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Abstract: In case of dangerous driving, the in-vehicle robot can provide multimodal warnings to
help the driver correct the wrong operation, so the impact of the warning signal itself on driving
safety needs to be reduced. This study investigates the design of multimodal warnings for in-vehicle
robots under driving safety warning scenarios. Based on transparency theory, this study addressed
the content and timing of visual and auditory modality warning outputs and discussed the effects
of different robot speech and facial expressions on driving safety. Two rounds of experiments were
conducted on a driving simulator to collect vehicle data, subjective data, and behavioral data. The
results showed that driving safety and workload were optimal when the robot was designed to use
negative expressions for the visual modality during the comprehension (SAT 2) phase and speech
at a rate of 345 words/minute for the auditory modality during the comprehension (SAT 2) and
prediction (SAT 3) phases. The design guideline obtained from the study provides a reference for the
interaction design of driver assistance systems with robots as the interface.

Keywords: multimodal warnings; interaction design; transparency; in-vehicle robots

1. Introduction

Driving safety is critical for vehicle drivers and other road users (e.g., pedestrians,
cyclists, bicyclists, motorcycles, etc.). Human factors play a significant role in automotive
safety. According to a survey conducted by the National Highway Traffic Safety Admin-
istration (NHTSA), human-caused incidents account for 94% of all vehicle crashes [1].
Today, cars are equipped with a variety of driver assistance systems to help drivers drive
more safely. These driver assistance systems have become one of the most active areas
of Intelligent Traffic System (ITS) research [2,3]. In recent years, with the development
of automation technology, natural language processing, and emotional computing, many
intelligent assistive systems have been equipped with anthropomorphic robotic bodies.
Driver assistance systems have evolved from human–machine interaction to human–robot
interaction (Figure 1), and automakers have begun using robots as the interface of driver
assistance systems. The research of Williams et al. showed that dynamic robots (Figure 2)
had a significant impact on reducing the user’s cognitive load and distractions [4]. These
robots are generally anthropomorphic and, thus, more like human passengers, which
enhances the driver’s concern for safe driving [5–7]. Since robots generally have displays
and speakers, vehicle-mounted robots can provide multimodal warnings with combined
visual modality and auditory modality by voice and expressions. Outputting facial ex-
pressions and speech is a fundamental capability of in-vehicle robots. Several studies
have shown that robot facial expressions and speech have additional positive effects on
driving safety [8,9]. Many studies have shown that multimodal warnings in cars are more
beneficial for driving safety than unimodal warnings [10,11], both for manual [11,12] and
highly automated [13] vehicles.
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are more beneficial for driving safety than unimodal warnings [10,11], both for manual 
[11,12] and highly automated [13] vehicles. 

However, improperly designed multimodal warnings for in-vehicle robots can affect 
driving safety. Therefore, designers need design guidelines to reduce dangerous multi-
modal warnings. The main reason for safety risks is the limitation of the driver’s cognitive 
load on each modality of the robot. It is estimated that up to 95% of the information re-
ceived while driving is visually recognized [14], so visual warnings may have to compete 
for the visual resources needed for vehicle control and may be distracted by a secondary 
visual task in the vehicle [15]. In addition, a sudden auditory warning signal may startle 
the driver and trigger distraction, creating a safety hazard [16]. Poorly designed multi-
modal warnings may lead to slower responses or increased error rates [17] and may cause 
a potentially relevant deleterious cross-modal effect [18,19]. In the current study, multi-
modal warnings are mostly triggered simultaneously, and there is a lack of studies on the 
sequential display of each modality. The content of the warnings provided by each mo-
dality is also not clearly defined. 

 
Figure 1. (a) NIO’s NOMI. (b) BYD’s Qin. 

 
Figure 2. Kenton William ‘s AIDA. 

In-vehicle robots should contribute to driving safety. Thus, how to ensure that robot 
warnings do not compromise driving safety in a human–robot co-driving scenario is an 
important interaction design issue. The research on multimodal warning design for in-
vehicle robots, especially the multimodal warning with combined visual modality and 
auditory modality, is of critical importance for human–robot driving safety during hu-
man–robot co-driving. This includes when each modal warning is displayed, what is in-
cluded in each modal warning, and how robots express their facial expression and give 
voice warnings. This paper first discusses the content and coordination of robot 
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However, improperly designed multimodal warnings for in-vehicle robots can affect
driving safety. Therefore, designers need design guidelines to reduce dangerous multi-
modal warnings. The main reason for safety risks is the limitation of the driver’s cognitive
load on each modality of the robot. It is estimated that up to 95% of the information received
while driving is visually recognized [14], so visual warnings may have to compete for the
visual resources needed for vehicle control and may be distracted by a secondary visual
task in the vehicle [15]. In addition, a sudden auditory warning signal may startle the driver
and trigger distraction, creating a safety hazard [16]. Poorly designed multimodal warnings
may lead to slower responses or increased error rates [17] and may cause a potentially
relevant deleterious cross-modal effect [18,19]. In the current study, multimodal warnings
are mostly triggered simultaneously, and there is a lack of studies on the sequential display
of each modality. The content of the warnings provided by each modality is also not
clearly defined.

In-vehicle robots should contribute to driving safety. Thus, how to ensure that robot
warnings do not compromise driving safety in a human–robot co-driving scenario is
an important interaction design issue. The research on multimodal warning design for
in-vehicle robots, especially the multimodal warning with combined visual modality
and auditory modality, is of critical importance for human–robot driving safety during
human–robot co-driving. This includes when each modal warning is displayed, what
is included in each modal warning, and how robots express their facial expression and
give voice warnings. This paper first discusses the content and coordination of robot
expressions and speech based on SAT theory, then discusses robot facial-expression valence
and speech rate. Then, different multimodal designs are experimentally evaluated using a
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robot equipped with a facial screen and a speaker in a scenario where the driver makes a
mistake (speeding). The experimental results were compared to draw conclusions about
the multimodal warning design of the robot as an interactive interface for driver assistance
systems. This research provides design guidelines for the multimodal warnings provided
by in-vehicle robots to help drivers drive more safely with reducing the impact of the
warnings themselves on driving safety.

