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Abstract: Fire is usually detected with fire detection systems that are used to sense one or more
products resulting from the fire such as smoke, heat, infrared, ultraviolet light radiation, or gas.
Smoke detectors are mostly used in residential areas while fire alarm systems (heat, smoke, flame,
and fire gas detectors) are used in commercial, industrial and municipal areas. However, in addition
to smoke, heat, infrared, ultraviolet light radiation, or gas, other parameters could indicate a fire,
such as air temperature, air pressure, and humidity, among others. Collecting these parameters
requires the development of a sensor fusion system. However, with such a system, it is necessary
to develop a simple system based on artificial intelligence (AI) that will be able to detect fire with
high accuracy using the information collected from the sensor fusion system. The novelty of this
paper is to show the procedure of how a simple AI system can be created in form of symbolic
expression obtained with a genetic programming symbolic classifier (GPSC) algorithm and can be
used as an additional tool to detect fire with high classification accuracy. Since the investigation
is based on an initially imbalanced and publicly available dataset (high number of samples clas-
sified as 1-Fire Alarm and small number of samples 0-No Fire Alarm), the idea is to implement
various balancing methods such as random undersampling/oversampling, Near Miss-1, ADASYN,
SMOTE, and Borderline SMOTE. The obtained balanced datasets were used in GPSC with random
hyperparameter search combined with 5-fold cross-validation to obtain symbolic expressions that
could detect fire with high classification accuracy. For this investigation, the random hyperparameter
search method and 5-fold cross-validation had to be developed. Each obtained symbolic expression
was evaluated on train and test datasets to obtain mean and standard deviation values of accuracy
(ACC), area under the receiver operating characteristic curve (AUC), precision, recall, and F1-score.
Based on the conducted investigation, the highest classification metric values were achieved in
the case of the dataset balanced with SMOTE method. The obtained values of ACC ± SD(ACC),
AUC ± SD(ACU), Precision ± SD(Precision), Recall ± SD(Recall), and F1-score± SD(F1-score)
are equal to 0.998 ± 4.79× 10−5, 0.998± 4.79× 10−5, 0.999± 5.32× 10−5, 0.998± 4.26× 10−5, and
0.998± 4.796× 10−5, respectively. The symbolic expression using which best values of classification
metrics were achieved is shown, and the final evaluation was performed on the original dataset.

Keywords: genetic programming; symbolic classifier; fire-alarm; oversampling methods;
undersampling methods

1. Introduction

The detection of fire [1] is achieved using fire detectors that sense one or more prod-
ucts resulting from the fire such as smoke, heat, infrared or ultraviolet light radiation,
and gas. These products can be detected using heat, smoke, flame, or fire gas detec-
tors. In households, the detection of fire is usually achieved using cheap and stand-alone
smoke detector devices, while in non-domestic buildings, fire detection is achieved using
fire alarm systems.
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The smoke detector is a stand-alone device that senses smoke, which in most cases
is an indication of fire. There are two types of smoke detectors based on their working
principle, i.e., photoelectric and ionizing.

A photoelectric/optical detector [2] contains a source of infrared/visible/ultraviolet
light (incandescent light bulb or light emitting diode (LED)), a lens, and a photoelectric
receiver. All these components are enclosed in a chamber through which air that could
contain smoke flows. The smoke detector using optical beams/projected-beam is emitting
a beam of infrared or ultraviolet light, which is received and processed by separate devices
or reflected using the reflector. In the case of an optical beam, the light emitted by the light
source passes through the air and reaches the photo-sensor. The light intensity will be
reduced due to smoke, airborne dust, or other substances. The circuitry detects the light
intensity, and if it drops below a specific threshold the alarm will be activated.

The ionization smoke detectors [3] use a tiny piece of radioactive material that
is located between two electrically charged electrodes. The air that passes between
two electrodes is then ionized and causes an electrical current between the electrodes.
The smoke particles in the air are disrupting the current, which activates the alarm. A
literature investigation showed that the majority of scientific papers available online re-
garding fire detection from smoke detection involve the implementation of various deep
convolutional neural networks (DCNN) such as ResNet [4], Inception [5,6], YOLO [7], and
others. In these papers, the image/video data types were used. There is a small number
of papers in which only smoke detectors were used in fire detection in combination with
artificial intelligence (AI) algorithms. Besides fire detection using only smoke detectors,
there are numerous research papers in which fire detection systems are based on sensor
fusion systems and AI.

1.1. Fire Detection Systems Based on Fire/Smoke Detectors and AI

The adaptive neuro-fuzzy system (ANFIS) was used in [8] for the identification of a
true fire incident by including the change rate of smoke, the change rate of temperature,
and humidity in the presence of fire. The data that was used in ANIFS was collected
from sensors (flame detector, humidity, heat, smoke sensors, etc.) and prepared using
Fuzzy Logic. The accuracy in fire detection using ANFIS is 100%. In [9], the guideline was
developed and presented for choosing the most optimal sensor combinations for accurate
residential fire detection. Besides the combination of the sensor, the implementation of the
neural network and Naive Bayes classifier in smoke/fire detection was also investigated
and the highest accuracy achieved was 97% in the case of the neural network and 100% in
the case of Naive Bayes. The artificial neural network (ANN) was used in [10] to investigate
if ANN could detect fire and smoke. The inputs of ANN were obtained from a sensor system
consisting of smoke density, temperature, and carbon monoxide sensors, respectively. The
highest detection accuracy achieved using ANN was 98.3%. The probabilistic neural
network (PNN) was used in [11] to detect fire using burning smell. In this investigation,
seven different materials were scorched in a vacuum oven at various temperature points
and were pushed out using vacuum pumps where it was sniffed using an electronic nose.
The results showed that PNN achieved a mean classification accuracy of 94.18%. The
performance of the gas sensor array for the detection of smoldering and plastic fires while
rejecting a set of nuisances was investigated in [12]. The fire and nuisance experiments
were conducted in a fire room of 240 [m3]. The PLS-DA and support vector machines
(SVM) were used to evaluate the performance of different multivariate calibration models
for this dataset. The PLS-DA showed 100% specificity and 85% sensitivity, i.e., the system
has difficulties in detecting plastic fires (signatures are close to nuisance scenarios).

1.2. Fire Detection Systems Based on Sensor-Fusion and AI

The sensor-fusion [13] can be described as the process of combining data obtained
from sensors in such a way that the resulting information contains less uncertainty when
compared to data obtained when the sensors are used individually. To implement sensor
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fusion, the equipment used in an experiment must contain two or more sensors. The
following papers describe the utilization of multiple sensors, implementation of the sensor
fusion process, and the application of AI methods in fire detection.

In [14], the mobile robot platform equipped with a multi-sensor system (smoke, flame,
and temperature measurement sensors) was developed to detect fire. The robot was
developed to track virtually prescribed paths with obstacle avoidance and motion planning
to scan and detect fire sources with a sensor fusion system. The results of the conducted
investigation showed that a sensor fusion system provides more reliable detection than a
one sensor-based system with an accuracy of 92%.

The sensor fusion system developed in [15] consisted of temperature, smoke, and
CO density sensors. The system for processing data consisted of a 3-layers data fusion
structure, i.e., signal layer that consisted of sensors and part decision-making process, the
characteristic layer that consisted of an Expert database pickup unit and neural network
pickup unit, and the decision layer that consisted of a fuzzy inferent data fusion system.
The results of this system showed the error using this system reaches the value of 10−4.

The sensor fusion system consisting of the temperature sensor, smoke, and CO density
sensor was developed in [16] to detect fire. The data obtained from sensor fusion adjust the
weights of three kinds of sensors, and by repeating iterations, generates the final decision
(fire or not). The results of the investigation showed that the proposed method achieves
high classification accuracy.

Fire detection using a gas sensor array with sensor fusion was developed and investi-
gated in [17]. The system consisted of eight AMS MOX sensors, PID alpha sense sensors,
NDIR CO2 alpha sense sensors, Electrochemical CO alpha sense sensors, and Humidity and
Temperature sensors, respectively. The partial least squares discriminant analysis (PLS-DA)
has been used for the detection of fire with data obtained from a gas sensor array. The
results of the investigation showed 97% sensitivity in fire detection, although the system
produced a significant rate of false alarms, i.e., 35%.

