066
D5 0.943 0.114 0.870 0.910 0.888 0.885 0.141 0.958 0.095 0.914 0.893 0.902 0.903 0.087
A5 0.942 0.109 0.889 0.895 0.889 0.891 0.113 0.973 0.075 0.930 0.908 0.916 0.919 0.069

With respect to the OC models, the channels that contribute the most are P8, T8,
FC6, and F4, coinciding P8, FC6, and F4 as the ones with better security and usability for
OC–SVM and IF. Moreover, the best result of each individual channel is always obtained
with IF. Nevertheless, they present more distributed results regarding the brainwaves and,
hence, it is not clear which is the best option. For high frequency components (the best
choices for MC models), it looks like IF works better, whereas LOF performs the best for
low frequency components.

Table 6. Results per Channel with OC—48 features.

OC–SVM (ν = 0.5) IF (contamination = 0.5) LOF (contamination = 0.5)

Prec. Recall F1 Acc FPR Prec. Recall F1 Acc FPR Prec. Recall F1 Acc FPR

AF3 0.627 0.512 0.556 0.594 0.325 0.684 0.498 0.570 0.630 0.238 0.583 0.542 0.557 0.564 0.413
F7 0.615 0.537 0.566 0.588 0.362 0.660 0.508 0.568 0.615 0.277 0.580 0.537 0.555 0.566 0.406
F3 0.623 0.542 0.571 0.596 0.350 0.665 0.519 0.575 0.620 0.279 0.578 0.555 0.560 0.560 0.435

FC5 0.612 0.523 0.557 0.585 0.352 0.662 0.518 0.572 0.618 0.283 0.576 0.543 0.554 0.554 0.435
T7 0.615 0.494 0.540 0.585 0.325 0.636 0.467 0.532 0.596 0.276 0.577 0.517 0.541 0.559 0.400
P7 0.619 0.530 0.563 0.595 0.339 0.659 0.494 0.557 0.615 0.263 0.559 0.546 0.549 0.547 0.453
01 0.628 0.526 0.561 0.593 0.340 0.678 0.518 0.579 0.630 0.257 0.568 0.539 0.548 0.548 0.443
02 0.659 0.558 0.589 0.617 0.323 0.719 0.532 0.599 0.654 0.225 0.578 0.571 0.566 0.560 0.450
P8 0.687 0.563 0.606 0.639 0.285 0.748 0.541 0.619 0.672 0.197 0.598 0.567 0.573 0.571 0.425
T8 0.652 0.547 0.584 0.623 0.301 0.711 0.537 0.603 0.660 0.218 0.587 0.572 0.575 0.577 0.418

FC6 0.661 0.570 0.605 0.632 0.306 0.716 0.550 0.616 0.663 0.224 0.576 0.576 0.571 0.564 0.448
F4 0.717 0.560 0.617 0.654 0.252 0.755 0.552 0.627 0.678 0.196 0.602 0.572 0.579 0.578 0.416
F8 0.612 0.560 0.576 0.588 0.385 0.644 0.538 0.577 0.609 0.319 0.566 0.556 0.558 0.559 0.439

AF4 0.631 0.558 0.578 0.596 0.366 0.687 0.540 0.592 0.635 0.270 0.584 0.581 0.578 0.574 0.433
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Table 7. Results per Wave with OC—112 features.

OC–SVM (ν = 0.5) IF (Contamination = 0.5) LOF (Contamination = 0.5)

Prec. Recall F1 Acc FPR Prec. Recall F1 Acc FPR Prec. Recall F1 Acc FPR

D1 0.774 0.524 0.615 0.674 0.176 0.947 0.510 0.655 0.740 0.030 0.705 0.570 0.624 0.657 0.255
D2 0.839 0.507 0.622 0.699 0.109 0.945 0.486 0.635 0.729 0.029 0.767 0.579 0.653 0.695 0.190
D3 0.843 0.502 0.622 0.700 0.102 0.925 0.488 0.633 0.724 0.041 0.783 0.572 0.655 0.701 0.171
D4 0.798 0.510 0.617 0.687 0.136 0.860 0.507 0.634 0.710 0.087 0.781 0.587 0.665 0.705 0.176
D5 0.744 0.541 0.621 0.673 0.194 0.778 0.537 0.627 0.688 0.161 0.743 0.604 0.662 0.693 0.219
A5 0.677 0.555 0.593 0.639 0.278 0.678 0.562 0.597 0.638 0.286 0.759 0.633 0.681 0.711 0.210

