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Abstract: The Internet of Things (IoT) has been an area of growing research interest for decades.
Task allocation is an important problem for the optimized operation of Internet-of-Things networks.
This paper provides an overview of recent research in the field of Internet-of-Things task allocation
optimization. First, the task allocation problem for the IoT itself is analyzed and divided into distinct
sub-problem categories, such as deployment optimization, static or dynamic optimization as well as
single- or multi-objective optimization. Following that, the commonly used optimization objectives
are explained. Various recent works in the field of task allocation optimization are then summarized
and catalogued according to the problem categories. Finally, the paper concludes with a qualitative
analysis of the categorized approaches and a description of open problems and highlights promising
directions for future research.
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1. Introduction

The Internet-of-Things (IoT) and its subset Wireless Sensor Networks (WSNs), in which
all devices have a limited energy supply and use wireless-only communication, have been
an area of growing research interest for decades [1]. With increasing applicability and
adaption, more focus is put on the optimization of task distribution within the network,
employing differing optimization goals such as the network’s lifetime, latency and reliabil-
ity. Because the performance of the network regarding those metrics is highly dependent
on where in the network tasks are allocated, solving the Task Allocation Problem (TAP) is a
critical challenge in the IoT. Due to the inherently heterogeneous and dynamic nature of
IoT networks, finding a task allocation that is optimal in terms of a single optimization goal
is already challenging because of the basic NP-hard Task Allocation Problem [2]. However,
with the increasing range of application and user requirements, optimizing for multiple
objectives and providing multiple solutions to adjust the system in real time becomes
increasingly important. With additional objectives, the already difficult problem of Task
Allocation becomes even more challenging. Multi-Objective Optimization techniques and
especially the concept of Pareto-Optimality and Meta-Heuristic Optimization provide
solutions to these challenges.

Existing studies of the state-of-the-art for the Task Allocation Problem in IoT either
focus on only a subset of the overall IoT landscape—such as crowdsensing [3,4] and
WSNs [4,5]—or do not regard Multi-Objective Optimization as an important criterion
to classify the surveyed approaches [3–8]. This work aimed to provide an overview of
all recent work published on the TAP for the IoT, and analyze them by their adaptation
of Multi-Objective Optimisation (MOO) techniques as well as their incorporation of the
distinct challenges provided by IoT infrastructure. The layout of this paper is illustrated in
Figure 1.

We begin with an analysis of the TAP for IoT Networks and its unique challenges.
The TAP will be divided into distinct sub-categories in Section 2. Alongside the problem
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itself, the common metrics used to evaluate and optimize the TAP will be defined. Section 3
provides an overview of the commonly used methods to solve the TAP. With the problem
and potential avenues of solving it established, the final contribution of this work is the
summary of recent (i.e., mainly focusing on research published since 2019) work in this
field in Section 4, and cataloging it according to the previously defined categories. Section 5
details open problems and challenges, along with promising directions for future research.
The paper concludes with a summary of our findings in Section 6.

Introduction

Task Allocation Problem Description

Survey of the state-of-the-art

Open Challenges

Conclusion

Figure 1. Illustrated layout of this paper.

2. Task Allocation Problem

In this section, we will define the Task Allocation Problem for IoT and its distinct sub-
problems.

2.1. Static Task Allocation

In the basic case of the TAP, there is a static network and a static set of tasks, i.e., neither
the devices nor tasks change over time. In the state-of-the-art, graph-based representations
are commonly used to describe both network structure and task set.

2.1.1. Static Network Model

If there is symmetrical communication between nodes in a static network, an undi-
rected graph is sufficient. The graph GNet = (N , ECom) fully describes the network, with the
set of graph vertices, or nodes, N , encompassing all network devices. In the remainder
of this work, the terms “devices” and “nodes” will be used interchangeably. Communi-
cation links between devices are modeled by the edge set ECom of the graph. Each link
in the network is directly represented by an edge in the graph. Each node Ni ∈ N is
assigned a set of attributes based on the represented device. When modeling a static
network, relevant attributes are limited to the device location and its hardware. For each
device, a vector ~xN

i denotes its position. Relevant hardware attributes are application and
device dependent, but usually include at least sensor/actuator availability SN

i , processing
power pN

i , and memory capacity mN
i . The edges of the graph are each assigned an energy

consumption, Eij(t) which specifies the amount of energy necessary to communicate one
unit of information. Additionally, a latency value lij(t) represents the time necessary to
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transmitting data along this edge. Further edge attributes may include privacy and security
specifications. A full list of the referenced node and edge attributes is given in Table 1.

Table 1. Full List of Node and Task Attributes.

Abbreviation Attribute

xN
i Node position
SN

i Set of sensor/actuators of node
pN

i Node processing power
mN

i Node memory capacity
lN
ij Node transmission latency

qN
i Node energy

pT
i Task processing requirement

mT
i Task memory requirements

CT
i Set of task constraints

XT
i Task spatial constraints

ST
i Task sensor/actuator requirements

cT
ij Task communication cost

2.1.2. Static Task Model

Static Tasks are commonly modeled using a directed graph, which allows for the
inclusion of task dependencies. A set of tasks is described by the graph GTask = (T , ETask).
The set of vertices T encompasses all tasks Ti to be executed on the network. Weights will
be assigned to each vertex to model the attributes of the represented task. An example for
this is the set of task constraints CT

i , used to encode the specific requirements or restrictions

of task Ti. This includes a set of sensor requirements ST
i and spatial constraints ~XT

i that
are used to constrain the locations and nodes where the task may be executed. Sensor
requirements model the specific sensors needed to fulfill the task, i.e., a temperature
sensor to monitor heat in a system or a camera for a surveillance-based task. The spatial
constraints ~XT

i complement this by specifying the exact location where each task has to
be executed. This may be highly specific, restricting the task location to a single room
within a building, or more expansive regions such as a city block or street for traffic
monitoring. However, some tasks, especially those that only process or collect data, may
not have any such restrictions at all and may be allowed to be assigned to any node
within the network. Beyond the sensor and spatial constraints, there may be minimum
hardware requirements, e.g., concerning processing power qT

i and memory capacity mT
i .

Task dependencies are modeled by the task graph’s set of edges ETask. Each edge eij denotes
a directional dependency between tasks Ti and Tj. Edge weights may be used to model
characteristics of the dependency, such as the Communication Costs (cij) between tasks.

An example task graph with two sensing tasks producing data (T1 and T2), one
processing task (T3) accumulating the information from both sensing tasks and one task
(T4) acting as a data sink is shown in the Directed Acyclic Graph (DAG) visible in Figure 2.

T1

CT
1

T2

CT
2

T3

CT
3

T4

CT
4

c13

c23

c34

Figure 2. Basic task graph example.

While solving the TAP is already an NP-hard challenge by itself [2], the TAP for the IoT
presents an even more complex problem due to the following dynamic elements it presents.
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2.2. Dynamic Task Allocation

Real-world applications inherently include dynamic elements. As such, an extension
of the models described previously is needed to allow for such elements at both the task and
network levels. Network dynamics mainly have two causes: Movement of the network’s
devices, and the addition or removal of devices from the network.