A sensor fusion system consisting of smoke, light, and temperature sensors was
proposed in [18]. All measured data were interpreted using Arduino and wirelessly
transferred to Raspberry PI for subsequent processing. The experiments were conducted
day and night in three phases No-fire, On-fire, and Post-fire. The experimental results
in the No-fire and On-fire phases during daytime achieved an accuracy of 98%, while
during nighttime achieved an accuracy of 97%. In the case of all three phases, the achieved
accuracy during daytime and nighttime are 97% and 98%, respectively.

The sensor fusion system with a BP neural network was utilized in [19] to develop a
system for early indoor fire detection. The sensor fusion system consisted of sensors for the
detection of temperature, smoke, and CO concentration, and the data was used for early
fire detection with a BP neural network. The results of this investigation show that fire
detection time is shortened by 32%.

In [20], the authors have developed three types of systems to create a smart home
environment that can be used for intelligent fire detection/alarm and these are: a wearable
motion sensing device mounted on residents’ wrists and its corresponding 3D gesture recog-
nition algorithm for convenient automated household appliance control system, a wearable
motion sensing device mounted on residents’ feet for indoor positioning algorithm, i.e.,
pedestrian navigation system for smart energy management and the multi-sensor circuit
module with intelligent fire detection-alarm algorithm. In addition to the three types
of systems, the intelligent monitoring interface was developed to provide information
about temperatures, CO concentrations, communicative environmental alarms, house-
hold appliance status, human motion signals, gesture recognition, and indoor positioning,
respectively. The data from the multi-sensor circuit module was processed using a prob-
abilistic neural network to predict safe, warning, and dangerous conditions of the living
room, bathroom, and kitchen, respectively. The results of the investigation showed that for
home safety and fire detection, a classification accuracy of 98.81% was achieved.
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Environmental issues can be a major challenge in achieving high measurement accu-
racy with wireless sensor networks (WSN), and the main reason for this is noise uncertainty.
To overcome this problem, in [21] the artificial neural network (ANN) was applied for the
received signal strength indicator based indoor target localization in WSN. In this investi-
gation, the authors investigated the performance of 11 different ANN training functions
and the results showed that all training functions show higher Average Localization Error
and the system is more consistent in providing better location estimates.

An intelligent WSN was proposed in [22] for early forest fire detection. The proposed
system is based on data mining and data fusion, backed by decades of research in forestry.
In this research, an ant colony optimization algorithm was used for the creation of the
multi-sensory base stations. The proposed method greatly improves the deployment of
nodes in real life and with this system, higher accuracy in fire detection can be achieved.

Sensor fusion describes the approach of combining a multitude of perceptive sensor
readings, such as cameras, radars, lidars, and other sensor types, intending to form a single
model of the environment in which the aforementioned sensor array, commonly mounted to
an automated device, currently resides in [23]. While commonly used in automated driving,
such an approach of combining a multitude of inputs is growing in use in various scientific
and engineering fields [24,25]. Many common issues need addressing when discussing the
sensor fusion approaches, which have been a common topic of research in previous years.
Such an issue is discussed by Singh et al. [26], who develop an IoT-enabled helmet that
serves to safeguard the health of mine workers. This shows a common issue that is well
addressed by the sensor fusion systems—the development of warning generation devices.
These devices use the sensor fusion approach to achieve a robust system for warning of
possible danger and healthcare risks. One of the most common issues is the assumption
that data is “clean”—in other words, each time frame allows for the collection of all sensor
readings as clean, noiseless data, without time shifts. As shown by Rahate et al. [27], this
is rarely the case. The authors demonstrate the multi-task modality fusion approach’s
application to develop models that may be robust even in cases where 90% of the sensor
data is missing. Another issue that arises is the need for fast processing of different data
types. Vakil et al. [28] propose FERNN, an approach based on the neural network that
allows for the fusion of radio frequency and electro-optical sensor data. A similar issue
is also discussed by Wu et al. [19], which demonstrates an application for an indoor fire
early warning through the use of a back-propagation neural network. The developed
system correctly identifies test fires, while improving the detection time by a large margin
of 32%. A large number of sensor data present in the sensor fusion systems can also
present itself as an issue, which is discussed by Mian et al. [29] for the case of bearing
fault diagnosis. The authors propose an analytic approach that analyzes the collected data
using the neighborhood component analysis (NCA) and relief algorithm (RA). Such data
can then be processed using a simpler and faster support vector machine (SVM) based
model, without significant loss of performance. The current state of the research in the area,
as shown by the discussed papers, directly points towards the usability of AI-based and
statistical analysis methods for the application in the area of sensor fusion.

1.3. Definition of Novelty, Research Hypotheses, and Scientific Contribution

As seen from the previous literature overview, the AI/ML methods (neural networks)
that have been used showed promising results in terms of classification accuracy. However,
training these models and further implementation require reasonably high computational
resources. In other words, these models require a lot of storage space and a lot of compu-
tational power to process new data and generate the output. These AI/ML models are
difficult to implement in micro-controllers that are used in multi-sensor systems since these
micro-controllers are acquiring the data from multiple sensors and performing sensor-
fusion processes. So, implementing these trained AI/ML models in fire detection systems
would require some additional computational resources.
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To overcome this problem, the novelty of this paper is to show the procedure of how
using a simple GPSC algorithm the symbolic expression can be obtained that can detect fire
with high classification accuracy. The obtained symbolic expression requires less storage
space and can be easily integrated with a microcontroller to detect fire using data acquired
from multiple sensors when compared to other AI/ML algorithms.

The GPSC is an algorithm that begins by creating a population of naive symbolic
expressions that are unfit for a particular task and in each generation with the application of
genetic operations to fit them for the particular task. The GPSC algorithm is an evolutionary
algorithm; however, it has some similarities with supervised learning algorithms since it
requires the dataset (input and output) to generate symbolic expressions.

To obtain the symbolic expression for fire detection, the GPSC algorithm will be applied
to a publicly available dataset [30]. The dataset consists of data collected from sensors that
measured aerosol concentration (number of particles and their size), humidity, temperature,
air pressure, and gas. For this dataset, different scenarios were considered, and some
of them are normal indoor, normal outdoor, indoor wood fire (firefighter training area),
outdoor (wood, coal, and gas grill), and outdoor high humidity. A detailed description of
the dataset is given in the following section. Based on the literature overview and described
idea/novelty of this paper, the following questions arise:

• Is it possible to utilize the GPSC to obtain symbolic expression that could detect fire
with high classification accuracy?

• Is it possible to balance the dataset class samples using different undersampling/
oversampling methods, and do balancing methods influence the classification accuracy
of obtained symbolic expressions?

• Is it possible to achieve high calcification accuracy using a random hyperparameter
search method for GPSC algorithm with 5-fold cross-validation?

• Is it possible to achieve high classification accuracy with the application of the best sym-
bolic expression obtained with one of the balancing datasets on the original dataset?

The scientific contributions of this paper are:

• Investigate the possibility of GPSC application to the publicly available dataset for the
detection of fire.

• Investigate if dataset balancing methods have any influence on classification accuracy
of obtained symbolic expressions.

• Investigate if GPSC with random hyperparameter search method and 5-fold cross-
validation can produce the symbolic expression with high classification accuracy in
fire detection.

• Investigate if using the best symbolic expression can produce high classification
accuracy in fire detection on the original dataset.

The outline of this paper is divided into sub-seeding sections, i.e.: Section 2—Materials
and Methods, Section 3—Results and Discussion, and Section 4—Conclusions. In Sec-
tion 2, the research methodology, dataset description, dataset balancing methods, genetic
programming symbolic classifier, random hyperparameter search method, 5-fold cross-
validation, evaluation metrics, methodology, and computational resources, are presented.
In the Section 3, the results of using GPSC with random hyperparameter search method and
5-fold cross-validation are presented, as well as the final evaluation of the best symbolic
expression on the original dataset. Also in Section 3, the obtained results are discussed.
In the Section 4, the conclusions are given that are based on the discussion section and
hypotheses defined here in this section.

2. Materials and Methods

In this section, the research methodology, dataset description, dataset balancing meth-
ods, GPSC, random hyperparameter search method, 5-fold cross-validation, evaluation
metrics, methodology, and computational resources are described.



