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Abstract: Fruit volume and leaf area are important indicators to draw conclusions about the growth
condition of the plant. However, the current methods of manual measuring morphological plant
properties, such as fruit volume and leaf area, are time consuming and mainly destructive. In this
research, an image-based approach for the non-destructive determination of fruit volume and for the
total leaf area over three growth stages for cabbage (brassica oleracea) is presented. For this purpose, a
mask-region-based convolutional neural network (Mask R-CNN) based on a Resnet-101 backbone
was trained to segment the cabbage fruit from the leaves and assign it to the corresponding plant.
Combining the segmentation results with depth information through a structure-from-motion ap-
proach, the leaf length of single leaves, as well as the fruit volume of individual plants, can be
calculated. The results indicated that even with a single RGB camera, the developed methods pro-
vided a mean accuracy of fruit volume of 87% and a mean accuracy of total leaf area of 90.9%, over
three growth stages on an individual plant level.

Keywords: vegetation monitoring; leaf area; instance segmentation; cabbage

1. Introduction

The importance of the sensor-based analysis of agricultural crops increases as more
and more processes on farms become automated. Plant growth and plant stage are decisive
parameters for planning crop protection and fertilization treatments. Furthermore, infor-
mation about the predicted yield and the quality of the crops are useful for harvest logistics
and product sales [1]. With the decreasing costs of cameras and the further development in
computer vision and artificial intelligence, manual field measurements can be substituted
and even automated [2]. In this way, plants can be captured and simulated in a non-contact
and non-destructive way. The creation of a so-called digital twin gives the farmer or breeder
completely new possibilities for analyzing and planning applications [3]. By using artificial
intelligence-based methods for the direct acquisition of individual plant data, the step from
a precision farming system to a smart farming system is taken. The use of automated
processes for remote crop monitoring, compared to manual measurements in the field, is
one of the key points of smart farming systems [4].

For example, time-consuming and error-prone methods for determining nitrogen
availability in the soil, such as the N-min method [5], could be dispensed since studies have
shown a correlation between nitrogen availability, leaf length, and fruit volume [6,7]. Since
a leaf area (LA) calculation is very labor-intensive and a fruit volume measurement usually
leads to damage of the plant, these correlations have only be used insufficiently in practice
so far. Plant-specific analyses by artificial intelligence could lead to more cost-effective
and sustainable agriculture, especially for crops with a high fertilization input, such as
cabbage [8].

A widely used approach for calculating leaf area is to calculate the leaf area index
(LAI) [9,10]. It provides information about the degree of cover, which can be used to

Sensors 2023, 23, 129. https://doi.org/10.3390/s23010129 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23010129
https://doi.org/10.3390/s23010129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0158-6456
https://doi.org/10.3390/s23010129
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23010129?type=check_update&version=1


Sensors 2023, 23, 129 2 of 18

indirectly determine the leaf area. LAI can be negatively affected by weed cover in the field
as this results in an incorrect crop cover ratio. For this purpose, thresh-holding methods are
used, which involve a high post-processing effort, as well as artificial-intelligence-based
methods with less post-processing effort [11].

For a more precise and direct measurement of the leaf area, leaf area meters can be
used [12]. By scanning individual leaves, an exact statement can be made about the total
leaf area [13]. This method, however, is very time consuming and will cause damage to
crops such as cabbage due to its sensitive leaves. The most common method of measuring
leaf area and crop volume is probably the manual measurement of plant parameters such
as leaf length, leaf width, and crop diameter with a measuring tape [14]. The measured
parameters are then used with a formula to determine the fruit volume, for example. The
research results are published attempting to create mathematical models to describe the
actual leaf area (LA) for different kind of plants (Equation (1)). The leaf length (L), leaf
width (W), and calculation constant (A) provide the basis for these calculations [15–17].

LA = L ∗ W ∗ A (1)

With the increasing possibilities of image analysis through artificial intelligence and
the decreasing costs of imaging hardware, new possibilities regarding the automated and
direct measurement of plant parameters such as leaf area or fruit volume are increasingly
emerging. Shabani et al. [12] already show the applicability of neural networks for leaf-area
calculation, including leaf length and width under isolated conditions. However, as the
method is presented, the leaves must either be removed or fully visible and therefore cannot
be used for on-field operations.

A non-destructive approach to automated leaf-area calculation is shown by Itakura et al. [18].
The leaf area can be determined with high accuracy using structure from motion (SfM) depth
information and a water shed algorithm, for instance, segmentation. However, the analysis of this
method only took place with very small plants with 3 to 11 leaves under laboratory conditions.
Current approaches of leaf-area determination still have major problems with overlapping leaves.
This makes on-field applications difficult to implement as a lot of leaf area is overlapped, especially
in field vegetables. By incorporating the specific plant morphology and including only visible
plant characteristics on the leaf-area calculation, a more robust approach could be implemented.
As a result, the approach loses accuracy but gains reliability, which is more crucial for a farmer in
practical use.