2.2.1. Device Mobility

Device mobility can be included in the network model by adopting a time-based
component t into the network graph GNet(t) = (N (t), ECom(t)). Within the sets of nodes
and edges of the graph, this time-based variable modifies the node position ~xi(t), which in
turn affects the set of edges ECom(t) as communication links between nodes may both be
lost and newly formed as the nodes physically move. Furthermore, the observance of task
spatial constraints ~X may be affected. Device mobility presents an additional challenge
for solving the TAP because the optimal allocation may keep changing, and thus very
limited time may be available for the optimization process, which needs to be adapted for
every movement of a node. Because optimal allocations have to be ready for any new node
positions, prediction of movement becomes a key challenge in a mobile network.

2.2.2. Device Failures

The removal of devices is introduced through failures of the devices themselves
or their components. Such failures may not be permanent, such as during short-term
communication outages or sensor failures. Permanent failures could be caused by the
exhaustion of device energy qi or a device leaving the network. To model this, the hardware
availability SN

i of node Ni is adapted to a function mapping availability of each hardware
component s for each device, as shown in Equation (1).

SN
i (s, t) =

{
1, component s is available on Ni at time t,
0, otherwise

(1)

To model the failure of an entire device, the representing node can simply be removed
from the network graph. Alternatively, a component representing the entire device can be
included in SN

i (t) to keep the ordering and indexing of nodes consistent throughout node
failures and additions.

Device failures present additional challenges for solving the TAP due to their unpre-
dictability. Any allocation may be invalidated at any time due to the failure of a node or
component. Unlike mobility, such failures are impossible to predict and, with the exclusion
of failures due to an exhausted power supply, there is no way to know whether the error is
transient or permanent.

2.3. Task Allocation Problem

Formally, the TAP is a search problem of an injective function a : T → N (t), which
assigns each vertex in the task graph Ti to a vertex Nj of the network at the time t according
to the Position Constraint (Si) of the tasks ~xj(t) ∈ Si. Additionally, the node Nj executing
the task Ti needs to be connected through communication edges ejl ∈ Ecom to all nodes
Nl = a(Tk) executing directly connected tasks eik ∈ ETasks. Since nodes can dynamically
fail, the goal is to find a series of valid allocations A = (a0, a1, . . . , an) with associated start
times tstart

i and end times tend
i , for i = 0, · · · , n. The allocation denoted as an is the last

allocation possible. After this allocation, the remaining network is not able to continue
executing the global task T anymore, which ends the lifetime of the network tend

n . The goal
is then to find such a series of allocations A that optimize certain network metrics during
the lifetime of the network.
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2.4. Task Allocation Optimization Metrics

An important part of solving the TAP are the metrics by which to optimize. This
section will define the most commonly found metrics in the literature in accordance with
the network and previously given problem definition.

2.4.1. Network Lifetime

Network Lifetime is defined as the difference between the latest end time tend
n of the

last valid allocation an and the start time of the first valid allocation tstart
0 [9]:

NL(A) = tend
n − tstart

0 (2)

Network Lifetime measures the total time the network as a whole and is capable
of carrying out the assigned tasks. As such, it becomes important for networks wherein
replacing the batteries may be expensive or completely impossible. In mixed networks,
optimizing for network lifetime may put more strain on devices with large or inexhaustible
power supplies at the cost of overall efficiency.

2.4.2. Energy Consumption

The Energy Consumption of an allocation is the sum of all energy dissipated from
all nodes while the allocation is currently applied to the network, as displayed in Equa-
tion (3) [10].

E(an) = ∑
Ni∈N

(
qi(tstart

n )− qi(tend
n )

)
(3)

Consequently, the energy consumption of an allocation series, E(A), is the sum of all the
energy consumption of all allocations in that series:

E(A) = ∑
an∈A

E(an) (4)

Energy consumption usually becomes relevant in scenarios where the absolute extension
of a network lifetime is less important, e.g., with renewable energy sources or reliable
power supplies.

2.4.3. Latency

The Latency lij for each connected pair of nodes i, j is given by the edge weights lij
connecting them. The latency between dependent tasks Tk and Tl can thus be defined as
the sum of all latencies along the path Pkl(at) plus the node latencies mlk. The latency L(at)
of the allocation at is defined as the maximum latency of all connected tasks. The Latency
of an allocation series A is the maximum latency of any allocation of the series [9]:

L(A) = max
at∈A

 max
Tk ,Tl∈VTasks

∑
eij∈Pkl(at)

lij + li

 (5)

Latency in this way measures the maximum time that the system may take to respond
to a request or to perform an overall task. As such, it is important in customer-focused
applications or time-critical scenarios, where the response time of the system is an important
factor. Latency is also often used as a constraint by employing deadlines, enforcing the
system to discard any allocations which cannot observe a certain minimum latency value,
but not optimizing the latency beyond said constraint.
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2.4.4. Availability

Availability is defined based on the error indicator function e, see Equation (6), as the
fraction of time when the network Net is fulfilling the task T (i.e., the network is error-free
e(A, t) = 0), divided by Network Lifetime (NL(A)) [9]:

e(A, t) =
{

0, ai is valid, tstart
i ≤ t < tend

i
1, otherwise

(6)

A(A) = 1−

∫ tend
n

tstart
0

e(A, t)dt

NL(A) (7)

Availability measures the overall uptime of the system. It becomes important in networks
with regular outages, where error correction is a focus, or systems that need to have as much
fault tolerance as possible because the downtime of the system could have serious conse-
quences. Beyond these applications, it is also critical to provide a good user experience.

2.4.5. Reliability

Reliability (R) is defined as the time of the first fault terror
A = argmin

t
(e(A, t) = 1)

leading to the network not being able to execute the global task T divided by the Network
Lifetime [11].

R(A) =
terror
A

NL(A) (8)

As such, reliability measures the fraction of time during which the network operated
before an error disturbed the execution of any task. It therefore is a relevant metric for any
security-critical or medical application.

3. Methodologies for the Task Allocation Problem

This section will briefly explain the most commonly found algorithms in the state of
the art to facilitate our understanding of the latter analysis of recent works in this field.