This paper first introduces the theory of transparency for human–robot communication
in Section 2 and presents related works on visual warnings and auditory warnings of in-
vehicle robots. Then, in Section 3, we introduce the design of the multimodal warning for
robots based on SAT theory and perform SAT mode hypothesis. Section 4 describes our
two experiments on our in-vehicle robot in a driving simulator and the dependent variable
(car data and human factors). Section 5 presents the results of the experiments on each
evaluation dimension, which show that there is a robot SAT mode, speech rates, and facial-
expression valence that are more conducive to driving safety. Finally, Section 6 discusses the
findings of this study on multimodal warnings design for in-vehicle robots under driving
safety scenarios, suggestions for human–robot design, and future research directions.

2. Related Works
2.1. Robot Transparency during Human–Robot Interaction

To correct a driver’s driving errors or to provide other driving advice proactively,
the robot should make reasonable decisions based on the information of the driver and
the external environment, and output at least the results to the driver through warning
signals. However, the output of the robot should not only be the result of its decision but
also provide some context of the decision. The autonomous robot is an intelligent agent.
Understanding the purpose and behavior of the agent is important for proper human
understanding and sound judgment of the agent [20]. Van Dongen et al. [21] pointed
out that participants’ awareness of the agent’s decision reasoning process influences their
reliance on the agent. This understanding of the agent is referred to as “transparency”.

Transparency is suitable for studying the timing and content of warning signal out-
puts. It is a continuous series of processes by which a human understands the purpose
and behavior of an agent based on the information provided by the agent and contains
the context of the final output. To sustain the effectiveness of robot warnings, the trans-
parency of robots must be improved. Transparency can be enhanced by conveying clearer
information. Lee [22] recommended that system designers make the 3Ps (purpose, pro-
cess, and performance) of the system and its history available to the operator in order to
optimize the transparency of automation to the operator. Chen et al. proposed a situa-
tional awareness-based agent transparency theory (SAT) [23] to explain what information
contributes to transparency. The SAT model is based on Endsley’s Situational Awareness
(SA) theory [24], which analyzes the SA level of an agent to explain what information
contributes to transparency. Situation awareness-based agent transparency theory defines
agent transparency as a descriptive quality of an interface, where the operator understands
the intention, reasoning process, and future plans of an intelligent agent.

Situational Awareness (SA) theory [24] proposes three levels, including SA Level 1,
the perception of elements in the environment; SA Level 2, the understanding of these
elements; and SA Level 3, the prediction of their state in the near future. The SAT model
is based on SA theory and includes three levels that describe the content provided by the
agent to the driver in order to maintain transparency between the agent and the human.
SAT1 level is the perception level, whose content is the agent’s goal and its perception
of the environment state. SAT2 level is the prediction level, whose content is the agent’s
understanding of the situation and the reasoning process of the action. SAT3 level is the
prediction level, whose content corresponds to the agent’s prediction of the future outcome.

The three levels of SAT can be considered consecutive periods when the robot provides
warnings and contains different information. The SAT level of warnings from different
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modalities should provide the driver with the appropriate level of transparency to enhance
driving safety

2.2. In-Vehicle Robot’s Visual Warnings

Vision is the primary access to information for drivers while driving. A study has sug-
gested that up to 95% of the information received while driving is visually recognized [14].
Traditional visual warnings mostly display warning messages through changes in the inte-
rior lights of the vehicle. Typically, the driver is alerted by flickering LEDs in the interior
rear-view mirror [25], or the changing background color, signal word, and pulse rate on a
monitor [26]. The robot mainly transmits visual signals through the screen.

Robots with screens can transmit visual signals by displaying symbols, colors, etc.
Unlike general visual interaction interfaces such as flashlights, robots need to maintain
anthropomorphism and, therefore, need to maintain their facial display most of the time.
The facial visual signals of a robot can convey emotions through expressions and can
indicate the intention to interact with and attract the attention of the driver through head
and eye gaze behaviors [27]. In the design of facial expressions for robots, Young [28] et al.
used simulated and exaggerated facial expressions and hand gestures to provide powerful
expressive mechanisms for robots.

The current study focused on the impact of facial-expression valence on warning
effects and driving performance. Expression valence has been demonstrated to influence
individuals’ emotional processing, with negative expressions being more likely to be
detected and recognized [29] and to activate the brain [30]. Kern et al. and Talmi et al.
discovered that when attention resources are scarce, attention and memory for positive and
neutral images drop [31,32]. Driving settings require a significant amount of attentional
resources, which may amplify this expression valence bias [33]. Thus, the in-vehicle robot’s
facial expression valence can be chosen to increase the attractiveness of visual warning
signals to drivers without risking their safe driving.

2.3. In-Vehicle Robot’s Auditory Warnings

The robot’s voice is an auditory warning signal to the driver. Drivers often respond
faster to audio signals than to visual warnings [34], which is highly relevant to driving
safety. More crucially, audio stimuli are perceived non-directionally; drivers hear auditory
stimuli regardless of where their attention is oriented [35]. That makes auditory a suitable
way to convey warning signals. Graham designed auditory icons played by speakers for
an in-vehicle collision avoidance application [35], and Otto Carlander played 3D audio in
headphones [36].

The auditory signals provided by the robot are mostly verbal speech signals played by
speakers. This speech-based interface that incorporates textual content information has
been demonstrated to alleviate driver fatigue [37] and operate as a mediator of human
emotion [38]. Eriksson and Stanton hypothesized that verbal speech signals used in
engagement with robots might also help bridge the ‘gulf of evaluation’ between humans
and machines [39]. According to Forster et al., verbal speech has a number of advantages
over generic auditory output in terms of agent trust, anthropomorphism, usability, and
acceptance during human–agent contact [40]. The NHTSA provides a design guideline for
in-vehicle voice message warnings, which stipulate speech quality, gender, the number of
discourse units, and speech rate [41].

