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Abstract: Precision magnetic field measurement is widely used for practical applications, fundamen-
tal research, and medical purposes, etc. We propose a novel quantum magnetometer based on atoms’
multi-wave (3-wave and 5-wave) Ramsey interference. Our design features high phase sensitivity
and can be applied to in situ measurements of the magnetic field inside vacuum chambers. The final
state detection is designed to be achieved by Raman’s two-photon transition. The analytical solution
for applicable interference fringe is presented. Fringe contrast decay due to atom temperature and
magnetic field gradient is simulated to estimate reasonable experimental conditions. Sensitivity
functions for phase noise and magnetic field noise in a multi-wave system are derived to estimate
the noise level required to reach the expected resolution. The validity of the model, dual-channel
features on bias estimation, and the quasi-non-destructive detection feature are discussed.

Keywords: atom interferometer; magnetometer; optical detection

1. Introduction

Magnetic field sensing is widely used in resource exploration [1,2], archaeology [3,4],
and the medical domain [5–9], etc. In addition to the industrial application, measuring
the magnetic field plays a key role in fundamental research [10], aerospace [11–13], and
geophysics [14], etc. In metrology, countless experiments are related to the Zeeman effect.
For example, it is important to estimate the magnetic-field-induced systematic uncertainty
in atom clocks [15] and atom interferometers [16–18].

The required resolution for resource exploration or geophysical survey is at least a
nanotesla [1]. Amplitudes of various biomagnetism signals go much further. For example,
magnetoencephalography [19] and magnetocardiography [20] require resolution on a
scale of femtoteslas. Optically pumped atomic magnetometers [21,22] and SQUID [23]
have proven their sensitivity to femtotesla/

√
Hz and even sub-femtotesla/

√
Hz. Among

these state-of-the-art magnetometers, atom magnetometers [6–9,12,13,20,24–26] have been
developed for decades. Thermal atom sources lack spatial resolution and control of motion
and have a long coherence time. Cold atom sources [27–30] are expected to make up for
these shortages.

Several research groups have realized magnetic field measurement using ultra-cold
atomic ensembles. Vengalattore et al. [30] reached a highly sensitive result of magnetic field
mapping converted from field-dependent spatial amplitude distribution. Eto et al. [31] mea-
sured Larmor frequencies from interferometric fringes and observed the variance of spin to
extract information about the magnetic field. Muessel et al. [32] demonstrated quantum-
enhanced magnetometry with spin squeezed states in an effective two-level system, leading
to a resolution ∼20% better than the standard quantum limit. These magnificent works
demonstrated results pointing to the cutting edge of atom magnetometry.

An alternative way to increase measurement sensitivity is to take advantage of the in-
creased fringe slopes in a multi-wave interferometer. Multi-wave interferometers [29,30,33–37]
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feature higher fringe slopes [38], leading to higher sensitivity and multiple observation
ports containing more rich information. There have been some experimental results [39,40]
on measuring magnetic fields with Raman two-photon interferometric methods in a two-
level system. Experiments [29,30,35,41] have presented interference employing one-photon
direct coupling or Raman two-photon coupling [42] in a multilevel system. We focus on
the study of magnetometry in a multilevel system by RF coupling.

Here we combine the methodology of atom interferometry, especially the interferome-
ter phase analysis [43], with atom magnetometry. Furthermore, we make use of all spin
states on the hyperfine levels. As an example of the ground states in 52S1/2 of 87Rb, by
preparing the initial state with atoms in both F = 1 and F = 2 states, a dual multi-wave
interferometer is proposed. The atom source, the initial state preparation and the final state
detection in the proposed scheme can be achieved optically. Our design can be applied to
the in situ measurement of the magnetic field inside a vacuum chamber.

Our paper is organized as follows. First, we present the modeling in Section 2. Second,
in Section 3, phase behavior applicable to magnetic field measurements and the expected
resolution are presented. Third, in Section 4, reasonable experimental conditions are
presented. Fourth, in Section 5, sensitivity functions to phase noise and magnetic field
noise are demonstrated, deducing the required noise level for precision measurement. In
the end, discussions about the relationship to the existing atom magnetometers, features
for dual-channel magnetometers, multi-state detection and conclusions are presented.

2. Modeling

The level scheme and the sequence of the dual atom magnetometer are depicted in
Figure 1. The sequence starts with a cold atom ensemble containing |F = 1〉 and |F = 2〉
states. This can be achieved by adjusting the repumper (for the |F = 1〉 → |F′ = 2〉
transition) parameter as the intensity or duration, or in a coherent way by employing
microwave or Raman transition between |F = 1〉 and |F = 2〉 states. The fraction of atoms
in F = 1 and F = 2 systems form the two-atom interference magnetometers (AIM). We
use the RF signal to perform Ramsey interference [44] between spin levels and then realize
spatial separation by a magnetic field gradient pulse. The atoms of F = 2 are detected first
by resonant absorption imaging. After that, assisted by a microwave or Raman [45] pulse to
probe atoms in one specific mF state, the interference fringe in the F = 1 system is detected.
Similar to the Ramsey interference in a two-wave system, in a multi-wave system, in our
case, the relative phase shift between the RF signal and the magnetic-field-induced phase
during evolution time T pushes atoms to one or the other levels, producing the fringes that
can be read by the second RF pulse.