Approaches to leaf-area calculation are usually very plant-specific as the morpholog-
ical parameters of the plant are crucial for the calculation. Different approaches such as
Masuda’s [19] leaf-area calculation for tomato plants using the semantic segmentation of
point clouds or the growth-monitoring method of lettuce by Zhang et al. [20] are mostly
difficult to adapt to cabbage plants but are a good example of what information is needed
for total leaf-area calculation across varieties. There are also many differences in the cal-
culation of fruit volume due to the morphological influence depending on the variety.
The shape and visibility of the fruit are decisive parameters for the calculation of the fruit
volume [21]. When calculating the leaf area as well as the fruit volume, two decisive pieces
of information, independent of the morphology of the plant, become apparent, which are
necessary for a determination. These are, on the one hand, information about the shape and
position of the object and, on the other hand, the detection or segmentation of the object.

There are a variety of different options for segmenting fruits or leaves in images
or point clouds. These include classical computer vision approaches using geometric
features [22] or using watershed methods [23], as well as color and depth image-based
segmentation approaches [24]. However, due to their good adaptability to variable envi-
ronmental scenarios and associated high accuracy, artificial-intelligence-based approaches
show the most promising results [25]. With the rapid development of neural-network-
based image processing in recent years, a wide range of information can be processed
from camera images through targeted training of these networks [26]. The basis of this
image processing technique is convolutional neural networks (CNNs), which can be used
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to classify images [27]. Object-detection networks such as the regions with CNN features
method (R-CNN) or the you-only-look-once (YOLO) network locate and classify an object
in the image [28,29]. To obtain information at a pixel level, semantic segmentations are
applied that assign each pixel in the image to a possible class. Fully convolutional neural
networks (FCNs), among others, are used for these segmentations [30]. The instance seg-
mentation by a Mask R-CNN is a further development of the semantic segmentation and
combines the object detection of the R-CNN with the segmentation of a FCN [31]. By using
the leaf segmentation challenge (LSC) datasets, Xu et al. [25] demonstrates the effectiveness
of a Mask R-CNN in the instance segmentation of plants, compared to other methods.
However, an instance segmentation network such as a Mask R-CNN can only provide
two-dimensional information about the location and segmentation area of the objects in
an image.

In order to be able to make statements about the volume or position of fruits or leaves,
information about the shape and position is a prerequisite. To record plant parameters
such as leaf area or fruit volume, sensor-based depth information can be used, giving the
two-dimensional masks of the instance segmentation a three-dimensional shape. Attempts
using different kinds of depth sensors [14,32] were presented, to obtain information about
the LA. Depending on the application, there are several factors influencing the choice
of sensor technology for depth-image acquisition. The decisive factors are the required
resolution of the depth image, the costs, and the distance between the sensor and the object.
For a simple application with high resolution at a short distance, one common approach
is the SfM approach, which can calculate depth information without additional sensor
technology by motion in the camera image [33,34].

Due to its large and highly overlapping leaves, cabbage is a complex plant to analyze.
Especially in late growth stages, both the cabbage head and a large part of the cabbage
leaves are occluded. For a perfect analysis of the plant, not only the visible leaf area is of
interest, the total leaf area is too [35]. For an automated recording of the individual total
leaf area and fruit volume, plant parameters such as the leaf-attachment point and leaf
end point must be captured. So far, no research has been published that automatically
determines the total leaf area and the fruit volume for different growth stages of cabbage
using camera-based images.

The aim of this paper is to describe a non-destructive approach to measure the total leaf
area and fruit volume over multiple growth stages of individual cabbage plants. For this
purpose, the cabbage head, the individual leaves, and the entire plant should be segmented
by a neural-network-based instance segmentation from color images (RGB). By merging
the two-dimensional segmentation information with the three-dimensional information of
the structure-from-motion (SfM) approach, the cabbage fruit volume as well as the total
leaf area, including the non-visible leaf area, can be determined.

2. Materials and Methods
2.1. Dataset Recording and Ground-Truth Estimation

A dataset of 600 images was recorded at location in Stuttgart, Germany at three
different growth stages. All three growth stages were in macro-stage four (the development
of vegetative plant parts) with no fruit yet visible in the first stage. The stages can be
assigned to BBCH stages 41, 45, and 48 [36].