3.1. Multi-Objective Optimization

Given the example metrics of the previous section, it might be desirable to optimize
both Latency and Network Lifetime, which typically conflict because Latency is improved
by bringing tasks close together, optimally on a single node, which drains the battery
of these nodes faster, impacting the Network Lifetime. Such problems are called Multi-
Objective Problems (MOPs) on objectives fi, formally defined as seen in Equation (9).

min( f1(~x), f2(~x), . . . , fm(~x))
s.t. ~x ∈ S

~g(~x) ≤ 0,~h(~x) = 0 (9)

Such a problem consists of m objective functions, which have to be optimized, i.e., mini-
mized or maximized. Each of these objective functions maps from the search space S , which
contains all possible solutions ~x ∈ S to the problem, to an objective space of dimension Rm

by assigning each solution a certain fitness vector. Additionally, the search space may be
constrained, which is formally expressed by inequality constraints ~g or equality constraints
~h. Any solution ~x ∈ S has to satisfy these constraints. For simplification, the remainder
of this work assumes that all objective functions have to be minimized, which does not
impact generality because maximization objectives can be transformed into minimization
objectives by max( fi) ≡ min(− fi). In case of metrics that are to be maximized, such as Net-
work Lifetime, the metric will be inverted accordingly to achieve a minimization problem.
The nature of the search space is dependent on the problem. Often, it is a subspace of R
for real-valued problems. However, binary or integer-valued problems exist. In this work,



Sensors 2023, 23, 142 7 of 23

solutions are allocations of tasks to nodes in the network. As such, the dimensionality n of
the search space is equal to the number of nodes present, and solutions are encoded in the
subspace of In. In scenarios where the assignments of tasks to multiple nodes are possible
or desired, e.g., for the sake of redundancy, the search space becomes exponentially bigger
and solutions are encoded by assigning tasks to sets of integers instead of a single integer.

The main challenge in any MOP is the ranking of solutions against one another. Since
multiple conflicting objectives exist, finding a single optimal solution is typically impossible.
To combat this, the concept of Pareto-Optimality is used. Generally, Pareto-Optimality is
achieved in a solution if no objective can be improved without devaluing another. To rank
solutions against one another, a domination criterion called Pareto-Dominance may be
applied. Both concepts are defined as follows in Definitions 1 and 2.

Definition 1 (Pareto-Dominance). A solution ~x ∈ S dominates another solution ~y ∈ S , if ~f (~x)
is at least equal to ~f (~y) in all objectives, and there exists at least one objective where ~f (~x) outperforms
~f (~y), see Equation (10).

x � y⇔ ~f (x) ≥ ~f (y) ∨ ∃ fi, fi(x) > fi(y) (10)

Definition 2 (Pareto-Optimality). A solution ~x ∈ S is Pareto-Optimal, iff it is not dominated
by any other solution in the search space. The set of all Pareto-Optimal solutions is called the
Pareto-Front PF , see Equation (11).

x ∈ PF ⇔ @y, y � x (11)

3.2. Base TAP Algorithm

Before the different methods are described, this section will give a short description of
an example algorithm to solve the full TAP, which can be used in combination with any of
the algorithms described below. The algorithm is described in Algorithm 1. The minimal
input for any optimization algorithm includes the network and task graphs, along with
a time value which determines how much time will be looked ahead in any predictive
models, such as mobility models. An initial allocation can be created and deployed to the
network before full optimization begins. Then, until the current time reaches the prediction
horizon determined by adding the look-ahead time δt to the current time, the optimization
algorithm is executed to generate at least one new allocation anew. Using a predictive
mobility model, the mobility of the nodes can be taken into account and the optimization
performed on the predicted future network state. If a failure is detected at any time during
this loop, any recovery mechanisms of the optimization algorithm should be carried out
to quickly generate a valid allocation. If no such mechanism exists, the availability of
the network will be impacted accordingly until a new allocation is generated. Finally,
when the current prediction horizon is reached, the new solution may be deployed to the
network and the previous steps are repeated until the network is no longer operational.
Any of the algorithms described in the following would replace lines 2 and 8 with their
specific optimization procedure. Specific solutions providing a recovery mechanism for
node failures could implement this in place of line 11.

3.3. Metaheuristics

Multi-Objective optimization problems are often solved with Metaheuristic Optimiza-
tion Algorithms, which are commonly applied to problems which cannot be solved by
exact or analytical means, such as NP-hard problems. Metaheuristics usually make little
assumptions about the problem to be solved, and provide no guarantee of optimality
regarding the obtained solutions. As such, they usually provide a tradeoff between solution
quality and the required computation time. For the scope of this work and the Task Alloca-
tion Problem, the most notable metaheuristics are Evolutionary Algorithms (EAs) [12,13],
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Ant-Colony-Optimization (ACO) [13–15] and Particle Swarm Optimization (PSO) [13,16].
As such, these approaches will be shortly explained in the following subsections.

Algorithm 1: Base procedure for solving the TAP

1 Input: GNet, GTask, ∆t;
2 MS, ainit ← GetInitialAllocation(GNet, GTask);
3 reallocate(GNet, ainit);
4 while Network Alive do
5 t = time();
6 repeat
7 GPred ← Predict(GNet, ∆t);
8 anew ← Optimize(GPred, GTask);
9 if Faulty Allocation Detected then

10 GNow ← GetNetworkState();
11 anew ← RecoveryMechanism(GNow, GTask);
12 reallocate(GNet, anew);

13 until tcur = t + ∆t;
14 reallocate(GNet, anew);

3.3.1. Evolutionary Algorithms

EAs are, as the name suggests, inspired by the principle of biological evolution. They
operate on a set, or population, of possible solutions a,∈ P and as such are part of the
population-based metaheuristics. The initial population is filled by randomly generating
solutions. Afterwards, the set of solutions is gradually improved by applying the principles
of natural evolution through selection, genetic recombination and mutation. The basic
procedure of a common type of EA (µ + λ EA) is outlined in Algorithm 2: The first step is to
initialize the population, e.g., with µ randomly created individuals. Then, each individual
is evaluated according to the objective functions ~f = ( f0, . . . , fi, . . . , fm)

T of the given
problem. According to the calculated fitness, the first selection select0 is carried out to
determine λ individuals, which will “reproduce”. These individuals are then recombined
(crossover), and mutations are applied to their generated “offspring” (mutate). Afterwards,
the newly created individuals are evaluated. The last step in the EA loop is to select a new
population of µ “survivors” from the original population and the offspring (select1). select0
and select1 may be the same operation. Typical termination criteria involve a maximum
number of generations or reaching a certain fitness threshold.

3.3.2. Ant Colony Optimization

ACO is another nature-inspired Metaheuristic. Based on the foraging behavior of an
ant colony, artificial ants move throughout the search space, leaving artificial pheromones
based on the quality of the solutions. The movement of the ants is based upon the
pheromone concentration in a probabilistic fashion, causing more ants to take the paths that
lead to better solutions. Due to the path-based optimization, ACO is well suited to problems
involving graphs and routing. In a graph-based problem, any ant k travels along the edges
to visit different nodes. Starting on the root node i = 0, each ant k decides where to go next,
based on the probability pk

ij, given by Equation (14). N(sp) denotes the set of feasible edges,
e.g., all the reachable edges the ant has not visited yet, to prevent the ants from going in
circles. Q is a constant, and Lk the length of path taken by ant k. This decision is repeated
until the target node is visited. The parameters α and β are used to scale the impact of the
pheromone information τij versus the heuristic information ηij, which is dependent on the
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optimization problem. After a full solution has been created by an ant, the pheromone
values τij of all edges eij are updated according to Equations (12) and (13) [14].