The conceptual design of the proposed scheme is sketched in Figure 2. The facilities
of atom cooling lasers and Raman lasers are reported in Ref. [46]. Atom clouds are freely
falling during the sequence. Raman lasers can be used for spin-specific detection in the
F = 1 system in detection step 2 in Figure 1.

Similar to the theoretical framework of Refs. [47,48], when atoms are subjected to the
homogeneous magnetic field B, considering the first-order Zeeman effect, the Zeeman
levels differ µ · B between each other, where µ is the magnetic dipole moment. We use an
oscillating RF signal with the form BRF = B0eRF cos(ωRFt + ϕRF) to couple the spin levels,
where B0 is the RF wave amplitude, ωRF is the RF circular frequency, ϕRF is the RF wave
initial phase and eRF indicates the direction. The direction of B is taken as the quantization
axis. BRF is linearly polarized and eRF is perpendicular to B. The RF phase ϕRF enables the
later phase noise analysis.

Different from Ref. [35], we build the interferometer by using atoms in the mF = 0
state. Different from Ref. [29], the proposed scheme provides an option to use atoms in
both F systems. The calculation in Appendix A demonstrates the reason for choosing the
mF = 0 state as the initial state.
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(a) (b)

Figure 1. The level scheme (a) and the time sequence (b) of a dual multi-wave atom magnetometer.
(a) RF radiation couples different spin states. Raman transition couples ∆F = +1, ∆mF = 0 states.
For clarity, only mF = 0 state is sketched. (b) Two RF pulses of duration τ to couple spin levels and
free evolution time T form Ramsey interference in the presence of a magnetic field B. After a pulse of
the magnetic field gradient, the fringes of F = 2 are read at detection step 1, and those of F = 1 are
then read at detection step 2.

Figure 2. Conceptual setup. Cooling lasers and Raman lasers are pointing to the atom cloud. At the
position of the atom cloud, the RF oscillating signal is perpendicular to the bias magnetic field B.
Raman lasers are parallel to the B field.

3. Multi-Wave Ramsey Interference

A typical Ramsey sequence consists of one excitation pulse, a period of free evolution
and a final readout pulse for interference fringe. The excitation pulse and the readout
pulse are described by UR(τ), as in Equations (A4) and (A5). The transfer matrices URf(t)
describing the free evolution are diagonal, with matrix elements e−iδt, where δ corresponds
to the diagonal elements of Equations (A2) and (A3). The matrix forms are Equation (A11)
for F = 1 and Equation (A12) for F = 2. The interferometer phase φR, indicating the
relative phase shift between the RF signal and the magnetic-field-induced phase during
free evolution time T, is expressed as

φR = δRT = (ωRF − κB)T.

The output of the Ramsey interferometer is

c(τ + T + τ) = UR(τ)URf(T)UR(τ)c(0). (1)

First of all, we calculate the center state interferometer fringes as a function of pulse
area Ωeffτ and interferometer phase φR. From Figure 3, for pulse area close to π/4, during
φR of 2π, the fringes evolve with full contrast by one period. Only for pulse area close to
π/2, the fringe evolution periodicity is doubled, leading to higher fringe slopes. Within
expectation, the fringes in the F = 2 system are sharper than those in the F = 1 system, as
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compared to the width of varying colors in Figure 3a,b. We choose the typical experimental
parameters as pulse area of π/4 and π/2, which are more like π/2 pulse and π pulse in a
two-level system, for the next step of the analysis.

(a) (b)

Figure 3. Ramsey fringes observed on |F, 0〉 state setting parameters as pulse area Ωeffτ and in-
terferometer phase φR in the (a) F = 1 system and in the (b) F = 2 system. Colorbars indicate
the probability.

In the F = 1 system, according to Figure A1b, a π/2 pulse spreads all atoms to |1,±1〉
states. Observation on |1, 0〉 output will present a zero population. If we set the pulse
area to π/4, a minimum as a dark fringe is expected at the Ramsey fringe center, where
the interferometer phase is zero. On the contrary, in Figure A1b, a π pulse recovers the
full population on |1, 0〉. If we set the RF pulse area to π/2, a maximum as a bright fringe
is expected at the Ramsey fringe center. The interferometer phase behavior on |1, 0〉 is
expressed in Equations (2) and (3) and plotted in Figure 4. The evolution time T is set to
10ms for demonstration.

PR1(π/4) =
1
4
(1− cos φR)

2 (2)

PR1(π/2) =
1
2
(1 + cos(2φR)) (3)

From Figure 4, we can see that the phase of a Ramsey interferometer with two π/2
pulses evolves twice as fast as the one with two π/4 pulses.
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Figure 4. (a) Ramsey fringes and (b) its slopes on |1, 0〉.