This paper explores the key factors that influence the audio warnings of robots.
E. C. Haas et al. [42] proposed to design auditory warning signals with three parameters
assigned, speed, pitch, and volume. Many studies have considered perceived urgency as
a key factor in auditory warning signals and have explored the different effects of acous-
tic and non-acoustic parameters [43]. Neuhoff, J. G. et al. [44] found that a perceptual
interaction between pitch and loudness between dynamic changes in pitch and loudness.
Baldwin et al., in their study of how loudness interacts with semantics, found that loudness
alone did not significantly impact ratings of perceived urgency. A study by Ofuji and
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Ogasawara [45] showed that urgency could be influenced by the speed factor alone by up
to 39%. In this study, the synthetic speech rates of different robots were compared to find
the appropriate robot voice channel performance.

3. Design Methods

Previous studies on multimodal warnings have proposed some design guidelines [17,46].
First, outputs from different modalities must be in close temporal proximity (temporal rule).
Second, the larger the effects, the closer the stimuli are presented in space (spatial rule).
Third, the strength of the stimuli provided has an inverse relationship with the amplitude
of the multisensory effect (principle of inverse effectiveness). However, the multimodal
warnings discussed in these studies are mostly transient and are used to attract the driver’s
attention in an instant or to direct the driver’s attention to a specific location. Besides these
transient warnings, the robot can also deliver more complex warnings with more content.
This type of warning signal has length, e.g., the robot can warn the driver of speeding
and inform the driver of the location of the speed radar ahead. Therefore, new design
guidelines are needed for multimodal warnings of in-vehicle robots.

The design robots’ multimodal warnings involves the constraint of the timing (when),
the content (what), and the performance (how) of the warning signals from each modality
(Figure 3). “When” includes the order and timing of each modality’s warning signals.
Each channel should provide information in an appropriate time, not occupy the attention
resources, and achieve better cooperation. “What” includes the content and amount of
information that each modality needs to convey. The amount of content provided by
each modality should help drivers understand the information and enhance transparency.
“How” includes the performance of the visual and auditory modalities in conveying infor-
mation, and this study focuses on the speech rate and the robot’s facial-expressions valence.
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Figure 3. Design of “when”, “what”, and “how” of multimodal warnings of an in-vehicle robot.

Based on SAT theory, this paper investigates the “content” of multimodal warnings
through the robot’s transparency and the “timing” of warnings through the robot’s suc-
cessive SA phases. SAT theory assumes that the robot needs to provide more than just
outcome information to the driver to maintain proper transparency. The theory provides
three successive phases based on situational awareness theory and specifies what each
phase entails. The transparency of the robot can be expressed through multiple modalities,
so the time period in each modality works and what it expresses can be chosen. As shown
in Figure 3, this study built a multimodal warning design model for the robot based on the
SAT model of the robot. The core of the model is the table in the middle of the figure. The
column header represents the three SAT levels, and the row headers are the visual modality
and the auditory modality. The horizontal arrows in the table point to “what” because
each row of the table represents the three SAT levels of information that each modality
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can provide. It is used to design the amount of information contained in each modality,
which represents the “what” of multimodal warnings. The vertical arrows in the table point
to “when” because each column represents the information that can be output in either
the auditory or visual modality during a specific SAT phase. It is used to design which
modalities to perform at each time period, which determines the “when” for multimodal
warnings. Filling in the table constrains both the “what” and “when” of the multimodal
warnings and determines the SAT mode of the robot by designing the modality to work at
specific times. The “how” at the left end of the row headers indicate that the expression of
each modality also needs to be designed.

This study did not exhaust all SAT modes. In order to convey the basic information
of the warning to the driver, the warning should at least include explicit SAT2-level in-
formation (understanding and informing the driver of the current state) and SAT3-level
information (predicting and informing the driver of what they should do then), which need
be delivered through the robot voice. This is also consistent with previous research showing
that an intelligent robot generally needs to have SAT2 understanding and SAT3 predic-
tion [43]. The visual channel does not need to convey SAT1-level information because the
robot’s default expression indicates that the robot is in perception. Therefore, SAT2-level
visual signals need to be provided to differentiate from SAT1-level robot states. Considered
together, the possible SAT modes for robot multimodal warnings in driving safety warning
scenarios are given in Figure 4. In the table, “?” is the information needed to verify whether
the current level is provided through the current channel through experiments.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 23 
 

 

three successive phases based on situational awareness theory and specifies what each 
phase entails. The transparency of the robot can be expressed through multiple modali-
ties, so the time period in each modality works and what it expresses can be chosen. As 
shown in Figure 3, this study built a multimodal warning design model for the robot 
based on the SAT model of the robot. The core of the model is the table in the middle of 
the figure. The column header represents the three SAT levels, and the row headers are 
the visual modality and the auditory modality. The horizontal arrows in the table point to 
“what” because each row of the table represents the three SAT levels of information that 
each modality can provide. It is used to design the amount of information contained in 
each modality, which represents the “what” of multimodal warnings. The vertical arrows 
in the table point to “when” because each column represents the information that can be 
output in either the auditory or visual modality during a specific SAT phase. It is used to 
design which modalities to perform at each time period, which determines the “when” 
for multimodal warnings. Filling in the table constrains both the “what” and “when” of 
the multimodal warnings and determines the SAT mode of the robot by designing the 
modality to work at specific times. The “how” at the left end of the row headers indicate 
that the expression of each modality also needs to be designed. 