τij = (1− ρ) · τij +
m

∑
k=1

∆τk
ij (12)

∆τk
ij =

{
Q/Lk, if ant k used edge (i, j)

0, otherwise
(13)

pk
ij =


τα

ij η
β
ij

∑cij
∈N(sp)

, if cij ∈ N(sp)

0, otherwise
(14)

Algorithm 2: Base µ + λ Evolutionary Algorithm
Input: µ, λ
Output: P

1 P0 ← popInit(µ);
2 i← 0;
3 for Each a in P0 do
4 a. f ← ~f (a);

5 repeat
6 parents← select0(λ,Pi);
7 o f f spring← crossover(parents);
8 o f f spring← mutate(o f f spring);
9 for Each a in o f f spring do

10 a. f ← ~f (a);

11 Pi+1 ← select1(µ,Pi ∩ o f f spring);
12 i← i + 1;
13 until until termination criterion reached;
14 return Pi;

3.3.3. Particle Swarm Optimization

PSO is based upon the movement of natural swarms, such as flocks of birds or school
of fish. A population of so-called particles ~xi ∈ P moves within the search space S
according to simple rules: to mimic the sharing of information, each particle is attracted to
the best solution that the swarm has found so far (usually called the global best). Additional
attraction is experienced towards the best solution that each particle itself has found so far
(referred to as the local best). At each time step t of the algorithm, a particle i occupies the
position ~xi(t) and moves with the velocity ~vi(t). Each particle also retains a memory of its
local best ~xbi(t) and the global best ~xg(t). The velocity and position of each particle is then
updated by calculating the difference between its current position and the local and global
bests according to Equations (15) and (16).

~vi(t + 1) = ω~vi(t) + c1~r1 ⊗~vic(t) + c2~r2 ⊗~vis(t) (15)

~xi(t + 1) = ~xi(t) +~vi(t + 1). (16)

Using the parameters c1 and c2, the attraction towards the local and global bests
can be scaled. The random vectors ~r1 and ~r2 are used to induce additional randomness
in the movement of the particles, which improves the exploration of the search space,
and are applied to the velocities using element-wise multiplication ⊗. The inertia weight ω
determines the influence of the previous velocity, which further increases exploration.
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3.4. Collaborative and Antagonistic Game Theory-Based Algorithms

This section details algorithms based on game theory. Game theory applies mathe-
matical models to the strategic behavior of agents which attempt to achieve a certain goal.
This can be in an antagonistic fashion, e.g., in zero-sum games, or cooperatively where all
agents attempt to achieve the best overall possible outcome. For task allocation, each node
can be seen as an agent, and they may cooperate or compete over the assignment of the
individual tasks.

3.4.1. Consensus Algorithms

Consensus algorithms are a type of algorithm often used to ensure reliability in
distributed systems. By requiring participants to agree on a value, or in the case of this
work, a task allocation, single points of failure can be eliminated. An often used approach
is based on message passing, in which participants broadcast their observed or desired
value, and through several rounds of such exchanges and adaptations, a majority can be
found. This can be used to, e.g., select a leader for a cluster of nodes, which is then mainly
responsible for accepting tasks on behalf of all nodes in its cluster and clustered nodes will
always accept the tasks assigned to them by the leader. This clustering approach reduces
the search space and makes solving the task allocation problem easier.

3.4.2. Auction Algorithms

Auction algorithms are another iterative procedure to solve combinatorial optimization
problems, especially the assignment problem. By associating the objects—or in the case of
this work, tasks—to be assigned with a value and a price, several rounds of bidding can
take place during which participating agents (nodes) seek to maximize their profit. Bidding
continues until all participants are satisfied with their assigned object. For any node i,
this is the case if there is no other task j which is more profitable for it, e.g., the difference
between the price pj and the benefit bij of assigning the task is maximized, as shown in
Equation (17).

bij − pj = max
j=1,··· ,n

{bij − pj} (17)

As long as there are participants that are not satisfied, iterative bidding is carried
out. During this process, a non-satisfied node ni is selected, and exchanges its assigned
task with another node whose task tj offers a maximum value. The price of task tj is then
increased so that ni no longer prefers it over the second-best task, e.g., pj = pj + γ where γ
denotes the difference in value between the best and second best tasks. As in real-world
auctions, this process raises task prices iteratively. The process runs until all nodes are
satisfied with their assigned task.

3.4.3. Stackelberg Game

In the Stackelberg Game, participants are divided into a leader and followers. The leader
acts first and is aware of all possible reactions of the followers. With this information,
the leader can maximize its profits by anticipating the follower actions, and followers can
maximize their profits by employing the observed results of the leader.

3.5. Reinforcement Learning

Reinforcement Learning (RL) algorithms have wide applicability and are thus used in
a variety of fields. The purpose of reinforcement learning is for an actor, called an agent,
to learn a strategy π, also called a policy, which maximizes a user-defined “reward function”
Q. Over the course of the learning process, the algorithm takes actions k that change the
state s of the environment and gains a reward based on the quality of the action at that state
Q(s, k). Over time, the agent is supposed to learn a policy that maximizes the rewards.

A widespread version of reinforcement learning is Q-learning [17,18]. In Q-learning,
an agent attempts to learn an optimal policy by iteratively taking actions and observing
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the given reward. As such, for Q-learning, neither the expected rewards nor the state
transitions need to be known beforehand. Equation (18) describes the mathematical process
of updating the Q values for a policy π one step at a time: given a state–action pair (s, k),
the Q-value for this pair according to policy π is given by the immediate reward Rt of
taking action k while in the state s at time-step t, and then following the policy π afterwards.
By computing the error between this value and the original estimated Q value, the Q values
are iteratively updated. α is used as a learning rate factor, to control how quickly new
experiences change the estimated Q value.

Qπ(st, kt) = Q(st, kt) + α
(

Rt + γ max
k

Qπ(st+1, k)−Q(st, kt)
)

(18)

Deep Reinforcement Learning

Deep Reinforcement Learning is the intersection between Reinforcement Learning
and Deep Learning (DL). In Deep RL algorithms, the manual mapping of the state space is
usually replaced by a deep neural network, which allows for the incorporation of larger
state spaces and input data.

A modified variant of Q-learning incorporating Deep Learning (DL), known as Deep
Q-learning, replaces the large table that results from mapping each state–action pair (s, k)
to a Q-value with a deep neural network. This network maps input states to pairs of actions
and their estimated Q-values. This is beneficial for any scenario with a large search space,
as a table mapping all possible state–action pairs quickly becomes prohibitively large.

3.6. Other Methods

This section describes approaches used in the state-of-the-art that do not fit in any
of the above categories. As they are rarely used in the state of the art, they will not be
described in detail. For further information on these types of algorithms, the reader is
referred to the original papers.

3.6.1. Linear Programming

Linear Programming (LP) is a mathematical technique for solving problems wherein
the objective function is linear. As such, they do not deal with Multi-Objective Optimization
as described in Section 3.1. However, methods based on LP can usually guarantee finding
an optimal solution, which the methods described above cannot. Any LP problem is
described by a linear function to be solved and several constraints that need to be observed.
Mixed-Integer Linear Programming (MIP) is an adaptation of LP that includes non-discrete
variables, such as Boolean values.