In the case of F = 2, same as in F = 1 system, two π/2 pulses produce a bright
fringe center. Different to the case in F = 1, the fringe center with two π/4 pulses is
no longer a zero population point. According to Figure A1d and the |2, 0〉 component
in Equation (A10), the full population inversion occurs when Ωeffτ = 1/2 arccos(−1/3).
Therefore, we set Ωeffτ as 1/4 arccos(−1/3), noted as 0.152π, to produce a dark fringe
center. Phase behavior of pulse area of 0.152π, π/4 and π/2 are listed in Equations (4)–(6)
and plotted in Figure 5.

PR2(0.152π) =
1

16

(√
3− (2−

√
3) cos φR

)
2(1− cos φR)

2 (4)



Sensors 2023, 23, 173 5 of 18

PR2(π/4) =
1

64

(
3(1− cos φR)

2 − 4
)

2 (5)

PR2(π/2) =
1

16
(1 + 3 cos(2φR))

2 (6)
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Figure 5. (a) Ramsey fringes and (b) its slopes on |2, 0〉.

The fringe slopes in Figures 4b and 5b are, respectively, 0.66, 1.00, 0.70, 1.17, 1.67 rad−1.
We conclude that if 87Rb 52S1/2 is chosen to measure the magnetic field by the RF Ramsey
method, conditions such as the initial state prepared on |2, 0〉, observation on |2, 0〉 and pulse
area of π/2 yield the highest fringe slope, resulting in the most sensitive measurement.

The fringes are periodic with the interferometer phase φR. To determine the fringe
center, where φR = 0, one can vary the free evolution time T in the Ramsey sequence. The
fringe center is overlapped independent of evolution time T in Figure 6a. Although the
fringes in a multi-wave interferometer are complicated, near the regime of the highest fringe
slope, the change in the readout probability is linear to the change in the interferometer
phase, as demonstrated in Figure 6b.
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Figure 6. (a) Determination of fringe center with different evolution time T. (b) Demonstration of
fringe slope linearity to interferometer phase shift.

The resolution limit of magnetic field measurement σB is

σB =

∂
∂φ B
∂

∂φ P
× σP =

2h̄/(µBT)
fringe slope

×

√
P(1− P)

Ntot
, (7)

where σP is the uncertainty limited by quantum projection noise [49] and P is the probability
of detecting atoms at certain interferometer output, i.e., the phase behavior. Taking the
calculated fringe slope of Equation (6), we can see from Figure 7 that preparing the initial
state on |2, 0〉 with 1× 105 atoms, employing two π/2 pulses, and a free evolution time of
21 ms is enough to reach a one-shot resolution of 1.0 pT magnetic field. Under the same



Sensors 2023, 23, 173 6 of 18

condition, using the microwave to measure the Zeeman shift between |1, 1〉 and |2, 1〉 results
in one shot resolution of 1.7 pT, as the dashed line in Figure 7. Despite the advantage in
measurement resolution, atom species besides 87Rb with a hyperfine ground state of more
than five Zeeman levels can produce a fringe slope higher than the demonstration in this
paper, leading to better resolution. With optimal conditions such as an atom number of
1× 106, in principle, 6.7 s for free evolution is expected to attain the resolution limit of 1.0 fT
per shot. In the free-falling configuration, the free evolution time of 6.7 s requires a path of
more than 200 m! Rather than increasing the evolution time, increasing the atom number
would be the proper strategy. Otherwise, the long evolution time limits the application to
microgravity. In addition, the trapped configuration in Section 6.3 also provides a method
for a long evolution time.

0.001 0.010 0.100 1 10

10
-15

10
-14

10
-13

10
-12

10
-11

T (s)

B
(T
)

Two-level

N=105

N=106

Figure 7. One-shot resolution to magnetic field measurement. The pulse area is π/2, and Equation (6)
is chosen as the detection port. The red dashed line as the comparison basis is the resolution
employing a microwave in a two-level system.

The noise floor limited by the quantum projection noise reaches the level of state-of-
the-art magnetometers. The required resolution for resource exploration or geophysical
survey is at least a nanotesla [1]. Amplitudes of various biomagnetism signals go much fur-
ther. For example, magnetocardiography [6,20] and magnetoencephalography [19] require
resolution on a scale of picoteslas or even femtoteslas. To reach the one-shot resolution of
1 pT, reasonable experimental conditions and noise analysis before the experiment should
be considered.

4. Experimental Condition

In addition to the atom number Ntot, which limits the noise floor, as shown in Figure 7,
the atom temperature Tat and the effect related to it, such as the magnetic field gradient,
should also be considered.

Due to the finite temperature of atoms [46,50,51], the expansion of the atom cloud and
the magnetic field gradient are coupled to bring decoherence to the Ramsey interference,
leading to a decrease in the fringe contrast. Because of the magnetic field gradient and
the spatial distribution of the atoms in the atom cloud, each atom experiences a different
variation of the magnetic field during the free fall.

We use the normal distribution as the distribution of position and momentum for
atoms in an atom cloud. During the free fall, we calculate the atom trajectory and, thus,
the magnetic field variation and then calculate the probability of detection for each atom.
The outcome of the interference is the average of each atom’s probability. Details of the
calculation are presented in Appendix B.