Sensors 2023, 23, 169 6 of 27

2.1. Research Methodology

The graphical representation of research conducted in this paper is shown in Figure 1.
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Figure 1. The schematic view of research methodology.

As seen from Figure 1, the original dataset was balanced using different balancing
methods and these are:

• Random undersampling,
• Random oversampling,
• Near miss-1,
• Adaptive Synthetic (ADASYN),
• Synthetic Minority Over-sampling (SMOTE),
• Borderline Synthetic Minority Over-sampling (Borderline SMOTE).

However, before the application of balancing methods, the dataset was scaled using
the Standard Scaler method. After balancing the original dataset using different methods
6 different variations of the dataset were obtained. Each dataset was split into train/test
datasets in a ratio of 70:30. The 70% of the dataset was used for training, i.e., in 5-fold
cross-validation. Before 5-fold cross-validation, the random hyperparameters of GPSC
were randomly selected. After the 5-fold cross-validation process, the evaluation metrics
were applied of obtained symbolic expressions and if the evaluation metrics are high (>0.99)
the process continued to the final stage where the GPSC was trained on 70% with the
same hyperparameters as in the 5-fold cross-validation process. On the other hand, if
the evaluation metrics values after 5-fold cross-validation were lower than 0.99, then the
process would start from the beginning by randomly selecting hyperparameters of GPSC.
When GPSC final training was completed the symbolic expression was obtained, and it
was evaluated on the train and test dataset to obtain mean and standard deviation values
of evaluation metrics. If the values of all metrics at this stage were above 0.99, the process
was completed and if that was not the case the process would continue from the beginning
by randomly selecting GPSC hyperparameters.

When the best symbolic expressions are obtained, they are compared in terms of eval-
uation metric values and the size of the symbolic expression. The symbolic expression that
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achieved the highest classification accuracy and size is smaller compared to other symbolic
expressions and will be chosen as the best symbolic expression. The final evaluation of the
best symbolic expression will be performed on the original dataset.

2.2. Dataset Description

As stated in this paper, a publicly available dataset was used, which can be down-
loaded from Kaggle [30]. The dataset was collected as part of the project in which a smoke
detector that is based on artificial intelligence sensor fusion was used to determine if there
is a fire or not. Sensor fusion can be described as a process of combining sensor data or data
derived from disparate sources such that the resulting information has less uncertainty
than the information collected when these sources were used individually. Sensors that
were used to acquire this dataset were Sensirion SPS30 [31] (photoelectric smoke detector)
for particulate matter and number concentration parameters, humidity sensor BME688 [32],
temperature sensor SHT31 [33], air pressure BMP390 [34] and BMP388 [35], and gas sensors
SPG30 [36] and BME688 [32]. The output of this sensor was measured in a particular matter
(PM 1.0, PM 2.5) and number concentration (NC 0.5, NC 1.0, NC 2.5). All the other sensors
were positioned around the SPS30 smoke detector. All data was collected using Nicla Sense
ME board [37].

According to [30], the main idea of this project was to collect the data using different
environmental information from sensor fusion to improve fire detection. There are different
sensor fusion algorithms that could be implemented such as non-linear functions, thresh-
olds, or linear regression. However, the author of this dataset chose linear regression-based
sensor fusion since a lot of final output depends on the large number of sensor readings
that have different correlations.

The data was collected in different environments and fire sources. The different
scenarios used for the collection of data were considered, and these are:

• Normal indoor,
• Normal outdoor,
• Indoor wood fire,
• Indoor gas fire,
• Outdoor wood, coal, and gas grill,
• Outdoor high humidity.

The initial dataset consists of 60,000 readings without null values. The sample rate
used to collect data is 1 [Hz] for all sensors. The initial dataset consisted of 15 variables and
these are:

• Timestep UTC [s],
• Air temperature [C],
• Air humidity [%],
• Total volatile organic compounds (TVOC) [ppb],
• CO2 equivalent concentration [ppb],
• Raw H2—raw molecular hydrogen,
• Raw ethanol gas,
• Air pressure [hPa],
• Particulate matter size 1.0 µm (PM 1.0),
• Particulate matter size 2.5 µm (PM 2.5),
• Number of concentration of particulate matter (NC 1.0),
• Number of concentration of particulate matter (NC 2.5),
• Sample counter CNT,
• Fire alarm (fire alarm not activated—0, fire alarm activated—1).

However, UTC and CNT were omitted from further investigation since the idea was
to develop symbolic expressions for fire detection using only sensor data as input variables.
So, the dataset used in this paper consisted of 12 input variables and these are temperature,
humidity, TVOC, eCO2, Raw H2, Raw Ethanol, Pressure, PM1.0, PM2.5, NC0.5, NC1.0, and
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NC2.5, while Fire Alarm labeled “target” was the output variable. All values of statistical
analysis are given in Table 1.

Table 1. The initial statistical analysis of the original dataset with variable names used in the
GPSC algorithm.

Variable
Name Count Mean Std Min Max

GPSC
Variable

Representation

Temperature
[C]

62,630

15.97042 14.35958 −22.01 59.93 X0

Humidity
[%]

48.5395 8.865367 10.74 75.2 X1

TVOC
[ppb]

1942.058 7811.589 0 60,000 X2

eCO2 [ppm] 670.021 1905.885 400 60,000 X3

Raw
H2

12,942.45 272.4643 10,668 13,803 X4

Raw
Ethanol

19,754.26 609.5132 15,317 21,410 X5

Pressure
[hPa] 938.6276 1.331344 930.852 939.861 X6

PM1.0 100.5943 922.5242 0 14,333.69 X7

PM2.5 184.4678 1976.306 0 45,432.26 X8

NC0.5 491.4636 4265.661 0 61,482.03 X9

NC1.0 203.5865 2214.739 0 51,914.68 X10

NC2.5 80.04904 1083.383 0 30,026.44 X11

target 0.714626 0.451596 0 1 y

To get a better insight into input variables when the fire alarm was triggered or not,
the data was grouped into two categories, i.e., when the fire alarm was not activated and
when the fire alarm was activated. The results are shown in Tables 2 and 3.

Table 2. The statistical data of samples when fire alarm was not activated.

Count Mean Std Min Max

Temperature [C]

17,873

19.6948031 14.9829319 −22.01 59.93

Humidity [%] 42.9300767 11.9628544 10.74 75.2

TVOC [ppb] 4596.58725 14,255.5756 0 60,000

eCO2 [ppm] 962.587255 2921.74993 400 39,185

Raw H2 12,896.3168 432.44162 10,668 13,803

Raw Ethanol 20,082.8235 956.339624 15,317 21,410

Pressure [hPa] 938.101383 1.23795718 931.131 939.861

PM1.0 261.982706 1439.7256 0 13,346.69

PM2.5 450.034639 2828.77478 0 41,262.98

NC0.5 1356.28382 7155.12266 0 61,482.03

NC1.0 493.872027 3150.39016 0 47,089.598

NC2.5 178.982259 1446.59579 0 26,916.836
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Table 3. The statistical data of samples when the fire alarm was activated.