This study did not exhaust all SAT modes. In order to convey the basic information 
of the warning to the driver, the warning should at least include explicit SAT2-level infor-
mation (understanding and informing the driver of the current state) and SAT3-level in-
formation (predicting and informing the driver of what they should do then), which need 
be delivered through the robot voice. This is also consistent with previous research show-
ing that an intelligent robot generally needs to have SAT2 understanding and SAT3 pre-
diction [43]. The visual channel does not need to convey SAT1-level information because 
the robot’s default expression indicates that the robot is in perception. Therefore, SAT2-
level visual signals need to be provided to differentiate from SAT1-level robot states. Con-
sidered together, the possible SAT modes for robot multimodal warnings in driving safety 
warning scenarios are given in Figure 4. In the table, “?” is the information needed to 
verify whether the current level is provided through the current channel through experi-
ments. 

 
Figure 4. SAT model assumptions for multimodal warnings. 

For “how” of the in-vehicle robot’s multimodal warnings design, we investigated the 
robot’s facial-expression valence and speech rate. The in-vehicle robot we used had a 
screen and a speaker to output facial expressions and voice. In this study, we conduct an 
experimental comparison of the SAT mode assumptions described above, two facial-ex-
pression valences, and four speech rates to determine what multimodal warnings designs 
are more advantageous to driving safety. 

4. Simulation Experiment 
4.1. Experimental Design 

The study conducted two rounds of experiments using the same scenario (Figure 5). 
Experiment 1 was a between-subjects experiment in which three experimental groups 
were designed according to the three possible transparency modes included in Figure 4, 

Figure 4. SAT model assumptions for multimodal warnings.

For “how” of the in-vehicle robot’s multimodal warnings design, we investigated
the robot’s facial-expression valence and speech rate. The in-vehicle robot we used had
a screen and a speaker to output facial expressions and voice. In this study, we conduct
an experimental comparison of the SAT mode assumptions described above, two facial-
expression valences, and four speech rates to determine what multimodal warnings designs
are more advantageous to driving safety.

4. Simulation Experiment
4.1. Experimental Design

The study conducted two rounds of experiments using the same scenario (Figure 5).
Experiment 1 was a between-subjects experiment in which three experimental groups were
designed according to the three possible transparency modes included in Figure 4, and
each subject was assigned to one of the three experimental groups according to the Latin
square and participated in the driving task only once. Experiment 2 was a within-subjects
experiment with five experimental groups. Among them, Experimental Group 1 was the
standard experimental group, Experimental Group 2 was the visual modality control group,
and Experimental Groups 3, 4, and 5 were the auditory modality control group; each subject
had to participate in all five driving tasks, and the order of participation in the tasks was
determined by the Latin square equilibrium order effect. The two rounds of the experiment
are shown in the figure. In each driving task, subjects were asked to familiarize themselves
with the driving simulator until they could drive smoothly in the left lane and maintain
a speed of about 30 km/h. An example interaction scenario was used to ensure that the
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driver could interact with the robot properly, thus creating a certain familiarity with the
robot and deepening the subject’s trust in it.
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We designed speeding reminders for drivers as a typical scenario of driving safety
warning scenarios. The lead experimenter introduced the purpose of the study to the sub-
jects, which was to test a newly developed in-vehicle robot while driving. The simulator’s
driving environment was a two-way four-lane highway with a 60 km/h speed limit. The
main experimenter’s description of the scenario was that the subject was going to pick up
someone at the airport, the plane was about to land, and the driver need to increase the
speed of the car to above 70 km/h. So, the driver was required to drive in the left lane,
accelerate to 70 km per hour as described by the lead experimenter, and then slow down to
60 km per hour when the robot notified him. Once the speed was above 60 km/h, the robot
took the initiative to remind the driver of the speed limit.

4.1.1. Experiment One

Experiment 1 was a between-subjects experiment. The experimental variable were
SAT modes of the robot’s multimodal warnings. Based on the transparency assumption
of Section 3 (Figure 4), three schemes with different SAT modes are designed. The SAT
mode of scheme 1 (Group 0) is that the robot outputs both speech and facial expressions
at the SAT2 level and speech at the SAT3 level. The SAT2-level expression is the negative
expression “Fear” because the robot understands that the driver is speeding and is afraid of
him. The SAT2-level and SAT3-level expressions are “Speed limit ahead, you are speeding”
and “Drive slowly Oh~”, respectively. Scheme 2 (Group 1) adds the SAT3-level expression
to Scheme 1, showing the driver the speed to be slowed down. Scheme 3 (Group 2) adds
the SAT1-level expression “Oops!” to Scheme 1. Group 1 and Group 2 compare the need
for SAT1-level visual information and SAT3-level auditory information, respectively.

To convey a complete warning to the driver, each experimental group delivered
SAT2 information (so that the driver understands the speed limit ahead) and SAT3-level
information (predicting the slowing behavior the driver should make) via robot speech.
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This is also consistent with previous research showing that an intelligent robot generally
needs to have SAT2 understanding and SAT3 prediction [47]. No group with SAT1 visual
modality warning was set up because the robot was always performing awareness when
the driver was not actively interacting with the robot. Groups 1 and 2 contrasted the
need to provide visual information for SAT1 level and auditory information for SAT3
level, respectively.

4.1.2. Experiment Two

Experiment 2 was a within-subjects experiment. The experimental variable for the
five schemes was the speech rate and facial-expression valence of the robot’s multimodal
warnings. Based on the SAT mode of Scheme 1 in Experiment 1, Experiment 2 contained
five experimental groups. The expression potency of the robot in Experimental Group 1 was
negative, and the speech rate was 300 words/minute. Experimental group 2 compared
the expression potency of the robot. The facial-expression valence of Experimental Group
2 was neutral. Experimental Groups 3, 4, and 5 compared the robot’s speech rate of
345 words/minute, 390 words/minute, and 450 words/minute, respectively.