From the result in Figure 8a, setting the free-falling time as 21 ms, with an atom
temperature of 500 nK, to keep the contrast higher than 50%, the magnetic field gradient
is required to be less than 5 nT/mm. The colder the atom temperature, the higher the
tolerance to the B field gradient. This effect is more obvious for higher free falling time.
In Figure 8b, for an atom temperature of 500 nK, with free falling time of 100 ms, the B
field gradient is required to be lower than 0.2 nT/nm. In a metal vacuum chamber, with a
conventional cooling technique such as optical molasses reaching 1 µK, a magnetic field
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gradient such as 10 nT/mm[52] can wash out the interference fringe for free falling time,
reaching the level of 10 ms.
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Figure 8. Decrease in fringe contrast by magnetic field gradient and atom temperature in free falling
condition, with an evolution time of (a) 21 ms and (b) 100 ms.

Experimentally, a scan for the magnetic field along the atomic trajectory is helpful in
probing the homogeneity of the magnetic field inside atom interference devices [39,52].

There is a trade-off between atom number and atom temperature in the evaporation
cooling technique. Meanwhile, the quantum projection noise affected by the atom number
limits the noise floor. The atom temperature and the magnetic field gradient are coupled to
limit the fringe contrast. With overall consideration of designing an experiment aiming
for the one-shot resolution of 1 pT, we show the recommended experimental conditions in
Table 1.

Table 1. Conditions required aiming for a magnetic field measurement one-shot resolution of 1 pT.

Experimental Conditions

Evolution time ≥21 ms
Atom number ≥1× 105

Atom temperature ≤500 nK
B field gradient for 50% contrast ≤4 nT/mm

The required atom number and temperature are conventional for results that achieved
evaporation cooling producing BEC [46,53,54]. Still, there is plenty of room compared to
the world’s top-level result [55]. The requirement on the B field gradient can be verified by
the method from Refs. [39,52].

5. Noise Estimation

In this section, we present noise analysis in the proposed multi-wave atom interference
magnetometer with the demonstration of a sensitivity function in a three-wave system and
the resulting noise budget list.

5.1. Sensitivity Function in Three-Wave System

We deduce the sensitivity functions to the two most common noises affecting the
measurement resolution, the phase noise of RF and the ambient high-frequency magnetic
field noise. According to Ref. [43], the sensitivity function to phase noise is defined as
Equation (8). Following the calculation sequence in Ref. [56] to insert phase noise ϕRF + δϕ
in the quantum state of each step in the Ramsey sequence, as listed from Equation (A15) to
Equation (A17), gϕ(t) is shown as Equation (9) and is sketched in Figure 9.

gϕ(t) = 2 lim
δϕ→0

δP(δϕ, t)
δϕ

(8)
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gϕ(t) =


2 cos

(
Ωeff(t + T

2 )
)
− T

2 − τ ≤ t < − T
2

2 − T
2 ≤ t ≤ T

2

2 cos
(

Ωeff(t− T
2 )
)

T
2 < t ≤ T

2 + τ

(9)

The sensitivity function for phase noise in Figure 9 is two times that in a typical two-
level system [43] because the phase evolution is doubled, as in Equation (3). This maintains
consistency with the fringe slope result in the previous section. Equation (9) is the exact
phase noise sensitivity function in the F = 1 system. For the F = 2 system, the resulting
sensitivity function can be approximated by scaling the fringe slope or can be calculated
from scratch with Equation (8).

- T
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g
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Figure 9. Sensitivity function for RF phase noise.

The transfer function of RF phase noise Hϕ(ω), Equation (A23), can be obtained
from 2π f times the Fourier transform of the sensitivity function Gϕ(ω), Equation (A22).
According to the relationship between phase noise and the magnetic field noise as in
Equation (10) from Ref. [57], the transfer function of the magnetic field noise HB(ω) is
Equation (A24).

HB(ω) = κGϕ(ω) (10)

The phase uncertainty σ due to noise can be evaluated by

σ2 =
∫ ∞

0
|H(ω)|2S( f )d f . (11)

Aiming at a resolution goal of 1 pT with sensitivity as high as possible, supposing
the noise spectrum S( f ) as white noise from 0.1 Hz to 100 kHz, by applying Equation (11),
the phase noise Sϕ( f ) is required to reach −114.6 dBrad2/Hz and the magnetic field noise
SB( f ) is required to reach −30.4 dBpT2/Hz.

5.2. Noise Budget

In addition to the RF phase noise or magnetic field noise, [45] the detection noise
σP(DN) coming from the detection beams and the noise when employing Raman transition
σP(RAMAN) at the final step in Figure 1, for example, should also be considered. These types
of noise act as σP in Equation (7) to contribute to the overall statistical noise.

In Table 2, the requirement for RF phase noise is conventional according to Ref. [58].
For the requirement of magnetic field noise, there is room compared to the ambient magnetic
field noise, roughly 1 fT/

√
Hz [21]. The detection noise is demonstrated in Ref. [45]. Table 2

estimates the noise-limited resolution per shot. The cycle time Tc, including the duration
for MOT-loading and atom evaporation is of the order of 1− 10 s, as shown in Ref. [46].
The estimated resolution at 1 s is thus multiplied by

√
Tc. The shot-by-shot operation

mode, together with the need for a long integration time to lower the statistical noise if
necessary, limits the expected sensitivity and the frequency range of the measurement to
DC or near DC.
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Table 2. List of noise sources and their estimated effect on one-shot resolution.