3.6.2. Hill Climbing

Hill climbing is an optimization technique in which small changes are applied to
an existing solution in order to incrementally improve it. If such a small change would
improve the solutions, it is applied, otherwise it is discarded. By repeating this step,
the solution can be optimized over time.

4. State of the Art on the Task Allocation Problem for IoT

There has been a variety of work on the various categories defined above. This section
will detail these works, and provide a top-level overview of which approaches have been
applied to the problem or parts of it.

4.1. Comparison Criteria

To facilitate the comparison of a vast variety of works in this field, comparison criteria
based upon the problem subcategories need to be defined. These are directly based upon
the categories defined in Section 2. Works will be categorized based upon their suitability
to deal with the different criteria described below.
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4.1.1. Node Failures

The first comparison criterion pertains to the node failures described in Section 2.2.2.
There are long-term failures, e.g., due to a drained battery, and short-term failures. One way
to deal with failures would be to carry out a complete re-planning of the task allocation.
However, this would incur potentially prohibitive time and resource drains. As such,
this work considers approaches that use this approach as not suited for node failures.
Approaches capable of quickly adjusting to long-term failures but not short term-failures
(or vice versa) are judged as partially suited. Only approaches capable of dealing with both
long-term and short-term failures are judged as fully suited to deal with this criterion.

4.1.2. Node Mobility

The second criterion upon which the evaluated methods will be judged is the challenge
of node mobility, as described in Section 2.2.1. Again, there exist different ways to handle
mobile nodes. Complete re-planning is not feasible at all, as it would have to be performed
constantly. Another approach is to see mobility-induced failures of allocations, e.g., due
to connection loss or violation of spatial constraints, as node failures and deal with them
similarly. Works that use an approach such as this are deemed partially suited for dealing
with node mobility. However, mobility is usually not a completely random phenomenon.
As such, a viable approach is to create models upon which to analyze or predict the
node movement for a specific application. With a prediction mechanism, task allocations
can be adapted and optimized pre-emptively, resulting in less or no uptime loss for the
overall system. Methods incorporating such an approach are considered as fully suited for
this challenge.

4.1.3. Multi-Objective Optimization

The final comparison criterion pertains to the nature of the optimization itself. Section 2
detailed the metrics of interest to the optimization. While it is unlikely that all of them
are relevant to a specific application, often multiple objectives are relevant. As such, this
work will also analyze the presented approaches based upon their approach to optimizing
multiple objectives simultaneously. Works that only optimize a single objective are judged
as not suited at all to MOO. One way to deal with a multi-objective approach is to combine
the different objectives in a weighted-sum fashion, which will be deemed partially suitable
for MOO. Only approaches using a full MOO algorithm and optimizing for all metrics
described in Section 2.4 will be categorized as fully suitable. Algorithms are considered a
full MOO algorithm if they use the concept of Pareto-Dominance as defined in Definition 1
to rank and simultaneously optimize conflicting objectives.

4.2. Comparison of the State of the Art

The following subsections will analyze the state of the art for Task Allocation Problems
in the IoT according to the categories defined above. A complete overview of all approaches
analyzed and their respective performance in the categories is provided in Table 2. Full
suitability is indicated by a+, while partial suitability is indicated by a o, and an unsuitable
approach is designated by a−. An additional column in the table indicates the evaluated
network metrics and any special observations or features of the work. In addition to the
overview table, the following sections will provide the reasoning for the categorization for
each work in more detail. With the goal of revealing the strengths and weaknesses of the
different methods as presented in Section 3, the approaches have been divided into the
same groups and will be analyzed together.
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Table 2. Overview of state-of-the-art approaches.

Reference Type Failures Mobility MOO Main Focus, Metrics

[19] EA o − − Balance energy consumption, NL

[20] EA o − − NL

[21] EA − o − Measurement accuracy, E

[22] EA − − − E

[23] EA o − o A, L

[24] EA − − o NL, L

[25] EA + − o A, NL, L

[11] EA − + o A, NL, L

[9] EA + + o A, NL, L

[26] PSO + − o Redundancy, E, L, R

[27] PSO − − o NL, L, E

[28] PSO − − − PSO/EA hybrid, L

[29] PSO − − o L, E, R

[30] PSO − − o Balanced energy consumption, L, E

[31] PSO − − − E, R

[32] PSO − − − Non−specified metrics

[33] PSO − − − L

[34] PSO − − − Execution cost, L, E

[35] ACO − − − E

[36] ACO − − − E

[37] Consensus − − − task deadlines, E

[38] Consensus − − − Allocation generation time

[39] Consensus + − − Redundancy, R, A

[40] Auction o − − NL

[41] Auction − o − E

[42] Stackelberg
game − − o L

[43] RL − − − Dynamic tasks, user cost

[44] RL − o − Dynamic tasks, L

[45] RL − − − Dynamic tasks, L

[46] RL n/a n/a n/a Privacy measure for TAP

[47] DL − + − Internet of Vehicles, data loss

[48] GNN − + − Task miss ratio

[49] LP, − − − NL

[50] LP − + − Size of observable Area

[51] Hill
climbing − − − E, L

[52] Multiple − − − Multiple

[53] MIP − − − Allocation generation time, L
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4.3. Metaheuristic Approaches

This section will analyze the works that fall into the category of Metaheuristics in terms
of the categories defined in Section 3, beginning with evolutionary algorithms described in
Section 3.3.1.

Khalil et al. [19] proposed an EA-based approach to optimizing energy consumption.
As such, they considered the failure of nodes due to drained battery, but did not incorporate
short-term failures. The mobility of nodes is not considered at all. They propose different
fitness evaluations, prioritizing either energy consumption or node longevity, but do not
include any MOO approach. Khalil et al. [20] also proposed a revised approach to optimize
the energy consumption and maximize network lifetime. Their network model in terms of
failures and mobility does not change, however, resulting in the same judgments. The work
also does not incorporate any MOO.

Tao and Song proposed an EA-based approach [21] to optimize the allocation of
tasks in mobile crowdsensing applications. No failures in the participating devices are
considered, but mobility is inherently present in the problem. However, the proposed
approach actively pre-plans the paths for each device, and devices are only assigned a
tracking task if they follow the proposed path, instead of optimizing around nodes freely
moving within the network. As such, we judge the approach as partially suitable for
mobile environments. In terms of MOO criteria, the approach optimizes the accuracy of
the measurements, as well as the distance traveled for each node, which can be considered
a type of energy consumption. However, the distance traveled is modeled as a constrained
instead of a true independent objective, resulting in a non-suitable judgment.

Sahni et al. [22] proposed another EA-based approach to optimize the energy dissi-
pation of executing a set of tasks in IoT networks. However, they only considered static
networks and did not incorporate any mechanisms to deal with node failures or mobility,
and only optimized for a single objective.