We synthesized the robot’s voice based on the NHTSA design guidelines for voice
message warnings during driving [48]. The synthesized voice was a female voice because
female voices convey a sense of urgency more easily than male voices. We used three
linguistic information units to organize the discourse, specifically: “There is a speeding
camera 500 m ahead”, “The speed limit is 60” and “You have exceeded the speed limit”.
The three units indicate the distance of the speeding camera ahead, the speed limit, and
the driver’s speeding behavior, respectively. The English speech is based on 150 wpm,
and three speech speeds are set up based on the urgency of the warning, which are 1×,
1.15× and 1.3× 150 wpm, respectively. Based on this, we set our speech speed control
in the same way, choosing the current average speech speed of CCTV news broadcast of
300 words/min [49] as the baseline speech speed, setting up three speech speeds of 1×,
1.15×, and 1.3×, and adding an additional 1.5× speech speed as the limit speech speed
for the exploration, i.e., 300 words/min for Experimental Group 1, 345 words/min for
Experimental Group 3, 390 words/min for Experimental Group 4 and 450 words/min for
Experimental Group 5. To eliminate the effect of speech loudness on driving performance,
the loudness of all voice samples was equally set to 70 dB.

We set two expressions for the robot, negative (FEAR) and neutral (MILDNESS).
The reason for not setting positive expressions is that the robot should not show positive
emotions in this scene where the driver is driving dangerously (speeding). Negative
expressions originate from the robot frightened of dangerous driving behavior, where
the robot is more like a passenger in the car driving together with the driver and will be
worried about the driver and its own safety; the robot with neutral expressions is more like
a driving assistant, reminding the driver with a more objective and calm attitude. These
two expressions are of the same length.

4.2. Experimental Subjects

Thirty Chinese participants, i.e., twenty-five males and five females (ages ranged from
22 to 40 years, M = 28.2, SD = 5.83, indicating that their ages were primarily between 22 and
34), were recruited via questionnaires that included demographic information about the
participants, 83.8 percent of whom had a university or higher education (n = 25), followed
by junior college (13.3 percent, n = 4), and high school education or less (3.3 percent, n = 1).
They all drove more than twice or three times per week, 70% (n = 21) drove electric vehicles,
and 80% (n = 24) were familiar with in-vehicle robots. Prior to data collection, each subject
provided informed consent. The participants had normal eyesight, either uncorrected or
corrected, normal color vision, normal hearing in both ears, and no history of mental illness.
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4.3. Experimental Environment
4.3.1. Driving Simulation

The driving simulator (Figure 6) and monitoring system used in this study was
independently developed based on Unity. The console contains all the necessary driving
components, including the seat, fanatec steering wheel and pedals, as well as a full set of a
virtual dashboard and rearview mirrors. In front of the simulator are three large monitors
that provide an image of the road environment. The simulator is connected to a Sony
stereo playing simulated car engine sounds (±25 dB). There is no other noise in the test
area. The study was conducted in the Carlxd lab at the School of Arts and Communication,
Tongji University.
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4.3.2. In-Vehicle Robot

The robot system was developed based on Arduino [50] and Unity [51], consisting
of a small robot called “XiaoV” with a two-degree freedom platform (Figure 7a), a screen
and a speaker (Figure 7b), and a tablet computer running the control program. The control
program is used to drive the robot’s pre-programmed behavior, which is triggered by
virtual buttons on the tablet’s screen. In this experiment, the key behaviors of the robot are
triggered by the operator when the vehicle speed is monitored up to 79 km/h. The other
performances of the robot are subsequently triggered according to the driver’s behavior.
We designed a series of facial expressions for the robot (Figure 8). Each expression can
express the emotion to be expressed well.

The interactive interface of the robot involves both visual and auditory interfaces.
The visual interface is displayed on the upper part of the robot through a 3.4” screen,
featuring the robot’s facial expressions, with a black background on the face, white features,
and colorful auxiliary graphics. The auditory interface uses the Chinese language, using
the speech synthesis webAPI provided by the open platform of KU XUNFE for speech
synthesis, and the pronouncer chose a female voice, “Yifei”.
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4.4. Dependent Variable

The dependent variables include vehicle data and driver sweep data recorded through
the simulator, and human outcomes obtained through subjective scales. Each subject was
asked to fill in an online questionnaire after the experiment. The content of the online
questionnaire was subjective scales.

4.4.1. Car Data

The vehicle data is collected by the driving simulator continuously at a rate of
14–20 data points per second, which can be processed to produce a range of vehicle speed
marks and left lane distance marks during the interaction phase. Due to the highly un-
predictable nature of the car speed in this scenario, the speed marks are utilized only as
a reference. The left lane distance is the distance between the driven car and the left lane
line; therefore, the standard deviation of the left lane distance can be used to analyze the
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lane deviation, which indicates the driver’s lateral control ability and can directly show the
vehicle’s driving safety condition.

4.4.2. Trust

Lee et al. suggested that trust and transparency are essential components of human–
automation cooperation [52]. It can be considered as an attitude from cognitive information
(i.e., views about an object), affective information (i.e., feelings and emotions towards an
object), and behavioral information (i.e., past or present interaction with an object) [53].
Assessing trust helps with understanding the driver’s acceptance of the robot and the
collaboration between human–robot teams [54]. Muir [55] proposed a trust-based model
for vehicle automation that includes three trust dimensions: predictability, dependability,
and loyalty. The current experiment assesses trust across the three dimensions. The scale
options were set from 1 to 7, with higher scores representing a higher degree.

4.4.3. Workload

Workload is a multidimensional concept that refers to a person’s psychological stress
or information processing capability when executing a task that involves mental stress,
time constraints, task difficulty, operator ability, and effort level, among other things [56].
Workload can greatly affect the performance of human–robot teams. The workload of
interacting with the robot can increase or decrease the driver’s driving workload. In
this study, workload was assessed using the Driving Activity Load Index (DALI), which
measures workload in the attention, visual demand, auditory demand, time demand,
distractions, and situational stress dimensions. Scale options were set according to 1 to 10,
with higher scores representing a correspondingly higher degree.