Noise Source Level σB (pT)

RF phase noise −114.6 dBrad2/Hz 0.5
Magnetic field noise −30.4 dBpT2/Hz 0.5

Quantum projection noise 1.6× 10−3 1.0
Detection noise 1.8× 10−3 1.2

Raman detection noise 1.3× 10−3 0.8

Total noise 1.9 pT

6. Discussion
6.1. Validity of the Model

When choosing RF pulses to form the magnetometer, the contribution of the oscillating
RF field to the total magnetic field must be considered. Projected to the quantization
axis, B0 can be decomposed to B⊥ and Bz, respectively, perpendicular and parallel to the
quantization axis. By analogy, with the AC stark shift from an oscillating electric field, an
oscillating magnetic field causes an energy shift. The energy shift caused by B⊥ and Bz can
be measured according to Ref. [59].

The calculation is based on the RWA approximation, supposing δR � κB. The condi-
tion to the RWA approximation is the weak coupling condition ΩR � κB [60]. Together
with the strong driving condition δR � ΩR, the validity of the analytical results is under
the overall condition δR � ΩR � κB. The real constraint is between ΩR and the amplitude
of B, especially close to or below the level of 1 mG. As reported in Ref. [61], to measure
the magnetic field of ∼1 mG, a single ∼350 Hz RF pulse of 100 ms duration reveals a Rabi
frequency in the order of 2π× 5 Hz. For the calculation, one can always set δR near zero and
a low Rabi frequency to meet the overall condition. However, such a low Rabi frequency is
not considered experimentally common because the longer the pulse duration, the more
sources of decoherence kick in. The strong-coupling regime where ΩR � κB is out of the
scope of the article.

6.2. Systematic Bias Estimation

In our modeling and demonstrated calculation, only the first-order Zeeman effect
is considered. Taking into account the second-order Zeeman effect, together with the
difference of first-order Zeeman coefficients between the system of F = 1 and of F = 2,
different phase shifts in each channel of the dual atom-magnetometer will be measured as
systematic bias. The more detailed Zeeman shifts [62] EF are given by

EF=1/h̄ = κ1B− 3βB2 (12)

and
EF=2/h̄ = κ2B + 3βB2, (13)

where κ1 = 2π × 702.37 kHz/G, κ2 = 2π × 699.58 kHz/G, and β = 2π × 71.89 Hz/G2.
When performing measurements using our dual magnetometer proposal, and without
spatial separation of atom wave packets during initial state preparation, the observed
different fringe shifts reveal the difference of Zeeman effect coefficients.

6.3. Trapped Configuration

The proposed magnetometer and the noise analysis are demonstrated with the free-
falling configuration. Experiments can be conducted in an optical dipole trap or in a
zero-gravity environment to increase the B variance tolerance. It should be noted that
in an optical dipole trap, spin-dependent interactions [63–65] should be considered. In
a magnetic trap, atoms only stay in the trap with low-field-seeker states. Forced use of
the RF Ramsey sequence results in atom loss [41], leading to a fast reduction in fringe
contrast. The quality of the state preparation should also be considered. Similar to the state
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preparation in atom clocks [66], atoms in states other than mF = 0 cause a reduction in
fringe contrast. A proper optical pumping scheme [67] without significant atom losses is
suggested. Spin-dependent interactions, together with the stability of the ambient magnetic
field and temperature of atoms, bring a challenge to the long coherence time.

6.4. Quasi-Non-Destructive Detection

Excluding the non-resonant phase-contrast imaging method [68], just by employing
the most common resonant absorption imaging method, in our proposed sequence, after
detecting the atoms in F = 2 system, a microwave or Raman pulse transfers atoms in
the |1, 0〉 state to the |2, 0〉 state for absorption detection. Therefore, only the |1, 0〉 state
is destroyed. The remained quantum state is able to provide the quantum superposition
facility without the necessity for one more instance of state preparation. An extended free
evolution time and a readout pulse can reveal the fringe pattern for further steps. This
brings the possibility of a continuous quasi-non-destructive experimental study of magnetic
field effects in one shot, increasing the detection efficiency.

7. Conclusions

We have presented the proposal for a novel quantum magnetometer based on atoms’
multi-wave Ramsey interference, coupled by RF radiation. We have demonstrated the ap-
plicable interference fringes, which are essential for the next step of precision magnetic field
measurements. Assuming a target resolution of 1 pT, we have demonstrated reasonable
experimental conditions, including atom status and the effect of the magnetic field gradient.
The sensitivity functions in a multi-wave system are deduced to estimate the noise budget
for the target resolution. The validity of the model and the trapped configuration are also
discussed. Moreover, the dual-channel configuration features bias estimation and state
detection with high efficiency. The dual-channel design makes it possible to adjust the ratio
of atoms in each channel, meeting the different experimental requirements between sensi-
tivity and functionality. As an alternative method for magnetic field sensing, especially in
DC and low-frequency range, the proposal can be compared to the existing magnetometers
to extend the study in the domain of magnetometry and atom interferometry.
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Appendix A. Rabi Oscillation

The evolution of the system is the solution to the rotating-wave-approximation (RWA)
time-dependent Schrödinger equation

ih̄ċ = Hc, (A1)
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where c is the N-level state vector, respectively, c1 = (c11, c12, c13)
T containing the am-

plitudes for |F = 1, mF = −1〉, |1, 0〉, |1,+1〉 spin states, and c2 = (c21, c22, c23, c24, c25)
T

containing the amplitudes for |2,−2〉, |2,−1〉, |2, 0〉, |2,+1〉, |2,+2〉 spin states.
The Hamiltonian for a three-level atom-photon system is demonstrated in Ref. [34].