A standard GoPro camera (Hero 7, GoPro Inc., San Mateo, CA, USA) was used to
capture the training images from a vertical perspective. There were always natural-light
conditions with no shading of the images or artificial lighting. The camera was moved
across the rows at a recording frequency of 60 Hz and a resolution of 1920 × 1440, with
a constant height of 900 mm and a speed of 1 m/s to produce high-quality depth images.
For the field operation, the camera system is intended to be attached to the robot platform
Phoenix [37]. Due to its caterpillar tracks and the generally good field conditions in
vegetable cultivation, the platform can ensure relatively smooth camera movement. The
cabbage was a storage cabbage of the cultivar Storidor, grown with a row width of 600 mm
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and a planting distance of 600 mm. As no herbicides were used on the analyzed bedding
parcel, there was high weed occurrence during the recordings (Figure 1c).
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Ten randomly picked cabbage plants of each growth stage were harvested and mea-
sured to validate the calculated fruit volumes and leaf areas. To determine the fruit
volume, the circumference of the cabbage head was measured. The metric volume (V) was
estimated as

V =
4
3
∗ π ∗ radius3 (2)

This calculated volume fits the actual head volume with a correlation coefficient of
0.88 [38] by assuming a spherical shape. To determine the leaf area, all leaves were removed
and singled on a plane, and photos were taken. By segmenting the leaves, the leaf area was
recorded in pixels. To convert the pixels into metric units, a reference object of a known
size was placed on the same plane as the leaves [39].

2.2. Depth-Image Calculation

Due to its cost-effectiveness and versatility, depth-information acquisition using an
SfM approach is widely used for agricultural applications [14,40]. The linear movement
of the camera at a constant height and speed, the short distance between the camera and
the object, and the static environment offer good conditions for an SfM method. The high
recording frequency of the camera makes it possible to select image pairs with almost any
overlap, which allows for high flexibility in the evaluation.

Therefore, in this work, an RGB camera, an SfM, and an MVS (multi-view stereo)
algorithm were used to generate depth images (Figure 2) for subsequent 3D evaluation.
SfM was used to determine the camera positions and orientations along the plant row,
as well as to determine the camera geometry. The first step is to determine key points
in two images. If the same key points can be found, they can be used as tie points, and
thus the relative orientation between the images can be determined. Next, successively
more images are added to the image block, with their respective tie points. After adding
additional images, a bundle block adjustment is performed so that the overall errors are
as small as possible [41]. In this approach, the scaling is done using a scale bar, which
serves as a reference object and thus gives the subsequently generated depth images the
correct dimension. The actual generation of the depth images is then done with an MVS
algorithm in order to obtain high-resolution depth images for all images. This evaluation
and the generation of the depth images were realized using a commercial photogrammetry
software [42].

2.3. Instance Segmentation

Object detection provides information about the class and the localization of an object
by using a bounding box in the image (Figure 3a). Semantic segmentation provides infor-
mation about the classification of each pixel of a class (Figure 3b). Instance segmentation
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combines these methods of object detection and semantic segmentation (Figure 3c). An
instance segmentation has three outputs for each object to be detected: a classification, a
localization, and a segmentation mask [31]. This information is necessary to assign plant
parameters to individual plants and to calculate the leaf area.
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Figure 3. Examples of object detection by a bounding box (a), semantic segmentation (b), and instance
segmentation (c).

As an instance segmentation network, a Mask R-CNN with a Resnet-101 backbone
was used to detect the cabbages and single leaves of the plants [43]. Figure 4 shows
the schematic procedure of the used Mask R-CNN. The Mask R-CNN is an extension
of the object detection network Faster R-CNN. In order to generate an additional object
mask, the Mask R-CNN has an additional network for segmenting the detected objects
compared to the Faster R-CNN. As in the Faster R-CNN, the images are fed into a CNN
(Resnet-101), which generates a feature map. The region proposal network (RPN) generates
several regions of interest (RoI) from the feature map, which are filtered out using non-max
suppression. The RoI align network provides multiple bounding boxes and scales them
into a fixed format. The fully convolutional network (FCN) is a segmentation network that
generates a binary mask from the feature vector. The fully connected layers provide, as the
Faster R-CNN, the object localization and classification [31].

To evaluate the detection and segmentation results, the mean average precision (mAP)
of the individual classes was calculated. The calculation of the mAP consists of the calcula-
tion of the precision (Equation (3)), the recall (Equation (4)), and the intersection over union
(IoU). The precision describes how many of the detected pixels were correctly classified as
the ratio between true positives (TP) and false positives (FP). The recall calculation shows
the ratio of all correctly segmented pixels (TP) to the missed pixels (False Negative—FN).
The IoU is the ratio between the common overlap of the ground-truth segmentation and the
generated segmentation to the total segmented area. After the precision and recall metrics
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have been calculated, the recall values are plotted on the x-axis and the precision values
are plotted on the y-axis. The mAP is then determined by the area under the resulting
precision and recall curve. For the final calculation of the mAP, the intersection over union
(IoU) threshold for a TP is increased step by step from 0.5 to 0.95. The resulting values are
averaged to a final mAP value [44].
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Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