4.4.4. Usability

Usability is an essential quality that needs to be possessed by artifacts in general
and can describe the quality of appropriateness to a purpose of any particular artifact
well [57]. If usability is questioned, especially for a robot with which people are unfamiliar,
people are likely to stop using it. Usability testing of robots allows analysis and evaluation
of the impact of robot design on the driving experience. There are different ways of
measuring usability. The usability questionnaire used in this study was the ASQ (After-
Scenario Questionnaire) [58] questionnaire, which is a standard questionnaire for evaluating
usability based on the whole task. It has the benefit of evaluating three projects: Ease of Task
Completion, Time Required to Complete Tasks, and Satisfaction with Support Information,
which can be used in similar usability studies. Participants were required to measure
usability for that task after each completion. Scale options were set according to 1 to 7, with
higher scores representing a correspondingly higher degree.

4.4.5. Sweeping

We refer to the driver’s behavior of taking the visual focus away from the road ahead
as sweeping. Drivers can ignore the lane because of their interest in the performance of a
physical robot, which can be dangerous, so the analysis of sweeping glances may reveal
negative effects of robots on driving safety. NHTSA states that the average sweep time
should not exceed 2 s [48]. A single sweep length exceeding 2 s is also perceived as a
risky distracting behavior [59]. Our observations for sweeps were extracted from videos
recorded by the simulator. The data contained the number of sweeps in each SAT level as
well as the single sweep duration. The total number of sweeps and the total sweep duration
of the robot were also calculated.

5. Results

A total of 30 subjects participated in the experiment, and Car data, Trust, Workload,
Usability, and Sweeping data were collected from each subject. Experiment 1 was a between-
subjects experiment with three experimental groups, and each subject participated in one
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experimental group, so the sample size for each experimental group was 10. Experiment
2 was a within-subjects experiment, so the sample size for each experimental group was 30.

A two-tailed significance level of 0.05 and was used for all tests. One-way ANOVA
was used for each index to test for significant differences, and multiple comparisons were
used in post hoc tests to test for differences between experimental groups. The experimental
evaluation refers to several dimensions from the dependent variable in Section 4.4 above.
No single sweep of more than 2 s was found in the sweep data. Therefore, only the total
sweep time and number of sweeps are discussed.

5.1. Experiment One
5.1.1. Safety

A one-way ANOVA was performed on the data from the three groups (Figure 9),
whose results showed that there was a highly considerable difference in the average
value of standard deviation of left lane offset between the three groups (F(2, 32) = 6.906,
p = 0.00 < 0.05). Post hoc tests revealed that the standard deviation of lane shift was signifi-
cantly lower in Group 0 (M = 0.97, SD = 0.51) than in Group 1 (M = 1.60, SD = 0.58) and
Group 2 (M = 1.55, SD = 0.28), with no significant difference between Group 1 and Group 2.
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Figure 9. Average value of standard deviation of left lane offset of the three groups.

From the dimension of vehicle safety, it was considered that Group 0, which had a
significantly better level of lateral vehicle control, was safer.

5.1.2. Workload

Multiple comparison analysis revealed that Group 1 had a significantly higher work-
load (Figure 10) than Group 0 (p = 0.000 < 0.05) and Group 2 (p = 0.002 < 0.05), while
Group 0 and Group 2 did not show significant differences in average workload and de-
tails. This indicates that the presence of SAT3-level visual information in Group 1 led to
a significant increase in workload, while the presence or absence of SAT1-level auditory
information (“Oops”) did not significantly affect workload.
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Figure 10. Detail values of the DALI scale of the three groups.

5.1.3. Usability

From the average value of usability scores, it can be concluded that there is no signifi-
cant difference between the three groups (F(2, 56) = 0.284, p = 0.754). In the usability score
details, there were also no significant differences in the three dimensions of satisfaction
with difficulty (F(2, 51) = 1.471, p = 0.239), satisfaction with time spent (F(2, 49) = 0.725,
p = 0.489), and satisfaction with help information (F(2, 56) = 0.310, p = 0.735).

5.1.4. Trust

From the average trust score, it can be concluded that there is no significant difference
between the three groups (F(2, 56) = 0.311, p = 0.734). The details of the trust score
showed that there was also no significant difference above the dimensions of predictability
(F(2, 52) = 0.022, p = 0.978), dependability (F(2, 52) = 0.123, p = 0.885), and desire to continue
using (F(2, 49) = 0.159, p = 0.854).

5.1.5. Sweeping

One-way ANOVA results showed significant differences in sweep time between the three
groups (Figure 11), F(2, 20) = 7.245, p = 0.00 < 0.05; post hoc tests revealed that sweep time was
significantly higher in Group 0 (M = 2.39, SD = 1.41) than in Group 1 (M = 0.54, SD = 0.30) and
Group 2 (M = 0.83, SD = 0.50), with no significant difference between Group 0 and Group 1.
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One-way ANOVA results showed significant differences in the number of sweeps
between the three groups (Figure 12), (F(2, 18) = 9.479, p = 0.00 < 0.05); post hoc tests revealed
that the number of sweeps was significantly higher in Group 0 (M = 3.67, SD = 1.73) than
in Group 1 (M = 1.25, SD = 0.50) and Group 2 (M = 1.38, SD = 0.52), with no significant
difference between Group 0 and Group 1.
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The results of the sweep data showed that subjects in Group 0 had significantly higher
total sweep duration and times of sweeps than those in Group 1 and Group 2, indicating
that the robot in Group 0 had a more engaging performance.

5.2. Experiment Two
5.2.1. Safety

One-way ANOVA results showed that there was a significant difference in the average
value of the standard deviation of left lane offset among the five groups (F(4, 72) = 6.507,
p = 0.00 < 0.05) (Figure 13); post hoc tests revealed that the average value of the standard
deviation of left lane offset of subjects in Group 3 (M = 0.67, SD = 0.22) was significantly
lower than that in Group 1 (M = 0.97, SD = 0.51), Group 2 (M = 0.40, SD = 0.44), Group 4
(M = 1.10, SD = 0.40), and Group 5 (M = 1.09, SD = 0.40); the standard deviation of left lane
offset of subjects in Group 2 was significantly higher than that in Group 1, 4, and 5.