A Biogeography-based optimization (BBO) algorithm was proposed by Liu et al. [23].
BBO algorithms are a type of EA which is inspired by the migration of different species
between habitats. This approach tries to minimize the unavailability level of the tasks,
but does not actively mitigate when failures occur. The objectives latency and availability
are evaluated as well as a balanced resource wastage, but do not use the concept of Pareto-
Optimality to do so, instead using a weighted-sum approach to combine objectives into
one objective function.

Weikert et al. [9,11,24,25] proposed a group of EAs suited to deal with the challenges of
task allocation in mobile and failure-prone networks. Their latest work [9] combines these
approaches and improves upon the weaknesses of the earlier versions. Their work also
incorporates a true MOO approach, optimizing network lifetime, latency and availability.
However, their algorithm does not allow for redundant allocations and does not optimize
for reliability at all.

The next set of metaheuristic algorithms belongs to the group of PSO algorithms as
described in Section 3.3.3, another widespread method to solve the TAP.

In [26], Guo et al. developed a PSO-based optimization algorithm with a backup
mechanism to achieve fault tolerance and improve the energy consumption, task execution
time, energy balance and reliability. However, they combine the objectives into a weighted-
sum, creating a partially MOO-capable solution. They also do not consider node mobility.

Yang et al. [27] modified a Binary PSO algorithm to optimize task allocation in terms
of execution time, energy consumption and network lifetime in a weighted-sum fashion.
The optimization is carried out in a static network, not considering the node failures or
mobility, resulting in unfeasibility for scenarios involving these challenges.

Another PSO-based approach was developed by Wang et al. [28]. This approach
incorporates some concepts of EAs into the particle optimizer in order to optimize latency.
A thorough study of the impacts of the PSO parameters was carried out, but the network
considered was fully static, neither incorporating failures nor mobility.
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Baniabdelghany et al. [29] proposed a method to optimize the energy consumption,
latency, and reliability of executing a set of tasks on a static network. This approach used a
weighted-sum strategy to combine the multiple objectives into one fitness function.

In the area of network security, Sun et al. [30] proposed a task allocation mechanism
based on Binary PSO to determine nodes to employ in the detection of attacks on the
network in order to improve the network lifetime, reduce energy consumption and balance
the network load. This work also employs the concept of Pareto-Optimality for these three
objectives. However, only static networks are considered.

Zhang et al. [31] developed another PSO-based method to obtain reliable and energy-
efficient task allocations in WSNs. Energy consumption is formulated as the only objective,
while constraints are designed for reliability and task execution time. This work also only
considered static networks and neglected the possibility of node failures and mobility.

Olmsted and Masri [32] proposed a method to dynamically optimize the task allocation
process in fog environments. They combined several non-specified objective functions
into a single function using the weighted-sum method. While this approach accounts
for dynamically accepting new tasks during runtime, it does not consider the failure or
movement of nodes in the established network.

Niu et al. [33] designed a modified PSO algorithm to optimize the computing delay,
i.e., the latency of task allocations. Their approach only considers this single objective,
and their system model neither incorporates mobility nor node failures.

In [34], Ren et al. investigated a combined PSO and Simulated Annealing approach
to minimize the execution cost, latency and energy consumption of task allocations via
a weighted-sum fitness function. However, their approach accounts for neither failures
nor mobility.

The final two works in the category of metaheuristics are ACO algorithms as detailed
in Section 3.3.2. Xu and Zhou [35] proposed an ACO-based approach to reduce energy
consumption in agricultural WSNs while observing task constraints. The work considers
only static networks and a single objective.

The second ACO-based approach was proposed by Zannou et al. [36]. Their approach
seeks to minimize energy consumption by assigning the most capable nodes for a task
and minimizing both the length and hop-counts of the transmission paths. Neither node
failures nor mobility is considered, and only single-objective optimization is carried out.

In conclusion, metaheuristics are a very popular approach to solving the TAP for
different objectives. However, very few works actually utilize full MOO. Overall, both node
failures and mobility are considered in some of the works, but the purely static problem is
still the most widely considered.

4.4. Cooperative and Antagonistic Methods

This section will analyze the works that fall into the category of cooperative and
antagonistic methods based on game theory as described in Section 3.4, beginning with
Consensus Algorithms.

Yin et al. [37] proposed a decentralized cooperative algorithm to tackle the TAP.
For any given task, nodes negotiate the allocation until an agreement that satisfies all task
requirements is met. The work considers only a static network, and while several metrics
are evaluated, they are not optimized in a multi-objective fashion as the algorithm only
considers node capabilities and their inclusion in past allocations when assigning new tasks.
Task requests are propagated throughout the network in order to ensure that closer nodes
have priority when reacting to requests. Furthermore, only independent tasks instead of
dependent tasks are considered, as described in Section 2.

In [38], Pedroso et al. described their consensus-based algorithm to optimize the task
execution delay in industrial IoT networks. By cooperatively pooling their capabilities,
nodes reach a consensus on which to execute tasks. Tasks are clustered based on their
similarity in terms of capability and neighborhood. Each cluster then seeks to build a
consensus on a cluster leader, which accepts and assigns tasks for the cluster. Like the
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previous algorithm, this work only considers static networks, and performs only a single-
objective optimization.

Mudassar et al. [39] proposed another decentralized, collaborative approach to increase
reliability in IoT applications. Nodes are assigned to groups, which can independently
operate without knowledge of the rest of the network. By coordinating with a group leader,
the node groups can collaboratively execute tasks. If a node fails, a group can simply
re-assign the task to nodes with free capacity without having to carry out re-optimization
on the entire network. The work considers long-term failures due to resource exhaustion as
well as short-term outages, resulting in full suitability according to the outlined criteria.
Mobility was not considered at all, however, and no MOO was carried out, with nodes
being selected purely based on available resources.

The next set of algorithms that belongs to this category are the auction-based algo-
rithms described in Section 3.4.2. Edalat et al. [40] proposed a reverse-auction approach
to maximize the network lifetime in resource-constrained WSN. To achieve energy bal-
ance, resource-constrained devices aim for the second-lowest-price bids. Cooperation is
achieved by revealing all the private information of the nodes during the bidding process.
If necessary, a low-energy node will use all of its available energy budget to complete
an expensive task to ensure low task execution time. Evaluations were carried out to
analyze the latency and energy consumption, but no multi-objective optimization was
incorporated. The network considered was also mostly static, as low-energy nodes are
set to sleep and not considered for task execution, avoiding failures during an allocation.
As such, the algorithm is given a partial suitability ranking in terms of failures.

A non-cooperative auction-game approach was designed by Rahman et al. [41]. Nodes
with similar capabilities are grouped into clusters, and cluster nodes bid on tasks to
maximize their reward, which is based upon the expended energy of a task and gain of the
executed task. Overall, the system aims to optimize the energy consumption of the system.
The system model includes mobile nodes, and due to the clustering mechanism, node
movement can be taken into account without full re-optimization, resulting in a partial
suitability ranking. No failures are considered in this approach.