Count Mean Std Min Max

Temperature [C]

44,757

14.4831516 13.8255854 −22.01 41.41

Humidity [%] 50.7795337 5.93723882 13.36 70.28

TVOC [ppb] 882.013071 548.606072 0 18,062

eCO2 [ppm] 553.189356 1275.26098 400 60,000

Raw H2 12,960.8781 167.385665 10,939 13,637

Raw Ethanol 19,623.0504 307.123385 17,809 21,109

Pressure [hPa] 938.837806 1.3090303 930.852 939.771

PM1.0 36.1464057 590.458583 0.15 14,333.69

PM2.5 78.4178419 1493.57607 0.16 45,432.26

NC0.5 146.111337 2144.94205 1.06 60,442.71

NC1.0 87.6655491 1689.24266 0.165 51,914.68

NC2.5 40.5416272 895.171419 0.004 30,026.438

As seen from Tables 2 and 3, the mean temperature that does not cause a fire alarm
is 19.69 [◦C], while the mean temperature that causes fire alarming is equal to 14.48 [◦C].
The mean humidity that does not cause the triggering of a fire alarm is 42.93%, while the
mean humidity at which a fire alarm is triggered is equal to 50.78%. The mean total volatile
organic compound at which the fire alarm is not triggered is equal to 4596.587 [bbp], while
the mean total volatile organic compound at which the fire alarm is triggered is equal to
882 [bbp]. The mean value of CO2 equivalent concentration at which the fire alarm is not
triggered is equal to 962.58 [ppm], while the mean value at which the fire alarm is triggered
is equal to 553.19 [ppm]. The mean value of raw H2 at which the fire alarm is not triggered
is equal to 12,896.31 [ppm], while the mean value at which the fire alarm is triggered is
equal to 12,960.87 [ppm], respectively. The mean value of raw ethanol existence at which
the fire alarm is not triggered is equal to 20,082.82 [ppm], while the mean value at which
the fire alarm is triggered is equal to 19,623.05 [ppm]. The mean value of air pressure at
which the fire alarm is not triggered is equal to 938.1 [hPa], while the mean value at which
the fire alarm is triggered is equal to 938.8 [hPa]. For particulate matter 1.0, the mean
value at which the fire alarm is not triggered is equal to 261.98 [ppm], while the mean
value at which the fire alarm is triggered is equal to 36.14 [ppm]. In the case of 2.5, these
values are 450.03 [ppm], and 78.4 [ppm], respectively. In the case of particulate matter
concentrations, in the case of 0.5, 1.0, and 2.5, these values are 1356.35, 146.1, 493.8, 87.7,
178.98, and 40.5 [ppm], respectively. What is interesting to notice from Tables 2 and 3 is the
number of samples per class. In the case with no triggering of a fire alarm, the number
of samples is equal to 17,873, while in the case of triggering a fire alarm the number of
samples is equal to 44,757. Since the dataset is very imbalanced, previously mentioned
balancing methods will be applied to equalize the number of samples between classes.

Generally, in Tables 1–3, the range of values (min-max) differ from variable to variable.
Some of the input variables (temperature, humidity, and pressure) have very small ranges,
while 9 of the 12 variables have very large ranges. Initial research with the GPSC algorithm
showed that symbolic expressions with good classification accuracy (0.9–0.97) can be
obtained with the original values, however, in order to increase the classification accuracy,
the input variables were scaled using the Standard Scaler method.

Standard Scaler method [38] is a method used to standardize input variables by
removing the mean and scaling unit variance to zero. The standard score of a dataset
sample is calculated using the following expression:

z =
x− u

s
, (1)

where u is the mean of the input variable samples, s is the standard deviation of input
variable samples, and x is the input variable sample. It should be noted that only input
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variables were scaled using Standard Scaler, and the target (output variable) was left in its
original form.

To investigate the correlation between each input variable and the target (output
variable), Pearson’s correlation analysis [39] was performed. The values of Pearson’s
correlation analysis range from −1 to 1, and 0 is the worst possible correlation analysis
between input and output variables. If the correlation value between the input and output
variable is equal to −1, this means that if the value of the input variable increases the value
of the output variable decreases and vice versa. On the other hand, if the correlation value
between the input and output variable is equal to 1, this means that if the value of the
input variable increases the value of the output variable also increases, and if the value
of the input variable decreases the value of the output variable also decreases. The best
possible ranges of correlation values are −1 to −0.5 and 0.5 to 1. The range from −0.5
to 0.5 represents a low correlation range, which can indicate potential difficulties in ML
model development during the training process and in the end low classification accuracy
of trained ML models. However, this is not always the case. The results of Pearson’s
correlation analysis in the form of the heatmap are shown in Figure 2.

Figure 2. The results of Pearson correlation analysis performed on the original dataset.

As seen from Figure 2, few variables, i.e., Humidity, Pressure, and Raw Ethanol, have
some correlation to the target variable. The remaining nine variables have low correlation
values to the target variable. It is interesting to note that all data collected from Sensirion
SPS30 have between each other very high correlation values in the range of 0.63–0.99.
However, in this investigation, all input variables will be used in GPSC to obtain symbolic
expressions to see which input variables were included in the symbolic expressions with the
highest classification accuracies. To better visualize the correlation between input variables
and the output variable (target—fire/no fire alarm) the correlation values have been ranked
from smallest to largest, as shown in Figure 3.
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Figure 3. Correlation of all input variables with target (Fire Alarm) variable.

As previously stated and seen from Figure 3, three input variables, i.e., Raw Ethanol,
Air Pressure, and Humidity, have the highest correlation with the Fire Alarm (target). The
worst possible correlation is between particular matter variables and the fire alarm (target),
which potentially indicates that these variables will not end up in the symbolic expression
during GPSC execution.

2.3. Data Balancing Methods

Since the original dataset has a different number of samples per class, i.e., 17,873
(class 0—no fire) and 44,757 (class 1—fire), the original dataset is imbalanced. Since the
imbalanced dataset can have a major negative impact on the performance of the supervised
learning methods (ML algorithms) as reported in [40], the idea is to utilize under-sampling
and over-sampling methods to balance the dataset by equalizing the number of samples
per class. To clarify the terminology that will be used throughout this paper, the class
with a smaller number of samples is called a minority class, while the class with a larger
number of samples is called a majority class. In this paper, as previously stated, the
following balancing methods were used, i.e., random undersampling, near miss-1, random
oversampling, ADASYN, SMOTE, and Borderline SMOTE. These algorithms are briefly
described in the following subsubsections.

2.3.1. Undersampling Method: Random Undersampling

The random undersampling method [41] is a method of randomly selecting samples
from the majority class to match the number of minority classes. After the number of
samples of randomly selected numbers from the majority class is matched to the number of
samples of the minority class, the process of dataset balancing is completed.

2.3.2. Undersampling Method: Near Miss

The near miss method [42] is a name for a collection of undersampling methods that
select samples based on the distance between majority and minority class samples. There
are three different Near miss variations, i.e., Near miss 1, 2, and 3. The distance in all
these methods is determined in feature space using Euclidean distance. In the NearMiss-
1 method, the majority class samples with a minimum average distance to three close
minority class samples. In NearMiss-2, the majority class samples with a minimum average
distance to three further minority class samples. In NearMiss-3 the majority class samples
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with minimum distance to each minority class sample. In this paper, the NearMiss-1
method was used.

2.3.3. Oversampling Method: Random Oversampling

The random oversampling method [43] increases the number the samples from the
minority class by randomly selecting samples from the same class. The procedure is done
until the number of samples from the minority class reaches the number of samples from
the majority class. By matching the number of samples from the majority class, the dataset
is balanced.

2.3.4. Oversampling Method: ADASYN

The Adaptive Synthetic (ADASYN) method [44] starts with defining the majority and
minority class by the number of samples. The first step is to calculate the degree of the
class imbalance, which can be in the range between 0 and 1. If the value is very small, then
the ADASYN algorithm begins its execution. The second step is to calculate the number of
synthetic data samples of the minority class that have to be generated. For each minority
class sample, find the K nearest neighbors based on Euclidean distance in n-dimensional
space and calculate the ratio:

ri =
∆i
K

i = 1, ..., ms, (2)

where ∆i is the number of examples in K nearest neighbors around the minority class
sample that belongs to the majority class, and ms is the number of minority class samples.
The range of the ratio ri is between 0 and 1. The next step is to normalize the ri to obtain
the density distribution. Then, calculate the number of synthetic data samples that have
to be generated for each minority class. Finally, for each minority class sample, generate
synthetic data samples, and the process is complete after the number of minority class
samples matches the number of majority class samples.

2.3.5. Oversampling Method: SMOTE

The synthetic minority oversampling technique (SMOTE) is a method of synthetically
generating samples of the minority class to match the number of samples from the majority
class. As described in [45], the procedure of generating synthetic data using SMOTE
method consists of the following steps:

• Take the difference between the feature vector(sample) under consideration and its
nearest neighbor,

• Multiply the difference by a random number in the 0–1 range, and
• Adds the result to the feature vector under consideration.

2.3.6. Oversampling Method: Borderline SMOTE

The Borderline SMOTE method [46] oversamples the borderline minority examples.
The term borderline is the border between two classes, in this case majority and minority
classes. The first step is to find the borderline minority class samples. Then, synthetic
samples are generated from them and added to the original training set.