In terms of safety, subjects in Group 3 had significantly better performance in lateral
control of the vehicle and drove more safely. Further analysis leads to the following
conclusions: (1) the result that the average value of the standard deviation of left lane offset
of Group 1 is significantly lower than that of Group 2 indicates that the driver’s driving
performance is better and the vehicle is safer when the robot’s expression is negative in this
type of scenario; (2) the result of Group 3 with a significantly lower average value of the
standard deviation of left lane offset than Group 1, Group 4 and Group 5 indicates that the
robot’s speech speed at around 345 words/min maintains the safest driving.
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Figure 13. Average value of standard deviation of left lane offset of the five groups.

5.2.2. Workload

Significant differences between groups were produced in the mean workload scores
(F(4, 139) = 5.312, p = 0.001 < 0.05) (Figure 14). Multiple comparison analysis revealed that
the average value of workload scores in Group 5 was significantly higher than in Group 1
(p = 0.003 < 0.05), Group 2 (p = 0.005 < 0.05) and Group 3 (p = 0.043 < 0.05).
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Significant differences in workload details arose between experimental groups on
every dimension except time demands (Figure 15). Multiple comparison analysis revealed
that Experimental Group 5 was significantly higher than Group 1 (p = 0.000 < 0.05) and
Group 2 (p = 0.001 < 0.05) on the attention dimension; Group 3 was significantly higher than
Group 1 (p = 0.042 < 0.05) on the visual demand dimension; Group 5 was significantly higher
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than Group 1 (p = 0.004 < 0.05), Group 3 (p = 0.002 < 0.05) and Group 4 (p = 0.000 < 0.05) on
the auditory demand.
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In terms of interference, Group 5 was significantly higher than all other experimental
groups; in situational stress, dimension Group 5 was significantly higher than Group 2
(p = 0.040 < 0.05). This indicates that the speech rate of Group 5 makes the driver’s work-
load increase. The normal speech rate of Group 1 and Group 2 was able to reduce the
workload of the subjects, mainly due to the reduction of attentional demands, especially
visual demands.

5.2.3. Usability

There was no significant difference between the groups (F(4, 135) = 1.377, p = 0.245). In
the case of usability score details, there were also no significant differences above the three
dimensions of satisfaction with difficulty (F(4, 126) = 2.350, p = 0.058), satisfaction with time
spent (F(4, 121) = 0.053, p = 0.995), and satisfaction with help information (F(4, 124) = 1.324,
p = 0.265).

5.2.4. Trust

The average trust score was significantly different among the five groups (F(4, 99) = 3.744,
p = 0.007 < 0.05) (Figure 16). The multiple comparison analysis determined that the trust
score of Group 5 was significantly lower than that of Group 1 (p = 0.012 < 0.05), Group 2
(p = 0.045 < 0.05) and Group 4 (p = 0.017 < 0.05).
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From the details of the trust scores (Figure 17), it was obtained that significant vari-
ability arose above the dimensions of dependability (F(4, 87) = 2.774, p = 0.032 < 0.05),
desire to continue using (F(4, 86) = 3.099, p = 0.020 < 0.05), and not on the dimension
of predictability (F(4, 86) = 1.315, p = 0.271) differences. Multiple comparison analysis
yielded that Experimental Group 5 had a significantly lower dependability than Group 1
(p = 0.034 < 0.05), and Group 5 was significantly lower than Group 1 (p = 0.048 < 0.05) and
Group 2 (p = 0.041 < 0.05) on the wish to continue using dimension.
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5.2.5. Sweeping

One-way ANOVA results showed significant differences in sweep time among the four
experimental groups (F(4, 47) = 3.244, p = 0.02 < 0.05) (Figure 18). Post hoc tests revealed
that the sweep time of subjects in Group 1 (M = 3.00, SD = 1.12) was significantly higher
than that of subjects in Group 2 (M = 1.76, SD = 1.91), Group 4 (M = 1.32, SD = 0.66) and
Group 5 (M = 1.57, SD = 0.84); subjects in Group 3 (M = 2.94, SD = 1.39) had significantly
higher sweep times than Group 2, Group 4, and Group 5.
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One-way ANOVA results showed significant differences in the number of sweeps
among the five groups (F(4, 53) = 2.931, p = 0.00 < 0.05) (Figure 19). Post hoc tests revealed
that Group 3 (M = 3.23, SD = 1.64) was significantly higher than Group 2 (M = 2.00,
SD = 1.11), Group 4 (M = 1.75, SD = 0.87) and Group 5 (M = 0.70, SD = 0.82); Group 1
(M = 3.37, SD = 1.73) was significantly higher than Group 2, 4 and 5.
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The results of the sweep data show that the drivers in Group 3 had the highest sweep
duration and number of sweeps to the robot, which indicates that the robot with this speech
rate is most attractive for drivers to interact with. In terms of driving safety, it did not pose
a threat to driving safety, as there were cases where the single sweep time exceeded 2s.

6. Discussion

While human-induced driving safety risks can be effectively reduced by robots as-
sisting drivers in driving, the driving safety during human–robot interaction needs to
be considered. It requires designing the robot’s expression to improve car control, trust,
workload, and usability. This paper explores the application of the SAT model proposed
by Chen et al. to the design of in-vehicle robot multimodal warnings while driving and
explores the performance of the visual and auditory channels. This project aims to give
optimal robot expression in driving safety warning scenarios.

The primary objectives were (1) to determine the influence of the robot’s multi-channel
transparency patterns on driving safety and human outcomes; (2) to determine the effect of
the robot’s speech rate and expression valence on driving safety and human outcomes.