2.4. Volume and Leaf-Area Estimation

For calculating the cabbage volume, the cabbage head area segmented by the Mask
R-CNN was used. The number of pixels of the segmented area indicates the cross-section
of the cabbage head in pixels (Figure 5a). The volume in pixels of the cabbage can be
calculated via the cross-section of the detected area. Since the conversion from pixels to
mm depends on the distance to the camera, the detected cabbage cross-section in the pixels
was calculated at the height of the cross-section (H) of the cabbage. For this purpose, the
radius of the cabbage was subtracted from the height of the center of the cabbage. With the
height of the cabbage center and a converting constant (k), it was possible to convert the
pixel values to millimeters with:

rmm = rpx ∗
k

Hpx
(5)

By knowing the actual cabbage head radius and using Equation (2), the cabbage
volume was estimated. To determine the individual leaf area, the leaves of other plants
should not be included in the calculation process. By segmenting the entire cabbage plant,
the plant-specific leaves were assigned. When more than 80% of a segmented leaf area was
in the segmentation area of the whole plant, the leaf was assigned to the plant.

The difficulty with the camera-based calculation of the leaf area utilizing the leaf
length and the leaf width lies in the recording of these parameters. Looking at the cabbage
plants in Figure 2, only the edges of the outer leaves are visible. Since the outer leaves
are usually longer than the inner ones, the leaf length can be calculated very accurately
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if the leaf-attachment point is known. The maximum leaf width is hidden for the outer
leaves. Therefore, for the following calculations, the leaf length will serve as the basis for
calculating the leaf area [17]. In order to be independent of the plant’s growth stage, a
method was developed that can be used without an additional orientation by the fruit
geometry. To calculate the leaf length, the leaf-attachment point and the leaf endpoints of
all leaves are required (Figure 6).

Sensors 2022, 22, x FOR PEER REVIEW 7 of 18 
 

 

r = r ∗ kH  (5)

By knowing the actual cabbage head radius and using Equation (2), the cabbage vol-
ume was estimated. To determine the individual leaf area, the leaves of other plants 
should not be included in the calculation process. By segmenting the entire cabbage plant, 
the plant-specific leaves were assigned. When more than 80% of a segmented leaf area 
was in the segmentation area of the whole plant, the leaf was assigned to the plant.  

   
(a) (b) (c) 

Figure 5. Ground truth instance segmentation masks of the cabbage head (a), the whole cabbage 
plant (b) and all cabbage leaves (c) at BBCH stage 48. 

The difficulty with the camera-based calculation of the leaf area utilizing the leaf 
length and the leaf width lies in the recording of these parameters. Looking at the cabbage 
plants in Figure 2, only the edges of the outer leaves are visible. Since the outer leaves are 
usually longer than the inner ones, the leaf length can be calculated very accurately if the 
leaf-attachment point is known. The maximum leaf width is hidden for the outer leaves. 
Therefore, for the following calculations, the leaf length will serve as the basis for calcu-
lating the leaf area [17]. In order to be independent of the plant’s growth stage, a method 
was developed that can be used without an additional orientation by the fruit geometry. 
To calculate the leaf length, the leaf-attachment point and the leaf endpoints of all leaves 
are required (Figure 6). 

 

Figure 5. Ground truth instance segmentation masks of the cabbage head (a), the whole cabbage
plant (b) and all cabbage leaves (c) at BBCH stage 48.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 18 
 

 

r = r ∗ kH  (5)

By knowing the actual cabbage head radius and using Equation (2), the cabbage vol-
ume was estimated. To determine the individual leaf area, the leaves of other plants 
should not be included in the calculation process. By segmenting the entire cabbage plant, 
the plant-specific leaves were assigned. When more than 80% of a segmented leaf area 
was in the segmentation area of the whole plant, the leaf was assigned to the plant.  

   
(a) (b) (c) 

Figure 5. Ground truth instance segmentation masks of the cabbage head (a), the whole cabbage 
plant (b) and all cabbage leaves (c) at BBCH stage 48. 

The difficulty with the camera-based calculation of the leaf area utilizing the leaf 
length and the leaf width lies in the recording of these parameters. Looking at the cabbage 
plants in Figure 2, only the edges of the outer leaves are visible. Since the outer leaves are 
usually longer than the inner ones, the leaf length can be calculated very accurately if the 
leaf-attachment point is known. The maximum leaf width is hidden for the outer leaves. 
Therefore, for the following calculations, the leaf length will serve as the basis for calcu-
lating the leaf area [17]. In order to be independent of the plant’s growth stage, a method 
was developed that can be used without an additional orientation by the fruit geometry. 
To calculate the leaf length, the leaf-attachment point and the leaf endpoints of all leaves 
are required (Figure 6). 

 
Figure 6. Leaf point cloud with marked leaf-attachment point (big green point) and leaf end-points (*).

Since the leaf-attachment point is not visible and therefore not detectable by our
camera, it has to be estimated. Since all leaves of a plant converge at the stem, the position
of the leaves in relation to each other can be used to determine the x and y coordinates
of the stem and thereby the approximate leaf-attachment point. This estimation of the
leaf-attachment point is done in 3 steps.