The results of the application of various undersampling and oversampling methods
on the original dataset are listed in Table 4.
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Table 4. The number of samples per class after application of various undersampling and oversam-
pling methods on the original dataset.

Dataset
Balancing
Method

Class 0 Class 1 Total

Random
undersampling

17,873 17,873 35,746

Near
Miss-1

17,873 17,873 35,746

Random
Oversampling

44,757 44,757 89,514

SMOTE 44757 44,757 89,514

Borderline
SMOTE

44,757 44,757 89,514

ADASYN 44,759 44,757 89,516

2.4. Genetic Programming Symbolic Classifier

Genetic programming is a method of generating an initial population of randomly
generated population members that are unfit for a particular task and adjusting them to
solve the particular task with the use of genetic operators crossover and mutation. As stated,
the program starts by creating the population of naive symbolic expressions by randomly
selecting elements (functions, constants, and variables) from the so-called primitive set.
It should be noted that in GP, the population members are represented as tree structures,
which are very important due to the fact that the size of each symbolic expression is not
only represented by its length, but also by its depth.

The method used to create the initial population is ramped half-and-half, in which
half of the initial population is created with full and the rest with grow method. Another
benefit of utilizing this method is that the depth of the entire population is defined in
the range, i.e., 3 to 12. By using this method, a larger diversity is brought initially when
compared to using just the full/grow method. The population size and tree depth size are
in GPSC defined with hyperparameters population_size and init_depth. After the initial
population is created the population members have to be evaluated. In GPSC this is done
in the following way:

1. Calculate the output using the values of the input variables from the dataset,
2. Use the output as the argument of the Sigmoid function that can be written as:

S(x) =
1

1 + e−x (3)

3. Calculate the log loss of the sigmoid output and the real output (for each instance).

After the fitness value was obtained for each population member, the tournament
selection method was applied. In this method, the population members are randomly
selected from the population. Then, from the selected population members, randomly
selected members are compared, and the one with the lowest value becomes a winner of
the tournament selection. On the winners of tournament selection, genetic operations are
performed, i.e., crossover and mutation. The size of tournament selection is defined with
hyperparameter tournament_size.

In GPSC on tournament selection winners, four different genetic operations were
performed, and these are crossover, subtree mutation, hoist mutation, and point mutation.
For crossover, two tournament selection winners are required where on the first winner
the random subtree is selected. Then, on the second tournament winner, a random subtree
is selected and is used to replace the randomly selected subtree of the first tournament
winner. By doing so, a new population member for the next generation is created. In the
case of the remaining three genetic operations (subtree, hoist, and point mutation), only
one winner for each genetic operation is required. In the subtree mutation, the random
subtree is selected from the tournament winner. Then, by randomly selecting elements
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of the primitive set, the subtree is created, and it replaces the randomly selected subtree
on the tournament winner to create a population member of the next generation. In the
hoist mutation, the random subtree is selected on the tournament winner, and on this
subtree, a second subtree is randomly selected. Then, the second tree replaces the originally
selected subtree to create a member of the next generation. In case of point mutation on
the tournament winner, the nodes are selected at random. The variables are replaced with
other variables, constants with other constants, and functions with other functions from
the primitive set. However, in the case of a function, the number of function arguments
must be the same. The GPSC hyperparameter for aforementioned genetic operations are
p_crossover, p_subtree_mutation, p_hoist_mutation, and p_point_mutation. The sum of
all these genetic operations should be near 1 or equal to 1. If the sum is lower than 1, then
some tournament selection winners will remain unchanged, i.e., they will enter the next
generation without genetic operators being applied to them. The termination criteria are
responsible for the termination of GPSC execution. If there are no termination criteria
applied to the system, the GPSC would execute indefinitely. In the case of GPSC, two
hyperparameters are responsible for terminating its execution, and these are generations,
and stopping_criteria. The generations hyperparameter represents the maximum number
of generations in the current GP execution, and if that number is reached, the GP algorithm
is terminated. The stopping criteria are the minimum value for the fitness function, and
if this value is reached by one of the population members, the GPSC is terminated. Since
stopping criteria are usually defined near 0 or 0 this criterion is never met by the GPSC
algorithm so the execution of the algorithm is terminated after reaching the maximum
number of generations.

The constants in the GPSC execution are defined with the hyperparameter const_range.
This hyperparameter contains a range of constants that are used in GPSC to randomly
selects numbers and add them to the symbolic expression. The maximum number of
samples (max_samples) is the maximum number of samples selected from the dataset
used for training the population during execution. The parsimony coefficient is the last
hyperparameter that is responsible for penalizing large population members. During the
GPSC execution, it can happen that the size of the population members rapidly grows
without any benefit in the fitness function value. This is called the bloat phenomenon,
which can be prevented with the application of the parsimony coefficient. This coefficient
will penalize large programs by making them less favorable for selection.

Before the development of the random hyperparameter search method, the initial
investigation was done with GPSC to define ranges of hyperparameters. This initial
tuning, i.e., range definition is especially important for the parsimony coefficient since
the slight change in its value could greatly influence the GPSC evolution process. If the
value is too small, the population members could rapidly grow in a couple of generations,
which could result in memory overflow. If the value is too large, the GPSC will generate
unevolved population members with usually small classification accuracy. The ranges of
all hyperparameters used in this research are listed in Table 5.

2.5. Random Hyperparameter Search

In the previous subsection, the GPSC method was described as well as hyperparam-
eters. Before each GPSC execution, the hyperparameters were randomly selected from a
predefined range. The range of hyperparameters was defined using a trial-and-error proce-
dure. In the GPSC script, the random hyperparameters method was defined in the form of
a function that is called each time before GPSC execution. The list of hyperparameters is
shown in Table 5.
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Table 5. The range of GPSC hyperparameters which were randomly selected in each execution
of GPSC.

Hyperparameter Name Lower Bound Upper Bound

Population_size 500 2000

number_of_generations 200 300

tournament_size 100 500

init_depth (3,7) (7,12)

crossover 0.95 1

subtree_mutation 0.001 0.1

point_mutation 0.001 0.1

hoist_mutation 0.001 0.1

stopping_criteria 1× 10−7 1× 10−6

max_samples 0.99 1

constant_range −100,000 100,000

parsimony_coeff 1× 10−5 1× 10−4

2.6. 5-Fold Cross-Validation

The 5-fold cross-validation process has been chosen to generate a robust symbolic
expression that can be used to detect fire with high classification accuracy. The classical
approach of dividing the dataset on train/test without the use of 5-fold cross-validation
can produce high classification accuracy on a train dataset; however, unseen data can result
in poor classification accuracy. So, classic train/test process can in some cases cause over-
fitting. Some examples of 5-fold cross-validation applications can be seen in [47–49]. To
prove that over-fitting did not occur, the mean and standard deviation of evaluation metric
values obtained on the train/test dataset were calculated. The high values of the standard
deviation of any evaluation metric used in this paper could indicate a large difference
between the evaluation metric values achieved on the train and test datasets, respectively.
However, in this research, large standard deviation values of evaluation metrics used did
not occur. The process of performing the 5-fold cross-validation of GPSC with a random
hyperparameter search method can be summarized in the following steps:

• Select random hyperparameters of GPSC algorithm from their predefined range.
• Perform 5-fold cross-validation and obtained mean values of accuracy, area under the

receiver operating characteristic curve, precision, recall, and F1-Score.
• Termination criteria 1st stage—if the values of previously mentioned metric values are

greater than 0.99 then proceed to final analysis, otherwise, start from the beginning
by randomly selecting new GPSC hyperparameters and performing GPSC 5-fold
cross-validation analysis all over again.

• Final evaluation—if the termination criteria are satisfied the same parameters that
were used for GPSC, 5-fold cross-validation is used in this final stage. The final
evaluation consists of the final training of GPSC and final testing of obtained symbolic
expression on a train and test dataset to obtain mean and standard deviation values of
accuracy, area under the receiver characteristic operating curve, precision, recall, and
f1-score values.

• Final evaluation 2nd stage—if the mean values of previously mentioned evaluation
metrics are above 0.99, the process is completed, otherwise the process starts from the
beginning.