The one for a five-level system is demonstrated in Ref. [26]. Taking Ref. [48] as the refer-
ence, in this paper, the Hamiltonians to describe the multilevel system of 87Rb 52S1/2 are
Equation (A2) for F = 1 and Equation (A3) for F = 2, where δR = ωRF − κB, κ = µB/(2h̄),
µB is the Bohr magneton and ΩR is the Rabi frequency quantifying the coupling strength.

HR1 = h̄

 −δR
√

2ΩReiϕRF 0√
2ΩRe−iϕRF 0

√
2ΩReiϕRF

0
√

2ΩRe−iϕRF δR

 (A2)

HR2 = h̄


2δR 2ΩReiϕRF 0 0 0

2ΩRe−iϕRF δR
√

6ΩReiϕRF 0 0
0

√
6ΩRe−iϕRF 0

√
6ΩReiϕRF 0

0 0
√

6ΩRe−iϕRF −δR 2ΩReiϕRF

0 0 0 2ΩRe−iϕRF −2δR

 (A3)

Different from Refs. [47,48], in the coupling terms of Equations (A2) and (A3), there is
an additional phase factor eiϕRF . We use this phase to insert phase jumps to perform noise
analysis under the framework of the atom interferometer in Section 5. This phase is close
to that in Ref. [26]. Equation (A2) is close to the result in Ref. [34], which contains an extra
phase factor from the AC stark shift.

Under the strong driving condition, δR � ΩR, after employing the techniques in
Ref. [47], the time evolution transfer matrix of Equations (A2) and (A3) are

Equations (A4) and (A5), where Ωeff =
√

δ2
R + 4Ω2

R.

UR1(t) =
1
2

 cos(Ωefft) + 1 −
√

2ieiϕRF sin(Ωefft) e2iϕRF (cos(Ωefft)− 1)
−
√

2ie−iϕRF sin(Ωefft) 2 cos(Ωefft) −
√

2ieiϕRF sin(Ωefft)
e−2iϕRF (cos(Ωefft)− 1) −

√
2ie−iϕRF sin(Ωefft) cos(Ωefft) + 1

 (A4)

UR2(t) =
1
2
(SaSbScSdSe), (A5)

where the column vectors S are

Sa =


1
2 (1 + cos(Ωefft))2

−ie−iϕRF sin(Ωefft)(1 + cos(Ωefft))
1
2

√
3
2 e−2iϕRF(cos(2Ωefft)− 1)

ie−3iϕRF sin(Ωefft)(1− cos(Ωefft))
1
2 e−4iϕRF(1− cos(Ωefft))2

,

Sb =


−ieiϕRF sin(Ωefft)(1 + cos(Ωefft))
(2 cos(Ωefft)− 1)(cos(Ωefft) + 1)

−
√

3
2 ie−iϕRF sin(2Ωefft)

e−2iϕRF(2 cos(Ωefft) + 1)(cos(Ωefft)− 1)
ie−3iϕRF sin(Ωefft)(1− cos(Ωefft))

,
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Sc =



1
2

√
3
2 e2iϕRF(cos(2Ωefft)− 1)

−
√

3
2 ieiϕRF sin(2Ωefft)

1
2 (3 cos(2Ωefft) + 1)

−
√

3
2 ie−iϕRF sin(2Ωefft)

1
2

√
3
2 e−2iϕRF(cos(2Ωefft)− 1)


,

Sd =


ie3iϕRF sin(Ωefft)(1− cos(Ωefft))

e2iϕRF(2 cos(Ωefft) + 1)(cos(Ωefft)− 1)

−
√

3
2 ieiϕRF sin(2Ωefft)

(2 cos(Ωefft)− 1)(cos(Ωefft) + 1)
−ie−iϕRF sin(Ωefft)(1 + cos(Ωefft))

,

Se =


1
2 e4iϕRF(1− cos(Ωefft))2

ie3iϕRF sin(Ωefft)(1− cos(Ωefft))
1
2

√
3
2 e2iϕRF(cos(2Ωefft)− 1)

−ieiϕRF sin(Ωefft)(1 + cos(Ωefft))
1
2 (1 + cos(Ωefft))2

.

Due to the equality feature of trigonometric identities, different forms of Equations (A4)
and (A5) exist. We present here the power-reduced forms, which easily reveal the state
evolution periodicity.