1. First, the depth information is read out for each segmented leaf (Figure 7a). An
M-estimator sample consensus algorithm (MSAC), which is a version of the random
sample consensus (RANSAC) algorithm, is used to remove outliers and errors in the
depth image (Figure 7b). For this purpose, the MSAC algorithm estimates a plane
into the point cloud. Points that fall outside of a tolerance range to this plane are
removed [45].
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2. A plane is then fitted to the points using a multiple linear regression (Figure 8). The plane
reflects the orientation and the further course of the leaf up to the leaf-attachment point.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 18 
 

 

Figure 6. Leaf point cloud with marked leaf-attachment point (big green point) and leaf end-points 
(*). 

Since the leaf-attachment point is not visible and therefore not detectable by our cam-
era, it has to be estimated. Since all leaves of a plant converge at the stem, the position of 
the leaves in relation to each other can be used to determine the x and y coordinates of the 
stem and thereby the approximate leaf-attachment point. This estimation of the leaf-at-
tachment point is done in 3 steps. 
1. First, the depth information is read out for each segmented leaf (Figure 7a). An M-

estimator sample consensus algorithm (MSAC), which is a version of the random 
sample consensus (RANSAC) algorithm, is used to remove outliers and errors in the 
depth image (Figure 7b). For this purpose, the MSAC algorithm estimates a plane 
into the point cloud. Points that fall outside of a tolerance range to this plane are 
removed [45]. 

  
(a) (b) 

Figure 7. Leaf point cloud (a); point cloud after using MSAC algorithm (b). 

2. A plane is then fitted to the points using a multiple linear regression (Figure 8). The 
plane reflects the orientation and the further course of the leaf up to the leaf-attach-
ment point. 

 
Figure 8. Leaf plane through MSAC point cloud. Figure 8. Leaf plane through MSAC point cloud.

3. By repeating the first two steps for each leaf of a plant, one plane per leaf is calcu-
lated (Figure 9a). These planes create a multitude of three-dimensional intersections
(Figure 9b). To determine the three-dimensional leaf-attachment point (p), the x, y,
and z coordinates of the intersection points in the segmented plant area are averaged.
It is assumed that the point where most of the planes converge is the center of the
stem where the leaves are attached.

The independence of the leaf-area calculation from the fruit geometry offers the
possibility to apply the method described to a variety of growth stages. The next steps in
calculating the leaf area is to calculate the leaf endpoint and the transformation from leaf
length to leaf area. For this purpose, the three-dimensional coordinate of the segmented leaf
(red point), which has the greatest three-dimensional distance to the previously estimated
leaf-attachment point (green point), was determined (Figure 10a). The three-dimensional
Euclidian distance (L) between the leaf base (p) and the end of the leaf (q) was then
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calculated (Figure 10b). The curvature of the leaf is not taken into account when calculating
the leaf length.
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In the last step, the leaf area is calculated using the leaf length (Equation (6)). The
individual leaf length is multiplied by the mean value of all leaf lengths of a plant and a
correction factor (2.7) for the leaf shape. The mean leaf length and the correction factor
of 2.7 are the substitute for the leaf width, which would be necessary for a more precise
calculation of the leaf area according to Olfati [17].

LA =
1
n
∗

n

∑
i=1

L ∗ Li ∗ 2.7 (6)

2.5. Software Implementation and Dataset Used

The Mask R-CNN [31] is mainly based on the libraries Tensorflow GPU 1.3.0 [46–48].
The calculation of the leaf area and the cabbage volume were implemented with MAT-
LAB (Matlab R2020a, The MathWorks Inc., Natick, MA, USA). The calculation of the
depth images and the camera calibration were done with the Agisoft Metashape software
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(Metashape Professional, Agisoft LLC, St. Petersburg, Russia, 2021). The complete training
and the following steps were carried out with a computer with an AMD Ryzen Threadrip-
per 2920X 12-core processor 64 GB RAM and a 24 GB graphics card (GeForce RTX 3090,
Nvidia corporate, Santa Clara, CA, USA).

Each training dataset consists of 200 images, and the validation datasets consists of
30 images for each growth stage, with a resolution of 1024 × 1024. To avoid overfitting the
network, different image augmentation techniques (shift, rotation, scaling, and mirroring)
were used, which enlarged the training data set depending on the number of epochs. With
25 epochs, a training data set of 5000 augmented images was created for each growth stage.
Furthermore, a transfer-learning approach based on the Microsoft Common Objects in
Context (COCO) data set was applied to achieve usable results, even with a comparatively
small data set [49]. In a transfer-learning approach, an already trained neural network is
further trained with new classes and images. In this way, already similar trained features
can be adopted, which reduces the training effort and increases the network accuracy [50].
The training datasets were trained in three classes (Plant, Crop, and Leaf) over 25 epochs,
with a stochastic gradient descent, an image batch size of six, and a learning rate of 0.0001.