The previously described procedure is shown in flowchart form in Figure 4.
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Figure 4. The schematic view of GPSC with random hyperparameter search and 5-fold
cross-validation.

2.7. Evaluation Metrics and Methodology

To evaluate the obtained symbolic expressions using GPSC in this paper, the accuracy,
area under the receiver operating characteristics, precision, recall, and F1-scores were used.
However, the values of these evaluation metrics are not only shown for the test dataset. The
idea of this paper is to show mean values of evaluation metrics provided by the standard
deviation error to see how the symbolic expression performs on train and test datasets,
respectively. The metrics used in this research are shortly described in the Section 2.7.1,
while detailed evaluation methodology is described in the Section 2.7.2.

2.7.1. Evaluation Metrics

As already stated the evaluation metrics used in this paper are accuracy (ACC), area
under the receiving operating characteristic curve (AUC), Precision, Recall, and F1-Score.
To describe each evaluation metric first basic classification terminology must be introduced.
In classification, the evaluation metrics are calculated from true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) [50]. When the ML model correctly
predicts the positive class this outcome is labeled TP while the correct prediction of the
negative class is labeled TN. In the case when ML model incorrectly predicts the positive
class, the outcome is labeled as FP while the incorrect prediction of the negative class is
labeled as FN. These four parameters define the confusion matrix and are basic elements
used to calculate ACC, AUC, Precision, Recall, and F1-socre.

Accuracy, according to [51], can be described as a fraction of predictions the ML model
made correctly and can be calculated using the expression:

ACC =
TP + TN

TP + TN + FP + FN
. (4)

The AUC score [52] is a result of computing the area under the receiver operating
characteristic (ROC) curve.
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The precision [53] is an evaluation metric used to measure the positive samples that are
correctly predicted from the total number of predictions in a positive class. Mathematically
the precision is the ratio between TP and the sum of TP and FP and can be written in the
following form:

Precision =
TP

TP + FP
. (5)

The recall [53] can be described as the ability of the ML model to find all positive
samples. The recall is a ratio between TP and the sum of TP and FN, and can be written in
the following form:

Recall =
TP

TP + FN
. (6)

The F1-score [54] is a harmonic mean of precision and recall. The contributions of
precision and recall to the F1-score. The F1-score is calculated using an expression that can
be written as:

F1− Score = 2
precision · recall

(precision + recall)
. (7)

The range of AUC, ACC, precision, recall and F1-score are all in the 0 to 1 range where
1 is the best and 0 is the worst possible score.

2.7.2. Evaluation Methodology

Before explaining the evaluation methodology procedure, let us summarize the train-
ing and testing process once again. The initial dataset was divided into the ratio of 70:30.
On the training dataset, the 5-fold cross-validation is performed with randomly selected
hyperparameters. If the 5-fold cross-validation process is passed, the next step is the 1st
stage termination criteria. In the 1st stage termination criteria, the mean values of ACC,
AUC, precision, recall, and F1-score are calculated, and if all values are greater than 0.99,
the process progress to the final evaluation using GPSC. However, if the mean values of all
evaluation metric values are lower than 0.99 then the process starts from the beginning by
selecting random hyperparameters and performing the 5-fold cross-validation.

If the process progress to final evaluation the GPSC is trained using a trained dataset
with the same hyperparameters as in the 5-fold CV. After training the symbolic expression
is obtained the expression is evaluated on the train and test dataset to calculate the mean
and standard deviation values of the aforementioned evaluation metrics. When these
values are obtained, the 2nd stage of termination criteria is performed, i.e., if the mean
values of evaluation metrics are greater than 0.99 and if the standard deviation values are
lower than 10−3 then the process is completed. Otherwise, the process starts all over again
from random hyperparameter selection.

The evaluation metrics were used after the application of the training and testing
dataset on the final symbolic expression and mean and std values are obtained from the
evaluation metrics. The procedure evaluating symbolic expressions can be divided into
two steps, i.e.,

• First step: during the 5-fold cross-validation on the train part of the dataset (70%)
obtain evaluation metric values on the train and fold dataset packets to calculate the
mean values of evaluation metrics that are used in termination criteria. If all mean
evaluation metric values are greater than 0.97 after the 5-fold cross-validation process
is completed, then the final training/testing is performed (step two). Otherwise,
the hyperparameters are randomly selected and the 5-fold cross-validation process
starts again.

• Second step: after mean values of evaluation metrics obtained during the 5-fold
cross-validation process passed the termination criteria, the final training/ testing is
performed. Training is performed using GPSC on 70% of the dataset, and during this
step, the symbolic expression is obtained. After obtaining the symbolic expression,
the evaluation metric values are obtained on the training dataset, and on the test
dataset, i.e., train and test datasets are applied to the symbolic expression to evaluate
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its performance. Obtained values of evaluation metric on train/test dataset are used
to calculate the mean and standard deviation values.

2.8. Computational Resources

In this paper, all investigations were conducted on a laptop with AMD Ryzen 5 Mobile
5500U 6-core (12 threads) processor, and 16 GB of DDR4 RAM. The Python programming
language (version 3.9.1) was used to create all scripts. The original dataset was balanced
using undersampling and oversampling functions from the imblearn library (version 0.9.1).
The statistical analysis and correlation analysis was done using pandas library (version
1.0.5). The GPSC algorithm in these investigations was imported from gplearn library
(version 0.4.1). The 5-fold cross-validation and random hyperparameter search method
were developed from scratch. To visualize all the results and correlation heatmap the
matplotlib library (version 3.4.3) was used.

3. Results and Discussion

In this section, the results from conducted investigation are presented. First, the
results obtained using GPSC with a random hyperparameter search method and 5-fold
cross-validation are presented in terms of evaluation metrics. Then, the best symbolic
expression is shown, i.e., the symbolic expression using which the highest classification
accuracy was achieved. The best symbolic expression is evaluated on the original dataset
and the results of evaluation metrics are shown.

Initially, the GPSC was applied to the original dataset without a random hyperparam-
eter search method and 5-fold cross-validation. This was done to investigate the range of
hyperparameters that will be used later in the random hyperparameter search method.
This step was required due to the parsimony coefficient parameter value, which is very
sensitive and can greatly influence the evolution of the population during GPSC execution.
A large value can choke the evolution process and produce the symbolic expression with
low classification accuracy, while small values can create a bloat phenomenon. On the other
hand, the initial investigation was also done to set an extremely low value of stopping
criteria since the idea was to terminate the GPSC execution when a randomly chosen
maximum number of generations was reached. This was done to enable GPSC to reach
the lowest fitness value possible. The initial investigation was also necessary to investigate
which genetic operation had a greater influence on the evolution process. It was found that
higher values of the crossover coefficient have a greater contribution to lowering the value
of the fitness function, obtaining symbolic expressions with high classification accuracy.

The initial statistical investigation of the dataset shown in Table 1 showed that input
variables have a different range of values, i.e., some of them have a small range, while the
majority of them have a really large value range. These value ranges greatly influenced the
classification accuracies of obtained symbolic expressions since the highest mean values
of evaluation metrics were around 0.97. To improve the classification accuracies, all input
variables were scaled using the Standard Scaling method.

3.1. Results Achieved with GPSC Using Random Hyperparameter Search Method and 5-Fold
Cross-Validation

Each dataset variation was used in GPSC with a random hyperparameter search
method and 5-fold cross-validation. The combination of hyperparameters using the best
symbolic expression, which was obtained in terms of classification accuracy on each dataset
variation, is listed in Table 6.
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Table 6. The randomly chosen hyperparameters with which the symbolic expressions with the
highest classification accuracy were obtained.