Equations (A4) and (A5) describe the state of evolution when atoms are shined by
RF radiation. Knowing the state at any time t as c(t), after radiation duration τ, the state
c(t + τ) is

c(t + τ) = UR(τ)c(t), (A6)

where UR can be UR1 or UR2. In this way, the Schrödinger differential equation becomes a
one step matrix operation.

We evaluate the Rabi oscillation with different pulse duration τ. The population of
atoms P(t) on each spin state can be obtained from the modulo square of each component
of c(t). Experimentally, the initial quantum state can be easily prepared at a side state, the
highest or the lowest mF state, or a center state, the mF = 0 state. Thus, we demonstrate
these two situations. The Rabi oscillation in the F = 1 system when the initial state is
|1,−1〉 and |1, 0〉 are Equations (A7) and (A8). Respectively, the Rabi oscillation for the
F = 2 system when the initial state is |2,−2〉 and |2, 0〉 are Equations (A9) and (A10). We
compare the results sketched in Figure A1.

With state initialization on |1,−1〉,

P(τ)|F=1〉 =
1
4

 (1 + cos(Ωeffτ))
2

1− cos(2Ωeffτ)
(1− cos(Ωeffτ))

2

. (A7)

With state initialization on |1, 0〉

P(τ)|F=1〉 =
1
4

 1− cos(2Ωeffτ)
2(1 + cos(2Ωeffτ))

1− cos(2Ωeffτ)

. (A8)

With state initialization on |2,−2〉
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P(τ)|F=2〉 =
1
32


2(1 + cos(Ωeffτ))

4

4(1 + cos(Ωeffτ))
2(1− cos(2Ωeffτ))

3(1− cos(2Ωeffτ))
2

4(1− cos(Ωeffτ))
2(1− cos(2Ωeffτ))

2(1− cos(Ωeffτ))
4

. (A9)

With state initialization on |2, 0〉

P(τ)|F=2〉 =
1

32


3(1− cos(2Ωeffτ))

2

6(1− cos(4Ωeffτ))
2(1 + 3 cos(2Ωeffτ))

2

6(1− cos(4Ωeffτ))
3(1− cos(2Ωeffτ))

2

. (A10)
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Figure A1. Rabi oscillations in the F = 1 system when the initial state is a (a) side state and a (b) center
state. Rabi oscillations in the F = 2 system when the initial state is a (c) side state and a (d) center state.

There are several features in Figure A1. First, not all the states are linear transfor-
mations of the sine function, especially in the hF = 2 system. In the case of F = 2, the
eigenvalues of HR2 are 0, ±Ωeff and ±2Ωeff. The evolution is complicated by the wave
frequencies and high harmonics in wave functions of the different matter. Second, when
the initial state is a side state, only the two opposite side states have a full population inver-
sion. The pulse area Ωeffτ needed for the inversion is π and one cycle is 2π. Meanwhile,
although the center state does not reach a complete population inversion, the periodicity is
two times as fast as that of the side states. Third, if and only if the atoms are prepared in
the center state, their evolution frequency is doubled and a complete population inversion
is kept. The pulse area for one cycle is π instead of 2π. The last feature is important for
producing an interference fringe with full contrast and with a high fringe slope in an atom
interferometer. The fringe slopes in the next section prove this feature. The highest fringe
slope can be obtained when preparing an initial center state.

The initial RF phase ϕRF is set to be time-independent in this section; therefore, ϕRF
only exists in transfer matrices Equations (A4) and (A5). It vanishes after the operation of
the modulo square to obtain the Rabi oscillations as Equations (A7)–(A10). The results are
consistent with Refs. [29,35].
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UR1f(t)=

 eiδRt 0 0
0 1 0
0 0 e−iδRt

 (A11)

UR2f(t)=


e−i2δRt 0 0 0 0

0 e−iδRt 0 0 0
0 0 1 0 0
0 0 0 eiδRt 0
0 0 0 0 ei2δRt

 (A12)

Appendix B. Simulation of Fringe Contrast Decay

We use the normal distribution as the distribution of position and momentum for
atoms in a thermal atom cloud. At time t = 0, the standard deviation in position space σr is
related to the initial radius of the atoms rat0, and the standard deviation in momentum space
is related to the atom temperature Tat as σ2

v =
√

kBTat/mRb. During the free fall, due to the
distribution in momentum space, the distribution in position space is expanding, as shown
in Figure A2a, leading to the expansion of the atom cloud, which can be characterized by
Equation (A13). The magnetic field felt by each atom during the free fall can be calculated
by the position and the field gradient. The time sequence is divided by finite elements with
a duration dt of 10 µs.

σ2
r (t) = r2

at0 +
kBTat

mRb
t2 (A13)

10
-1

10
0

10
1

10
2

Time of flight t (ms)

100

200

300

400

500

600
700
800

C
lo

u
d
 r

a
d
iu

s
 

r (
m

)

r

T
at

 = 0.49477 K. 
r0

 = 202.7787 m.

(a)

-3 -2 -1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0  simulation
 fit

Po
pu

la
tio

n 
in

 |1
,0

>

RF phase (rad)

(b)

Figure A2. (a) Simulation of expansion of atom cloud during free fall, the red fitted line shows the
atom temperature of 500 nK and initial cloud radius of 200 µm. (b) Simulation of decay of fringe
contrast for a thermal atom cloud employed by Ramsey sequence of two π/2 pulses.