3. Results

Table 1 shows the segmentation accuracies of the cabbage head, the whole plant, and
the leaves, over the three growth stages. At growth stage BBCH 41, the cabbage head just
started to form and was not visible or detectable (Figure 1a). The trained Mask R-CNN
performed well for detecting the cabbage plants and cabbage heads. The deviations in
the segmentation accuracy of the leaves are due to the large variations of the leaves in
shape, color, and size, which makes precise segmentation by a Mask R-CNN difficult. The
deviations in the segmentation of the cabbage head at growth-stage BBCH 45 are due to
the size of the cabbage head. As the cabbage head was still very small at this growth stage
and was heavily covered by leaves, precise labelling and segmentation were difficult.

Table 1. Mean average precision (mAP) of cabbage head, whole plant, and leaves, at different growth
stages [32].

Growth Stage (BBCH) Cabbage Head
(mAP)

Whole Plant
(mAP)

Leaves
(mAP)

41 - 0.82 0.52
45 0.55 0.61 0.51
48 0.81 0.82 0.47

The following Tables 2–6 present the results of cabbage fruit volume and leaf-area
determination. The results for the measured, calculated, and detected parameters are
compared. The measured results were taken from the harvested cabbages and visible
leaves that were measured by hand individually. The calculated results show the outcomes
of the developed methods, as described in Section 2.4, for cabbage volume and leaf-area
calculation with the ground-truth data of the segmentation. The calculated results show
the potential in the accuracy of the developed method. The detected results show the
outcomes of the developed method for fruit volume and leaf-area calculation using the
trained instance segmentation network. The detected results illustrate the applicability and
robustness of the methods. The results of the detected parameters refer to the calculated
results as these represent the optimum of the method used.

3.1. Cabbage Volume

Tables 2 and 3 show the measured, calculated, and detected results of the cabbage
volume. At growth stage BBCH 48, an average cabbage volume of 0.0029 m3 was measured.
With a standard deviation of 0.00057 m3 (19.89%), the measured cabbages show significant
variation in their size despite the same planting date and the same growth conditions.
An average accuracy for the calculated volume of 87.2 % with a mean value of 0.0027 m3
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and an accuracy for the detected volume of 86.7 % with a mean value of 0.0025 m3 had
been achieved at the BBCH stage 48. The deviations in the calculated volume were mainly
due to annotation errors of the ground-truth data set. Since leaves often obscure the real
cabbage surface, the cabbage outline had to be estimated when creating the ground-truth
data. Attempts to fit a sphere into the depth images by using a RANSAC algorithm, in
order to be able to dispense with the erroneous annotation data, showed only very poor
results as the sphere too often oriented itself to the wrong points.

Table 2. Comparison of measured volume, calculated volume, and detected volume in regard to the
calculated results of BBCH stage 48.

Cabbage Plant (n)
Measured
Volume

(m3)

Calculated
Volume

(m3)

Detected
Volume

(m3)

1 0.0018 0.0021 0.0021
2 0.0034 0.0037 0.0038
3 0.0028 0.0031 0.0034
4 0.0031 0.0029 0.0033
5 0.0032 0.0029 0.0029
6 0.0029 0.0031 0.0023
7 0.0022 0.0017 0.0015
8 0.0034 0.0027 0.0016
9 0.0036 0.0031 0.0025

10 0.0022 0.0018 0.0016

Mean value (m3) 0.0029 0.0027 0.0025

Standard deviation (%) 19.89 22.5 30.8

Mean accuracy (%) 87.2 86.7

Table 3. Comparison of measured volume, calculated volume, and detected volume in regard to
calculated results of BBCH stage 45.

Cabbage Plant (n)
Measured
Volume

(m3)

Calculated
Volume

(m3)

Detected
Volume

(m3)

1 0.00085 0.00089 0.00091
2 0.00089 0.00089 0.00087
3 0.00055 0.00058 0.00051
4 0.00060 0.00081 0.00069
5 0.00125 0.00104 0.00129
6 0.00100 0.00077 0.00065
7 0.00108 0.00110 0.00104
8 0.00050 0.00048 0.00014
9 0.00125 0.00061 0.00054
10 0.00125 0.00112 0.00114

Mean value (m3) 0.00092 0.00083 0.00078

Standard deviation (%) 30.06 25.31 41.2

Mean accuracy (%) 84.9 84.33

At growth stage BBCH 45, an average cabbage volume of 0.00092 m3 was measured.
With a standard deviation of 0.00027 m3 (30.06%), the measured cabbages displayed signifi-
cant variation in terms of their size despite the same planting date and the same growth
conditions. Table 3 shows the calculated volume with an average accuracy of volume
estimation of 84.9% with a mean value of 0.00083 m3, as well as the detected one with
84.33% and a mean value of 0.00078 m3, at growth stage BBCH 45. In this case, a sig-
nificantly smaller cabbage head volume can be observed due to the earlier growth stage.
Furthermore, the calculated ground-truth deviation from the measured value also increases
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because labelling is made even more difficult with smaller fruit sizes due to the leaves’
even more significant overlapping.