6.4. Effect of Contamination

We want to identify the effect of the ν and contamination parameters in the performance
of the models. To do that, we explored a set of different values for both parameters,
{0.01, 0.03, 0.05, 0.1, 0.3, 0.5} for each one of the OC classifiers using the 112 features of D1
(all channels). In Table 8, these results are included.

Table 8. Results for Different Values of ν and contamination with OC—112 features (D1).

OC–SVM (D1) IF (D1) LOF (D1)

Prec. Recall F1 Acc FPR Prec. Recall F1 Acc FPR Prec. Recall F1 Acc FPR

0.5 0.772 0.524 0.612 0.671 0.182 0.940 0.513 0.658 0.741 0.030 0.701 0.569 0.622 0.656 0.257
0.3 0.702 0.723 0.701 0.688 0.347 0.875 0.717 0.781 0.804 0.110 0.638 0.772 0.696 0.663 0.446
0.1 0.626 0.900 0.729 0.657 0.585 0.712 0.911 0.791 0.754 0.404 0.562 0.945 0.705 0.604 0.738

0.05 0.604 0.938 0.726 0.638 0.663 0.633 0.955 0.756 0.686 0.583 0.535 0.980 0.692 0.564 0.853
0.03 0.593 0.945 0.721 0.626 0.694 0.580 0.975 0.725 0.624 0.726 0.523 0.991 0.685 0.544 0.903
0.01 0.602 0.947 0.728 0.636 0.675 0.509 0.995 0.673 0.516 0.962 0.510 0.999 0.675 0.520 0.959

For all classifiers, the security is proportional to the parameters studied, while the
usability is inversely proportional. This means that, for the value 0.5, the highest security
level is obtained, and for 0.01 the greatest usability level is reached. For intermediate values,
the relation between security and usability is more balanced, and Table 8 suggests that the
value 0.3 achieves the best equilibrium.

6.5. OC and MC Combination

Finally, we propose a hybrid system that combines an OC with an MC classifier.
To maintain a realistic scenario, the first layer of the system is the OC model, trained with
only positive data, as data from other users, including malicious ones, are not typically
available. The test data of this model will then be introduced as train data to a MC classifier,
labeled by the OC model. In this way, we manage to improve the results of OC models by
the action of the MC classifier.

Consequently with the results presented in the previous sections, we decided to select
IF and RF as the OC and MC classifiers of the described system, respectively. They were
the ones that presented the best outcomes and match in their most significant channels.
To test the system, we have defined several configurations depending on the data used to
train the first model. All the configurations and the results are showed in Table 9. In order
to understand the importance of these results, we have included the outcomes obtained
using all data (Complete), and the data reduced with PCA and χ2. It should be clarified
that we settled the value of the parameter contamination to 0.3 in all cases.
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Table 9. Best OC-MC configurations.

Configuration #Features Waves Channels AUC EER Prec. Recall F1 Acc FPR t (s)