After repeating the Ramsey sequence calculation for each atom, as we demonstrated
in Section 3, we obtain the resulting probability as the mean value of the probability of
each atom. By scanning the RF phase, the decay of the fringe contrast is observed by the
simulated fringe, as shown in Figure A2b. We set the bias magnetic field as 50 mG, and its
direction is along the gravity. The assumed magnetic field gradient in three dimensions
is uniform.

Appendix C. Calculation of Sensitivity Function in Section 5

The details of the calculation of phase noise sensitivity function gϕ(t) in a three-level
system are listed below.

In a Ramsey sequence consisting of two pulses with pulse area Ωeffτ of π/2 and a
free evolution time T centered at time t = 0, the three time periods are from − T

2 − τ to − T
2 ,

from − T
2 to T

2 , and from T
2 to T

2 + τ. We determine gϕ(t) in the F = 1 system, with state
initialization on |1, 0〉, at the output point PR1(π/2) =

1
2 on Ramsey fringe of the |1, 0〉 state,

as shown in Figure 4a. The P = 1
2 output point is achieved by setting δR = 0 in the pulse
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steps and δRT = π
4 during the free evolution time. The RF phase noise is defined as a phase

step from 0 to δϕ at time t during the Ramsey sequence.
To clarify the notation in the following equations, we reform Equation (A4) to

Equation (A14).

UR1(t, ϕ) =
1
2

 cos(Ωefft) + 1 −
√

2ieiϕ sin(Ωefft) e2iϕ(cos(Ωefft)− 1)
−
√

2ie−iϕ sin(Ωefft) 2 cos(Ωefft) −
√

2ieiϕ sin(Ωefft)
e−2iϕ(cos(Ωefft)− 1) −

√
2ie−iϕ sin(Ωefft) cos(Ωefft) + 1

 (A14)

c
(

T
2
+ τ

)
= UR1(τ, δϕ)UR1f(T)UR1

(
−T

2
− t, δϕ

)
UR1

(
t−
(
−T

2
− τ

)
, 0
)

c
(
−T

2
− τ

)
(A15)

P|1,0〉 =
1

32

(
2 cos(δϕ)− 2 cos(Ωeff(2t + T)) + cos(δϕ + Ωeff(2t + T)) + cos(δϕ−Ωeff(2t + T))

+ 2
(

1 + sin
(

δϕ +
1
2

Ωeff(2t + T)
)
+ sin

(
δϕ− 1

2
Ωeff(2t + T)

)))2 (A16)

c
(

T
2
+ τ

)
= UR1(

T
2
+ τ − t, δϕ)UR1(t−

T
2

, 0)UR1f(T)UR1(τ, 0)c
(
−T

2
− τ

)
(A17)

P|1,0〉 =
1
8

(
cos(δϕ)(1 + cos(Ωeff(2t− T)))

+ 2
(

sin(δϕ) cos
(

Ωeff(t−
T
2
)

)
+ sin2

(
Ωeff(t−

T
2
)

)))2 (A18)

Under these conditions, when the phase step occurs during the first pulse, from
− T

2 − τ to − T
2 , the final state c( T

2 + τ) is calculated as Equation (A15). The probability at
|1, 0〉 output is Equation (A16).

According to the definition of Equation (8), the resulting phase noise sensitivity
function with noise inserted during the first pulse is Equation (A19).

gϕ(t) = 2 lim
δϕ→0

P|1,0〉 − 1
2

δϕ
= 2 cos

(
Ωeff(t +

T
2
)

)
(A19)

The final state with phase noise inserted during the free evolution is Equation (A20),
and the calculated probability is Equation (A21). The phase step that occurred at any time
t during the free evolution is considered a phase shift at the start of the second pulse.
For this physics reason, there is no step split caused by inserting the phase noise into
Equation (A20).

c
(

T
2
+ τ

)
= UR1(τ, δϕ)UR1f(T)UR1(τ, 0)c

(
−T

2
− τ

)
(A20)

P|1,0〉 =
1
2
(1 + sin(2δϕ)) (A21)

The final state with phase noise inserted during the second pulse is Equation (A17),
and the calculated probability is Equation (A18).

The entire form of the phase noise sensitivity function is arranged as Equation (9).

∣∣Gϕ(ω)
∣∣2 =

16Ω2
eff

(
ω cos

((
T
2 + τ

)
ω
)
+ Ωeff sin

(
T
2 ω
))2

ω2
(
ω2 −Ω2

eff

)2 (A22)
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∣∣Hϕ(ω)
∣∣2 =

16Ω2
eff

(
ω cos

((
T
2 + τ

)
ω
)
+ Ωeff sin

(
T
2 ω
))2

(
ω2 −Ω2

eff

)2 (A23)

|HB(ω)|2 =
16κ2Ω2

eff

(
ω cos

((
T
2 + τ

)
ω
)
+ Ωeff sin

(
T
2 ω
))2

ω2
(
ω2 −Ω2

eff

)2 (A24)
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