Table 4. BBCH 48: Comparison of measured, calculated (calc.), and detected leaf area and the mean
accuracy (MA) of the visible leaves (vis.).

Plant
Leaves
Visible

Number

Measured
LA vis.

(m2)

Calculated
(m2)

Leaves
Detected
number

Detected
LA

(m2)

1 13 0.57 0.58 12 0.51
2 15 0.71 0.73 13 0.66
3 14 0.67 0.68 14 0.68
4 16 0.71 0.89 16 0.90
5 11 0.60 0.58 11 0.59
6 15 0.85 0.65 13 0.56
7 13 0.62 0.62 13 0.63
8 15 0.82 0.74 13 0.62
9 12 0.61 0.55 12 0.54
10 15 0.67 0.59 11 0.50

Mean Value 13.9 0.68 0.65 12.7 0.61

Standard deviation (%) 10.8 12.7 15.12 11.7 17.7

Mean accuracy (%) 90.9 94.1

Table 5. BBCH 45: comparison of measured, calculated (calc.), and detected leaf area and the mean
accuracy (MA) of the visible leaves (vis.).

Plant
Leaves
Visible

Number

Measured
LA vis.

(m2)

Calculated
(m2)

Leaves
Detected
Number

Detected
LA

(m2)

1 19 0.70 0.65 16 0.54
2 18 0.69 0.61 17 0.56
3 18 0.65 0.72 16 0.70
4 17 0.59 0.68 14 0.55
5 19 0.79 0.75 16 0.72
6 22 0.80 0.80 17 0.60
7 21 0.88 0.93 19 0.82
8 17 0.42 0.49 13 0.39
9 22 0.91 0.81 13 0.48
10 21 0.91 0.80 21 0.78

Mean Value 19.4 0.73 0.72 16.2 0.61

Standard deviation (%) 9.56 20.21 16.24 14.8 20.95

Mean accuracy (%) 90.3 84.9

3.2. Leaf-Area Calculation

For the calculation of the leaf area, only the leaves visible from the camera perspective
were evaluated. For the evaluated cabbage plants, up to 5 leaves were not visible. This
may be due to the heavy occlusion of the leaves as well as the high weed pressure that was
present in the field. To calculate the correct leaf area, a correction factor could be included to
estimate non-visible leaves. However, this problem is only expected in late growth stages,
where a large proportion of the leaves overlap. Tables 4–6 compare the detected leaf area
with the measured visible leaf area and with the leaf area calculated. For calculating the leaf
length, the leaf-attachment point was standardized to one point for all leaves. Experiments
with individual leaf-attachment points for each leaf, assuming a linear z-progression of
the stem at the x-y-coordinate, showed large deviations. Especially in the center of the
plant, large deviations were found as the depth information of these leaves does not have
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a funnel-shaped orientation. The leaves show more of a spherical surface, whereby the
corresponding plane would determine a leaf-attachment point that is significantly too high.

Table 6. BBCH 41: comparison of measured, calculated (calc.), and detected leaf area and the mean
accuracy (MA) of the visible leaves (vis.).

Plant
Leaves
Visible

Number

Measured
LA vis.

(m2)

Calculated
(m2)

Leaves
Detected
Number

Detected
LA

(m2)

1 18 0.18 0.16 13 0.09
2 18 0.18 0.18 15 0.16
3 19 0.21 0.22 17 0.20
4 17 0.22 0.24 15 0.22
5 15 0.23 0.19 12 0.22
6 17 0.19 0.17 14 0.15
7 18 0.23 0.20 13 0.19
8 19 0.22 0.25 15 0.22
9 16 0.15 0.15 14 0.16
10 14 0.19 0.18 14 0.19

Mean Value 17.1 0.19 0.19 15.3 18.1

Standard deviation (%) 12.5 9.2 15.9 10.1 21.4

Mean accuracy (%) 91.7 87.6

With the method created for calculating the leaf area, an average accuracy of 90.9 %
from the actual leaf area with a mean value of 0.65 m2 was achieved in the latest growth
stage (Table 4—BBCH 48). The measured ground-truth values show an average leaf area
of 0.68 m2 with an average number of leaves of 13.9. The equation for calculating the leaf
area was adapted to Olfati [17]. Due to the segmentation results of the Mask R-CNN, an
average accuracy of 94.1 % from the calculated value was achieved. The deviations could
have been caused by damaged leaves and by the incorrect estimate of the leaf length when
the real leaf end was not visible.