I 40 D1 AF3, P8, T8, FC6, F4 0.866 0.198 0.842 0.752 0.785 0.789 0.172 0.903

II 64 D1 AF3, 01, 02, P8, T8, FC6, F4 0.894 0.174 0.892 0.756 0.806 0.815 0.121 0.927

III 112 D1 all 0.907 0.147 0.912 0.760 0.829 0.834 0.084 0.996

IV 80 D1,D2 AF3, P8, T8, FC6, F4 0.893 0.168 0.880 0.751 0.798 0.810 0.126 0.960

V 120 D1,D2,D3 AF3, P8, T8, FC6, F4 0.888 0.172 0.870 0.745 0.782 0.798 0.141 1.005

Complete 672 all all 0.899 0.153 0.875 0.766 0.786 0.804 0.151 2.023

Best PCA 32 - - 0.627 0.387 0.628 0.757 0.661 0.615 0.541 0.906

Best χ2 32 - - 0.673 0.375 0.636 0.794 0.694 0.635 0.539 0.909

We can appreciate that the best results are obtained with Configuration III, in which
the features are formed by D1 coefficient (gamma wave) of all channels. Hence, it seems
that this option is preferable over using a combination of brainwaves and less channels.
Actually, the results obtained using all the features are worse, which leads us to think that
we are using useful features and avoiding non-representative information. We can consider
that Configuration III has an appropriated level of security (91.2% of precision and 8.4%
of FPR) and a good level of usability (76.0% of recall). In addition, we added a column
to include the mean time (in seconds) that it takes to train a model. It should be clarified
that all experiments have been carried out on Intel Core i7 at 2.00 GHz and 16 GB of RAM,
using Python 3.9.

It can be seen that the greater the number of features, the larger time the model
takes. Certainly, each model takes 2 s to be trained when all features are used and, in the
configuration proposed, we maintain this time to less than 1 second (49.23% of reduction).
This time is less than 0.1 s larger than the one obtained with Configuration I (the lowest
obtained). As a result, we consider Configuration III the best option among the studied ones.

To guarantee that the results presented are coherent independently of the initial data,
and as a double-check for our proposal, we repeated the experiments with Configuration
III modifying the train and test sets. In other words, we randomly permuted the samples
of all users five times and solved the authentication problem for each case. The results are
presented in Table 10, and the stability of the results can be easily appreciated.

Table 10. Five different permutations of Configuration III.

Permutation Configuration AUC EER Prec. Recall F1 Acc FPR t (s)

1 III 0.907 0.147 0.912 0.760 0.829 0.834 0.084 0.996

2 III 0.904 0.163 0.924 0.727 0.814 0.815 0.076 0.998

3 III 0.900 0.163 0.900 0.762 0.825 0.803 0.096 0.997

4 III 0.912 0.140 0.915 0.771 0.837 0.849 0.070 0.996

5 III 0.902 0.151 0.904 0.43 0.816 0.813 0.088 0.999

Average III 0.905 0.153 0.911 0.753 0.824 0.823 0.083 0.997

Standard Deviation III 0.005 0.010 0.009 0.018 0.010 0.018 0.010 0.001

From the biological point of view, D1 represents high gamma waves, which are related
to intense brain activities and cognitive phenomena such as attention. Taking into account
the nature of the experiments performed to obtained the EEG signals, the preferable use of
D1 over the rest of brainwaves makes sense. In Figure 3, the ROC curve of Configuration
III can be found. It is easy to see that all users behave similarly, with the exception of two
of them.
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Figure 3. ROC Curves of the 39 users (colored lines) for configuration III.

7. Conclusions

The development of secure and user-friendly authentication systems is essential in to-
day’s world, where many routines and activities are based on online services. The security of
these systems protects user information, while their usability enhances the user experience.

In this work, we have investigated the use of OC ML classifiers to solve the problem of
user authentication individually and in combination with MC models. The authentication
system was based on EEG data that we collected in an experimental campaign, as it is
considered one of the most unique and characteristic features of an individual’s body.
Therefore, the proposed system does not recognize the user’s device, but the specific user.
We also identified the channels and brainwaves that contribute most to distinguishing a
user, finding that high-frequency content (i.e., high brain activity information) provides
the most significant information. Interestingly, the results suggest that Isolation Forest (IF),
an unexplored OC model in this application, is the best option. Furthermore, we propose a
hybrid system using IF and RF classifiers, which achieved an accuracy of 82.3%, a precision
of 91.1%, a false positive rate (FPR) of 8.3%, and a recall of 75.3%.

In future research, we aim to improve these results by combining EEG signals with
other biometric features such as galvanic skin response (GSR), eye movement, or informa-
tion from inertial sensors (e.g., accelerometers and gyroscopes). We also plan to explore the
use of DL techniques (one-class ANN, CNN) to solve the user authentication problem and
compare the results of ML and DL. Finally, we intend to train a GAN and simulate skilled
forgery attacks for EEG user authentication.
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