Dataset
Type

GPSC Hyperparameters
(Population_Size, Number_of_Generations,
Tournament_Size, Initial_Depth, Crossover,

Subtree_Muation, Hoist_Mutation, point_Mutation,
Stopping_Criteria, Max_Samples, Constant_Range,

Parsimony_Coefficient)

Random
Undersampling

1477, 221, 406, (5, 12),
0.96, 0.013, 0.013, 0.012,

7.82× 10−7, 0.99,
(−13467.47, 36155.63), 5.45× 10−5

Near
Miss-1

1422,173,290, (6, 10),
0.96, 0.0059, 0.0075, 0.021,

9× 10−6, 0.99,
(−46197.99, 30568.98), 2.76× 10−5

Random
Oversampling

654,250, 383, (7, 11),
0.96, 0.023, 0.013, 0.0019,

6.79× 10−7, 0.99,
(−76506.62, 63083.63), 5.5× 10−5

ADASYN
952, 252, 290, (7, 8),

0.96, 0.0051, 0.0016, 0.024,
1.56× 10−7, 0.99,

(−47945.94, 94095.29), 3.34× 10−5

SMOTE
1111,217,190, (6, 11),

0.97,0.005,0.01,0.0085,
8.12× 10−7,0.99,

(−12456.11, 25100.79), 9.7× 10−5

Borderline
SMOTE

1194,108,180, (5, 8),
0.95, 0.014, 0.011, 0.013,

5× 10−6, 0.99,
(−87036.2, 28148.73), 3.65× 10−5

From Table 6, it can be noticed that majority of best symbolic expressions for each
dataset variation were obtained with a large population except in the case of random
oversampling, where the value is near to lower boundary as it shown in Table 5. The
crossover coefficient was dominating genetic operation in all cases which is obvious since
the range of this hyperparameter was set to 0.95–1. The stopping criteria value was set to
an extremely low value (10−7 − 10−6) to ensure that each GPSC execution terminates when
the maximum number of generations is reached. The parsimony coefficient value was set
to an extremely low value. Although the bloat phenomenon did not occur, some of the best
obtained symbolic expressions are pretty large (Table 7). The mean values of evaluation
metrics with standard deviation (error bars) are shown in Figure 5.

As seen from Figure 5, the best symbolic expression in terms of evaluation metric
values was achieved with a dataset balanced with SMOTE and Borderline SMOTE method.
However, these two symbolic expressions will be investigated, and the goal is to select the
symbolic expression that has high classification accuracy with a smaller size of symbolic
expression. Since the standard deviation values are small and are hardly visible from
Figure 5, the standard deviation values are shown in Table 7, alongside mean values,
the average CPU time required to obtain each symbolic expression, and the size of each
symbolic expression.
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Figure 5. The mean and standard deviation of ACC, AUC, Precision, Recall, and F1-score values
achieved with GPSC, random hyperparameter search, and 5-fold cross-validation on each dataset
variation. (The standard deviation is shown in the form of error bars).
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Table 7. The numerical values of mean ACC, AUC, Precision, Recall, and F1-Score with standard
deviation.
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Random
Undersampling

0.9952
±8.652× 10−5

0.9952
±8.67× 10−5

0.9936
±6.53× 10−5

0.996
±2.39× 10−4

0.995
±8.67× 10−5

360 188/32

Near
Miss-1

0.984
±2.68× 10−5

0.984
±2.57× 10−5

0.981
±4.8× 10−4

0.987
±4.34× 10−4

0.984
±2.57× 10−5

360 460/51

Random
Oversampling

0.978
±1.58× 10−5

0.978
±1.98× 10−5

0.985
±1.28× 10−4

0.97
±1.82× 10−4

0.977
±4.71× 10−5

600 83/23

ADASYN 0.979
±1.4× 10−4

0.979
±1.34× 10−4

0.985
±1.11× 10−4

0.973
±3.5× 10−4

0.979
±1.26× 10−4

600 727/38

SMOTE 0.998
±4.79× 10−5

0.998
±4.79× 10−5

0.999
±5.32× 10−5

0.998
±4.26× 10−5

0.998
±4.796× 10−5

600 140/25

Borderline
SMOTE

0.999
±2.92× 10−5

0.999
±2.919× 10−5

0.999
±9.15× 10−5

0.999
±3.07× 10−5

0.999
±3.042× 10−5

600 450/43

As seen from Table 7, when symbolic expression obtained on SMOTE and Borderline
SMOTE datasets are compared, both have high and similar classification accuracy. However,
the symbolic expression obtained on SMOTE dataset is smaller in size (length and depth).
Based on the size, the symbolic expression obtained in the case of SMOTE dataset is the
best symbolic expression. The final evaluation of this symbolic expression on the original
dataset is shown in the following subsection.

Regarding the average CPU time, the dataset size was one of the influences since
with the use of undersampling methods, the dataset is much smaller so the execution was
faster. In the case of random undersampling and near miss-1 dataset, each split in 5-fold
cross-validation was executed for 60 [min], so in total for 5-fold cross-validation, 360 [min]
was required. The final train/test lasted for an additional 60 [min], so in total average CPU
time for GPSC with random hyperparameter search and 5-fold cross-validation on these
two datasets is equal to 360 [min]. In the case of Random oversampling, ADASYN, SMOTE,
and BorerlineSMOTE, the datasets were oversampled, i.e., much larger so GPSC training on
each split in 5-fold cross-validation lasted for 100 [min]. Only for 5-fold cross-validation was
500 [min] required and add to that the additional 100 [min] for final training and evaluation.
So, in total, 600 [min] average CPU time for oversampled datasets. Obtained results showed
that all symbolic expressions obtained on each dataset variation achieved a classification
accuracy higher than 0.97. The symbolic expression with the lowest classification accuracy
was achieved in the case of Near Miss-1, Random oversampling, and Adasyn datasets. The
highest classification accuracy was achieved in the case of SMOTE and Borderline SMOTE
datasets. However, the size of the symbolic expression in the case of the Borderline SMOTE
dataset (length/depth = 450/43 vs. 140/25) was crucial, so the smaller symbolic expression
obtained on the SMOTE dataset was chosen as the best symbolic expression.

3.2. The Final Evaluation of the Best Symbolic Expression

As previously discussed, the best symbolic expression in terms of evaluation metric
values and the size (length/depth) of symbolic expression was obtained in the case of the
SMOTE dataset.The best symbolic expression can be written in the following form:
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y1 = 5.8 log
(

0.26
√

X0 − 17.1
)
+ 0.63

√
X1 − 46.86 + 0.86 log

(
0.098(X1 − 46.86)

)
(8)

+ 0.86 log
(

0.43 log(log(log(9.6× 10−5(X2 − 2788.37)))) +
0.048

√
X5 − 19849.2

X6 − 938.471

)
+ 2. log

(
1.44 log

(
0.43 log

(
log(1.44 log(0.036

√
X5 − 19849.2 csc(1.44

log
((

2.3 log
(

1.44 log
(

0.43 log
(

0.43 log
(

log
(

log
(

9.6× 10−5(X2 − 2788.37)
)))))))

(
log
(

0.43 log
(

0.43 log
(

0.43 log
(

0.43 log
(

0.43 log
(

log
(

log
(

9.6× 10−5
(

X2

− 2788.37
)))))))))))))))))

+ 2. csc(0.75(X6 − 938.471))√
log(1.44 log(

10380.5 log(0.75(X6 − 938.471))
X2 − 2788.37

))

+ 2.
√

log(1.44 log(1.44 log(log(log(9.6× 10−5(X2 − 2788.37))))))

csc(0.75(X6 − 938.471)) + 2. log(1.44 log(log(1.44 log(log(log(9.6× 10−5(X2

− 2788.37))))))) + 0.86 log(log(1.44 log(1.44 log(log(0.43 log(0.43 log(log(log(9.6× 10−5(X2

− 2788.37)))))))))) + 0.86 log(log(1.44 log(1.44 log(log(1.44 log(0.43 log(0.43 log(log(

log(9.6× 10−5(X2 − 2788.37))))))))))) + 2.8 log(1.44 log(log(1.44 log(0.43

log(0.43 log(0.43 log(0.43 log(0.43 log(0.43 log(log(log(9.6× 10−5(X2

− 2788.37))))))))))))) + 2.8 log(log(0.75(X6 − 938.471))− 0.003(X4 − 12926.3))

+ 2.
√

log(1.44 log(0.003(X4 − 12926.3))) csc(sin(sin(sin(sin(sin(0.75(X6

− 938.471))))))) + 0.006(X4 − 12926.3)

+ 2.4
√

log(0.43 log(log(log(1.44 log(0.003(X4 − 12926.3))))))

+ 0.86 log(log(1.44 log(0.036
√

X5 − 19849.2 csc(1.44 log(
0.084

√
X5 − 19849.2

log(log(0.75(X6 − 938.471)))
)))))

+ 0.036
√

X5 − 19849.2 + 6. log(1.44 log(sin(0.75(X6 − 938.471))))

+ 2.4
√

log(0.43 log(log(0.43 log(log(1.44 log(0.43 log(log(sin(0.75(X6 − 938.471))))))))))

csc(sin(sin(sin(0.75(X6 − 938.471))))).