Joshi et al. [42] proposed a Stackelberg game approach to optimize the Latency in a
IoT-based patient monitoring system. In the proposed approach, a cloud node acts as the
leader and the IoT devices as followers. Neither mobility nor node failures are considered.
A combined utility function includes both energy consumption and latency.

Overall, the cooperative and antagonistic game-theoretic approaches have to date
mostly only been applied to the static TAP, and never in a MOO fashion. As such, the vari-
ety of metaheuristic approaches provides a wider spectrum for applications to dynamic
networks and MOO.

4.5. Reinforcement Learning

In this section, algorithms belonging to the group of Reinforcement Learning (RL)
algorithms described in Section 3.5 are analyzed.

Ding and Lin [43] proposed an approach to allocate dynamic tasks to a network of
servers in order to minimize user costs by employing R-Learning [54]. While the tasks can
dynamically change for this approach, the network model is static. As such, it is considered
unfeasible with regard to mobility and node failures. Furthermore, only a single-objective
optimization is performed.

An online RL approach for mobile IoT networks was developed by Yao and Ansari [44].
The objective of their approach is to minimize execution delay, e.g., latency, for tasks
generated by mobile users. The RL is used to estimate the task costs and requirements
based on previously completed tasks in order to find optimal allocations. While the users
generating the tasks are considered mobile, the nodes in the network performing the
tasks are static. No model for the prediction of user movement is included. As such,
a partial feasibility for mobile networks is achieved. Node failures are omitted, and only
optimization on a single objective is carried out. The same authors later proposed another,
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similar algorithm [45] suited for cost-efficient edge-cloud computing to enhance IoT services.
However, the scenario changes little regarding the purpose of this analysis, and as such,
provides similar ratings as their previous work, only degrading the mobility rating as no
mobility is considered in the more recent work.

Zhou et al. [46] developed a privacy-preserving task allocation mechanism in massive
crowd-sensing applications in cloud-enhanced IoT networks. The online learning algorithm
is executed in the cloud, and estimates the reputation, or trustworthiness, of the other
members in the network. Their approach can be combined with any of the centralized task
allocation algorithms in order to incorporate privacy into the task allocation. As such, most
of the criteria are inherited from the optimization algorithm employed. Thus, no rating is
given for this work, but it is included in the table for sake of completeness.

Ma et al. [47] proposed a Deep Reinforcement Learning (DRL)-based approach to
improve user experience and transmission stability in the vehicular IoT. Their system model
includes both static, roadside nodes as well as fast-moving cars as part of the network.
By caching data that will be required by vehicles in advance and in locations the vehicle
will move through, the transmission time and efficiency can be improved. The system
state is modeled as a Markov Decision Process, and DRL is used to obtain the optimal
pre-caching and task allocations. As this approach includes models for the movement of
the nodes, it is judged to be fully feasible for mobile scenarios as outlined by the criteria in
Section 4.1. However, no node failures are considered, and the optimization process does
not include multi-objective methodologies.

Li et al. [48] proposed a Graph Neural Network (GNN)-based approach to optimize
the cruise control and task allocation of an IoT network incorporating UAVs. GNNs are
an adaptation of Neural Networks (NNs) to graph-structured data and are a promising
approach for future research concerning all network-related problems [55]. As the approach
considers a moving UAV and plans its path to account for task allocations, it is deemed
suitable in terms of mobility. However, no node failures were taken into account and only
a single objective was considered.

With a few exceptions, the RL approaches were only applied to the static problem,
and no approach incorporated a multi-objective design. However, RL and especially DRL
approaches may be useful as part of other algorithms, such as surrogate models used for
reducing the computational complexity [56] or the prediction of node dynamics, as shown
by Weikert et al. [11]. GNNs especially are a promising approach to develop new solutions
or enhance existing ones for the optimization problems of IoT networks.

4.6. Other Approaches

This section analyzes works employing methodologies that are not fitting to the
approaches described in Section 3. As such, there will be a mix of different approaches.

In [49], Yu et al. proposed a Linear-Programming-based approach to optimize network
lifetime in multi-hop WSNs. Linear Programming (LP) is a mathematical technique to
solve problems wherein the objective function is linear. As such, they do not deal with
Multi-Objective Optimization as described in Section 3.1. They then extend the approach
by decomposing the problem, to improve reaction times in large networks and increase
the feasibility for online optimization. While this approach guarantees optimal solutions,
the computation time can be prohibitively large and full information is needed by the nodes
responsible for calculating the solution. As such, network dynamics, which cannot be fully
known by all nodes at all times, are not taken into account. In terms of metrics, only a
single objective is optimized.

Another algorithm based on linear programming was developed by Xiaoyu et al. [50].
Their goal is to optimize task allocations in the vehicular IoT to optimize the maximum
observed area with a minimum of participating vehicles. Their approach takes the trajectory
of the vehicles into account to estimate their spatial and temporal availability for a given
task. As such, it satisfies the requirements for full mobility feasibility as outlined in
Section 4.1. Node failures are not considered, and only a single objective was optimized.
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Gai et al. [51] proposed a heuristic algorithm based on hill-climbing to optimize the
energy consumption while observing strict time constraints. Their approach uses a greedy
approach as a baseline, and then slowly improves the solution by making small changes
until a near-optimum is reached. No mechanism for dealing with node failures or node
mobility are incorporated, and only energy consumption is optimized.

Stypsanelli et al. [52] performed an evaluation of several distinct task allocation
procedures on a static networks. They measured the impact of these approaches on the
response time, or latency, of the system. Their work suggests that even simple algorithms
yield significant improvements over a static allocation. Unfortunately, the evaluation is
limited to static networks and a single objective.

The final work categorized here was proposed by Alhaizaey et al. [53] and is based
on Mixed-Integer Programming, which is an extension of Linear Programming including
binary constraints. In the proposed approach, the binary variables are used to assign tasks
to the nodes. The optimization goal is the overall latency of the system. The work only
considered a small, static network.

Overall, these works were rarely applied to anything but the static network, and are
not very well suited to multiple objectives. However, some of them can guarantee an
optimal solution, which most of the works in the previous sections, such as metaheuristics,
cannot.

5. Open Challenges

This section will address the open challenges that remain in this field, beginning with
the criteria defined in Section 4.1 and concluding with some general challenges remaining
in this field.

5.1. Node Failures

Out of the 37 reviewed works, only 4 are fully suitable for networks that include node
failures. This is either achieved through retaining a large archive of previously optimized
solutions [9,25], which has the drawbacks of increased computational effort to keep an
optimized diverse archive as well as not guaranteeing an suitable solution in the archive,
especially if there is a high rate of failure in the network. Introducing redundancy in the
task allocations [26,39] is another option used to mitigate node failures, but comes at the
cost of higher energy consumption and a high rate of failures can still cause task outages if
all assigned nodes fail. Both approaches showed an improvement when faced with task
failures in their respective works, but come with drawbacks regarding optimization quality
or energy consumption. Effectively dealing with failures in a task allocation and optimizing
the network throughout multiple failures to minimize the effect on other metrics as such
remains a challenge for task allocation algorithms.