6.1. Transparency

For driving safety warning scenarios, the most appropriate robot transparency pattern
is to skip the SAT1-level stage, include visual and audio modalities in the SAT2-level
stage, and include auditory modality in the SAT3-level stage. The visual modality should
express facial expressions and the auditory modality should provide warning content. This
transparency pattern provides the highest level of driver safety.

The higher transparency for the in-vehicle robot can help the driver better understand
the intent of the robot’s expression and reduce the driver’s need to reprocess the information.
The results of this experiment also found that higher transparency means better usability.
However, higher transparency does not necessarily provide better human performance
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when the driver’s attention resources are scarce, such as in scenarios where the driving task
is the primary task.

In terms of visual modality, higher visual channel transparency exposes the driver
to a higher workload, which may take up more cognitive resources and make it difficult
for the driver to concentrate on driving. In addition, the visual channel was considered
inappropriate to contain meaningful content. The results of Experimental Group 2 showed
that the driver’s workload was not affected by changes in the robot’s expressions when
the information related to the driver’s behavioral correction was not conveyed through
the robot’s expressions. The visual channel was considered inappropriate to contain
meaningful content.

In terms of auditory modality, the information in the voice can accurately convey
the robot’s warning content, but the designer should pay attention to the accuracy of
the expression and the conciseness of the text content. The voice in the SAT1-level stage
affects the driver’s control of the vehicle. Therefore, the design should avoid adding modal
particles or other information unrelated to the warning content. In this regard, previous
studies have shown that robots were shown to reduce usability and increase workload
because of the SAT1-level speech when the driver did not make a mistake, because SAT1-
level anthropomorphic speech disturbed the driver while driving [50].

6.2. Speech Rate

Although the content of warnings requires speech to be delivered, designers cannot
simply try to improve the efficiency of delivery by increasing the speed of speech. The
vehicle control and workload showed the same trend when the speed of speech was varied.
Thus, there is an optimal speech speed when the driver can properly discriminate the robot’s
speech; slower or faster speech speeds will result in a lower driver workload and poorer
vehicle control. When the robot provided warnings in Chinese speech, the appropriate
speech rate was 345 words/minute, which is somewhat faster than the standard newscast
speech rate. This should also be discussed in other different languages. Moreover, the
DALI details indicate that appropriate speech speed improved driver attentional demands
and visual demands as drivers better understood the robot’s speech.

In addition, the robot must avoid large changes in speech speed caused by system
bugs, etc. Providing extremely fast speech to the driving driver would significantly increase
the driver’s workload and affect car control. This extremely fast speech speed took up a
significant amount of the driver’s attentional and auditory resources and caused a high
level of interference. Combined with the findings above, this is not due to the driver’s
attempt to understand the speech. Judging from the significant decrease in trust, it may
be because the extremely fast speech reduces the anthropomorphism of the robot, thus
surprising or confusing the driver.

6.3. Facial Expression

In the current speeding scenario, the negative expressions of the robot allowed the
driver to drive better. Robots with negative expressions are more attractive to the driver,
which enhances the communication between the driver and the robot, leading to better
human–robot co-driving performance. This demonstrates that the negative bias phe-
nomenon [57] also applies to the robot, making negative expressions more easily attract
the driver’s attention and more easily discriminated by the driver, thus providing a better
warning effect. This phenomenon did not affect driver safety by taking higher attentional
resources. The effect of the two expression valences on human outcomes was almost the
same except for sweeping. It may be that the two expressions have the same five senses, so
they are the same in terms of anthropomorphism.

6.4. Sweeping

The driver’s ability to control the vehicle was positively correlated with how often and
for how long they paid attention to the robot. When the robot made better performance,
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the driver was more willing to communicate with the robot, and smoother communication
increased the driver’s confidence in the primary driving task, making the driver more
mentally active.

7. Conclusions and Future Work

The current research applies a robot transparency model to the way intelligent robots
provide multimodal warnings. When the in-vehicle robot has facial expressions and voice,
the design of the robot’s multimodal warnings should follow the following guideline in
order for the warnings to not increase the safety risk and to draw the driver’s attention to
driving safety and the corrective operation to be performed sequentially through speech
in the auditory modality. When informing the wrong operation, the robot should provide
negative expressions; when informing the corrective operation, the robot avoids provid-
ing additional information on the visual modality. The Chinese speech rate should be
345 words/minute, which ensures safer driving when the driver receives warnings.

In conclusion, when the robot provides a warning, the content should be delivered
to the driver via speech. The discourse should be organized to include an understanding
of the robot driver’s current behavior and the expected behavior of the driver to change
the status quo. The auditory channel should avoid the robot providing communicative
information with the five senses of the warning content, but this does not mean that the
process of human–robot communication should be reduced to mere information transfer
and ignore the social element. In the visual channel, the robot’s facial expressions do not
have obvious warning content, but reasonably designed expressions can improve driver–
robot communication and improve driver–robot understanding, making the delivery of
warning signals more effective and the delivery process safer. Additionally, whether it is
critical information delivered through speech or non-critical information delivered through
facial expressions, improving the driver’s attention level can help improve driving safety.
More reasonable speech rates and negative facial expressions increase driver attention
levels. This design guideline provides a reference for the interaction design of a driver
assistance system with a robot as an interface, helping designers provide safer multimodal
warnings. The research also informs robot speech and expressions when the driver drives
dangerously. The current study also showed that driver safety is compromised when
drivers have difficulty understanding robotic speech (e.g., very fast speech). Therefore, the
design should avoid exaggerating the speech of the robot.

A limitation of this study is that the study of the “how” of the robot’s visual and
auditory warnings did not extensively cover other variables of sound and vision that
may affect the driver‘s driving performance. Future research can discuss the effects of
psychoacoustic parameters, such as the pitch and volume of robot speech, and visual
parameters, such as the style of the robot’s facial features. Research on other modalities such
as haptics can also be further discussed. In addition, robot speech and facial expressions
can also express emotions, so the impact of robot emotions on driving safety can continue
to be explored.
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