The best symbolic expression (Equation (8)) consists of the following input variables:
temperature (X0), humidity (X1), TVOC (X2), Raw H2 (X4), Raw Ethanol X5, and air
pressure (X6). This means that particular matter variables (PM1.0, PM2.5, NC0.5, NC1.0,
and NC2.5) did not end up in the best symbolic expression. This is logical, since these
variables have a high correlation with each other (0.64 to 1), but a very weak correlation
with the target variable (fire alarm/no fire alarm) as seen from Figure 2.

The final evaluation of symbolic expression was achieved by applying this expression
to the entire original dataset and measuring ACC, AUC, Precision, Recall, and F1-score,
respectively. To evaluate the symbolic expression and calculate evaluation metrics, the
following calculation procedure is required:

• The values of input variables of the original dataset are used to calculate the output of
the symbolic expression,

• The output values of symbolic expression is used as input in Sigmoid function
(Equation (3)) to calculate the output,

• The output of the Sigmoid function is then transformed to an integer value to obtain a
0 or 1 value.
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It should be noted that the standard scaling method does not have to be applied to the
original dataset since the symbolic expression can work with the original data. In other
words the standard scaling formula (Equation (1)) is already included for each variable in
Equation (8).The results are shown in Table 8.

Table 8. The ACC, AUC, Precision, Recall, and F1-score achieved with application of y1 equation on
the original dataset.

Evaluation Metric Value

ACC 0.9984

AUC 0.9986

Precision 0.9997

Recall 0.998

F1-score 0.9988

As seen from Table 8, the results of ACC, AUC, Precision, Recall, and F1-score are
slightly lower than evaluation metric values obtained on the SMOTE dataset shown
in Table 7.

3.3. Results Summary

In this subsection, the obtained results are compared to the results from the literature
described in the Introduction section. At the end of this subsection, the key observations
on conducted investigations are provided.

The comparison of the results obtained in this investigation on the original dataset
and previous investigation discussed in the Introduction is listed in Table 9.

Table 9. The comparison of the obtained results with previous investigations discussed in the
Introduction section.

References Method Fire or Smoke Results

[8] ANFIS Fire ACC: 100%

[9] ANN, Naive Bayes Smoke/Fire ACC: 97–100%

[10] ANN Fire/Smoke ACC: 98.3%

[11] PNN Fire ACC: 94.8%

[17] PLS-DA Fire Sensitivity: 97%

[14] PLS Fire ACC: 92%

[15] Neural Network Fire classification error 10−4

[16] BP Neural Network Fire ACC: 98%

[18] Dempster-Shafer Theory Fire ACC: 97–98%

[20] PNN Fire ACC: 98.81%

This investigation GPSC Fire ACC: 99.84%

As seen from Table 9, the results (classification accuracy) from other research papers
in fire/smoke detection are in the 92–100% range. So, the results obtained in this paper
are higher than the majority of results from other research papers. However, the research
papers [8,9] in which the accuracy is 100% were achieved with ANFIS and ANN ML
algorithms, which require more computational resources when compared to the symbolic
expression obtained in this paper. However, in those papers, the authors have used
balanced datasets to train their algorithms, which is an initial advantage when compared
to the dataset used in this paper. Although, dataset balancing methods provide a good
starting point for training ML algorithms, it is always better to obtain the original balanced
dataset. Based on conducted investigation, some of the key observations are:
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• The GPSC can be used to obtain symbolic expression which can be used to detect
fire using sensory data obtained from the sensor fusion system. However, to achieve
high classification accuracy tuning of GPSC hyperparameters is mandatory and was
achieved with a random hyperparameter search method.

• The random hyperparameter search method is a good method for obtaining the
combination of GPSC hyperparameters using which the highest classification accuracy
of obtained symbolic expression can be achieved. However, due to the dataset size,
computational resources used, and required average CPU time, this method is slow,
but generates good results.

• Since the dataset was greatly imbalanced, i.e., a large number of samples in one class
and a small number of samples in another class, the original dataset could not be used
in the investigation and dataset balancing methods were applied. The application of
the balancing method created a great starting point for analysis and in the end, the
symbolic expressions with high classification accuracy were obtained.

• The best symbolic expressions were obtained on datasets balanced with SMOTE and
Borderline SMOTE methods. However, in the case of the Borderline SMOTE method,
the symbolic expression is three times larger in terms of length than in the case of
SMOTE. So, the best symbolic expression based on size and accuracy was obtained in
the case of SMOTE.

• The final evaluation of the best symbolic expression on the original dataset showed
that this procedure is the procedure of handling imbalanced datasets, i.e., balance the
dataset using different balancing methods, using them to train the ML algorithm and
perform a final evaluation on the original imbalanced dataset.

4. Conclusions

In this paper, the GPSC with random hyperparameter search method and 5-fold cross-
validation was applied to publicly available datasets to obtain robust symbolic expressions
that could detect fire with high classification accuracy.

The conducted investigation showed that GPSC can generate symbolic expressions,
which can be used for fire detection with high classification accuracy. The combination of
GPSC with random hyperparameter search method and 5-fold cross-validation generated
robust symbolic expressions for fire detection with high classification accuracy. The dataset
balancing methods ADASYN, SMOTE, and Borderline SMOTE balanced the original dataset
and provided a good starting point for the application of the GPSC algorithm. Using these
dataset variations to train GPSC produced symbolic expressions with classification accuracy
in the range of 0.97 to 0.999. So, the dataset balancing methods have an influence on the
classification performance of obtained symbolic expressions. The applied procedure also
showed that the best symbolic expression in terms of classification accuracy obtained on
a balanced dataset can achieve almost the same classification accuracy when applied to
the original (imbalanced) dataset. The investigation also showed that the best symbolic
expression does not contain particular matter variables only temperature, humidity, TVOC,
Raw H2, Raw Ethanol, and air pressure.

The advantages of the proposed method are:

• After application of GPSC, the symbolic expression is obtained that can be easily used
regardless of its size since it requires lower computational resources to produce the
solution when compared to other ML algorithms,

• The dataset balancing methods created a good starting point for the implementation
of GPSC and using GPSC symbolic expressions with high classification performance
were obtained,

• The GPSC with random hyperparameter search method and 5-fold cross-validation
generated the symbolic expressions that are robust and have high classification accuracy.

The disadvantages of the proposed method are:
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• To implement a random hyperparameter search method, the ranges of each hyperpa-
rameter have to be defined by initial testing of GPSC. The population size, maximum
number of generations, tournament size, and parsimony coefficient have a great influ-
ence on the execution time. The bigger the size of the population, tournament size, and
larger maximum number of generations, the longer it will take the GPSC to execute.
However, the parsimony coefficient is the most sensitive GPSC hyperparameter, and
the range should be carefully defined. If the value of the parsimony coefficient is too
small, it can result in a bloat phenomenon, while a very large value can prevent the
growth of the symbolic expression, which will result in a small symbolic expression
with poor classification performance.

• The dataset oversampling methods greatly influence the GPSC execution time since
the dataset used to obtain symbolic expression using GPSC is much larger than the
original one.

This approach showed how using a simple GPSC algorithm and the data obtained
from the sensor fusion system a robust symbolic expression can be obtained that can detect
fire with high classification accuracy. The symbolic expression can be potentially integrated
into the micro-controller system, which controls the entire multisensor system to provide
additional information if the fire is actually occurring in a multi-sensor environment. The
other benefit of using symbolic expression when compared to other ML models is that this
expression requires less computational power and memory than ML models, so it can be
easily integrated with microcontroller devices such as Arduino.

The future work will be focused on development of multi-sensor system and collecting
data to obtain a balanced dataset. After a reasonably large and balanced dataset is collected,
other ML methods will be utilized to obtain ML models, which could detect fire with
high classification accuracy. After different models are trained, they will be implemented
on micro-controllers to measure the time required to detect fire by conducting different
fire scenarios.
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