5.2. Node Mobility

Five of the reviewed works [9,11,47,48,50] incorporate a mechanism for preemptively
planning the task allocations around the movement of nodes. However, two of these works
assume either full knowledge of the trajectories [50] or actively plan the trajectories to
improve the task allocation optimization [48]. To deal with the unknown future positions
of nodes, only given the current node states, the remaining works all use a DRL-based
approach in their optimization. This is either achieved by predicting future node posi-
tions [9,11] that are then used in the optimization process, or via directly optimizing based
on the predicted reward of the network [47]. Notably, the works relying on predicted
nodes can use any prediction mechanism in their algorithm and are not necessarily tied to
a DRL approach. Nonetheless, incorrect predictions may greatly affect the performance of
the algorithms. Furthermore, since these methods are based on evolutionary algorithms,
a lot of time is required between the current state and any future prediction to allow for
the completion of the optimization process. As such, scenarios with very fast nodes or
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generally erratic and highly dynamic systems still prove a significant challenge for task
allocation optimization.

5.3. Multi Objective Optimization

None of the reviewed works provide an approach that optimizes all metrics described
in Section 2.4, with most works only optimizing for one or two objectives. Furthermore, only
five works used the concept of Pareto-Optimality [9,11,24,25,30], and four of these methods
belong to the same family of algorithms. This shows a clear lack of MOO techniques
in the current state-of-the-art, which generally relies on a weighted sum-approach to
combine multiple objectives into one. This weighted-sum approach neglects the benefits
of a posteriori MOO techniques, which can generate sets of non-dominated solutions and
allow for the selection of an allocation fitting the current situation and requirements instead
of relying on pre-defined weights of the optimization objectives.

5.4. Metrics

As previously noted, no approach actually optimizes for all metrics defined in
Section 2.4, and none of the reviewed works evaluate their performance on all of the
metrics. Evaluating for all metrics allows one to measure the impact of the optimization
on the metrics, as improving performance in one metric may negatively impact another.
This is another reason why MOO and Pareto-Optimality are such important concepts for
future work in this field. Overall, latency and energy consumption are the most commonly
evaluated metrics, with 16 and 14 of the reviewed works incorporating these metrics,
respectively. While these are important objectives in the IoT landscape, an overt focus on a
few metrics is a detriment to the versatility of IoT applications. The metrics of Availability
and Reliability, which are especially critical for long-term stable operation, are currently
under-represented with only five and four works, respectively, incorporating them into
their evaluation. Current works also employ either computationally or resource-intensive
methods to improve these metrics, which may be further improved by future research.

5.5. General Challenges

While some of the reviewed works consider either node failures or node mobility,
only one work combined approaches to handle both. This approach is based upon Evo-
lutionary Algorithms, which are a computationally expensive method as they require
many evaluations of the objective functions and incur additional costs in order to calculate
non-dominated solutions. While some work has been performed to reduce the complexity
of the fitness evaluations by employing surrogate models [56], it remains a challenge to
perform such algorithms with limited hardware resources. Another potential approach
to combat this would be to distribute the optimization algorithm among the network,
and thus sharing the computational load between many nodes. Evolutionary algorithms
are suited for distributed optimization, although this comes with its own set of challenges
and is an ongoing field of research [57].

Another open challenge for algorithms that rely on longer computation times are
dynamic tasks that are not known ahead of time. While solutions can be quickly provided,
this comes at a cost of their quality. Reinforcement-learning-based approaches [43–45] have
been proposed to address the challenge of dynamic tasks, but only in a single-objective
fashion and for mostly static networks. Networks with both dynamic movement and
failures, as well as dynamically generated tasks, pose a significant open challenge in this
field, as none of the individual problems can be deemed sufficiently solved. Especially
EAs, one of the more common optimization techniques in this field, may be less suitable
for dynamic tasks due to the computational effort required. Future work might include the
combination of approaches, or the incorporation of transfer learning.

Large network or task graph sizes are also a relatively unexplored area in this field.
With large numbers of nodes and tasks, or a high amount of objective functions, multi-
objective optimization becomes increasingly difficult and computationally expensive. To op-
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timize such networks, large-scale optimization techniques [58] are needed. Considering
some notable IoT scenarios such as Smart Cities or the Internet of Vehicles, large-scale
optimization may need to be incorporated into the task allocation process as the currently
used methods are not sufficient.

Another important challenge is the difficulty to statistically compare different ap-
proaches in terms of their performance concerning the metrics defined in Section 2.4. This
is due to the differences in the surveyed studies’ system models, assumptions, and method-
ology when evaluating, such as simulation-based evaluation vs. mathematical models. It is
also not feasible to obtain a ground truth of optimal solutions for every possible scenario
due to the NP-hardness of the TAP. Thus, a set of benchmark problems would be required
to fully compare different approaches, implemented in one of the leading network simula-
tion tools such as NS3 [59] or OMNeT++ [60]. For general MOO, many such benchmark
problems [61] have been designed and, combined with open source implementations of
many state-of-the-art algorithms [62,63], allow for the detailed analysis of different algo-
rithms’ performances. Such a benchmark suite would greatly benefit future research in IoT
Task Allocation.

6. Conclusions

In this paper, we defined the Task Allocation Problem for IoT networks, and divided it
into distinct sub-problems based on network dynamics. We then performed an examination
of the recent works to solve the Task Allocation Problem (TAP), and evaluated them
regarding their suitability and incorporation of the distinct sub-problems. Additionally, we
considered the inclusion of approaches capable of performing Multi-Objective Optimisation,
as many real-world problems need to consider different goals that may be in conflict with
one another. The approaches based on metaheuristics were the most diverse in terms of the
inclusion of distinct sub-problems, and also the most commonly used type of algorithm,
especially the subclass of EAs. The most suitable work regarding the specified criteria
and providing MOO is also an EA-based approach. Algorithms based on Game Theory or
Reinforcement Learning provide a less complete coverage of the problem, and seem more
suited to a static approach, with limited applications to network dynamics. However, it
is noted that reinforcement learning may be useful as a tool to improve the performance
of other methodologies, either as a predictive model or as a surrogate for expensive
fitness evaluations. Reinforcement learning has also been shown capable of dealing with
dynamic tasks. Lastly, methods providing a guarantee for optimal solutions, such as Linear
Programming-based algorithms, performed the worst in terms of the outlined criteria,
as they are difficult to apply to dynamic problems, especially in MOO scenarios, but with
guarantees regarding the focused objective. Overall, most current state of the art is still
focused on fully or partially static problems. With greater inclusion of consumer products
and smart devices into the IoT landscape, network dynamics will have a bigger impact on
the performance of such optimizers. As such, further research into dealing with network
dynamics without performing full re-optimization is necessary in the future. The aspect
of reliability is only touched by some works and needs extended work to enable TAP
algorithms to be usable in applications with safety requirements such as autonomous
driving and vehicular IoT networks. Beyond this, establishing a benchmark suite to
compare different methods against one another would be of great benefit for the research in
this field, as there is currently a distinct lack of comparability between different approaches.
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