Table 5 shows the results of growth stage BBCH 45. At this growth stage, more leaves
were visible, which may have been due to the smaller cabbage head. On average, there
were 19.4 leaves per plant at this growth stage, with an average area of 0.037 m2 per leaf.
At growth stage 48, there were on average 13.9 leaves per plant with an average leaf area
of 0.049 m2 per leaf. The calculated leaf area of 90.3% shows a comparable accuracy to
growth stage 48. Comparing the detection accuracy of the two growth stages, growth stage
45 shows a significantly lower accuracy of 84.9%. This is due to the poorer leaf detection. In
growth stage 45, a total of 32 leaves were not detected. In comparison, only 12 leaves were
not detected in growth stage 48. This may be due to the smaller number and bigger size of
the leaves. In addition, growth stage 45 shows a significantly larger standard deviation of
the measured leaf area of 20.21%.

Table 6 shows the results of the early growth stage (BBCH 41). At this stage of growth,
an average of 17.1 leaves with an average area of 0.02 m2 per leaf were visible. The leaf-area
calculation achieves a comparable accuracy of 91.7 % to the other two growth stages with
a mean leaf area of 0.19 m2. Due to the low individual leaf area, with a high number of
leaves, a total of 20 leaves were not detected. This leads to an accuracy of 87.6 % of the
detected LA.

Both for the fruit volume and the leaf area, the measured values across all growth
stages show that despite the same planting date and the same growth conditions, the
plants develop significantly differently. This is particularly evident in growth stage 45,
where there is a standard deviation of over 30% in fruit size and 20.2 % in leaf area. This
shows that individual measurements are important for, e.g., yield determination or plant
specific fertilizing, and that generalized volume data for all plants of a growth stage are
not accurate.
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4. Discussion
4.1. Experimental Setup

As the cabbage plants were completely destroyed during the measurement of the
ground-truth values, only a limited number of cabbage plants could be used during the
vegetation period. With the 30 harvested cabbage plants, a total of 504 individual leaves
could be measured, which provides a good data basis for the leaf-area calculation. For
subsequent research, a significantly larger number of data over more growth stages would
be required, especially for the determination of fruit volume, in order to be able to make a
statistically valid statement.

4.2. Depth Image Calculation

The SfM method offers many advantages for the generation of depth images. Due to
the short distance between camera and plant, an SfM method is beneficial because there is
no minimum distance for depth imaging, like there is in the case of commercially available
RGB-D cameras [51]. By using an SfM method, depth images with higher resolutions can be
generated without having to resort to expensive RGB-D cameras. Furthermore, it provides
a robust method of depth-image generation as external exposure influences do not affect
the quality of the depth image, as is the case with time-of-flight cameras [38]. To ensure
good terrain mobility, artificial shading was not used. In order to minimize problems in the
detection of the plant due to shadowing, depth information can be used as an additional
source of information for the neural network because it is more robust in terms of exposure
using the SfM method [52]. Problems in the SfM depth calculation could occur in the field,
especially in the border areas, when strong inclinations of the robot lead to a change in
height of the camera. These problems could be minimized with the positioning system of
the robot. With additional sensors and a static transformation, the exact camera position
could be calculated [32]. To avoid the scaling problems of the SfM approach, a stereo
camera could also be used to capture the depth information.

4.3. Crop Volume Calculation

The results of the cabbage volume calculation of the later growth stage show a higher
accuracy, which is due to the better visibility and delimitation of the significantly larger
cabbage head. The deviations of the calculated ground-truth values of the volume from
the measured values can be explained by two influences. The calculated method is based
on the labelled ground-truth images. If the labelling is incorrect, this automatically results
in reduced accuracy. In addition, the ground-truth images serve as a training basis for
the detection, which leads to poorer results. To increase accuracy, additional information
or sensors could be included in the labelling and training process [51]. Another negative
influence on the calculated volume lies in the calculation of the depth information. Due
to deviations in the recording height caused by demanding field conditions, a depth
calculation using an SfM approach can lead to deviations in accuracy. This error influence
also negatively affects the leaf-area calculation. These inaccuracies could be improved
by additional sensor technology for the exact description of the camera position. As an
alternative method, a multi-camera stereo method could also be used, which provides
accurate depth information regardless of the camera position and orientation.

Even with the inaccuracies shown and the correlation of 0.88 of a sphere volume to
the actual cabbage volume [38], the cabbage volume calculation could be used in practice
for vegetation monitoring and harvest management since the advantages such as the
non-destructive measurement and the high working speed outweigh the small deviations
in accuracy. However, for estimating other cabbage varieties, the development of more
adapted geometric methods would be needed.

4.4. Leaf-Area Calculation

The results of the leaf-area calculation based on the ground-truth data of an average
of 90.9 % confirm the accuracy of the developed method. By additionally recording the
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leaf width, an even more accurate statement about the leaf area could be made [17]. The
significantly lower accuracy of the detected leaf area, especially in growth stages 45 and 41,
can be attributed to the high number of leaves with a low leaf area, which are more difficult
to detect for a Mask R-CNN. The comparable segmentation accuracies of the leaf areas
of the three growth stages show that especially small visible leaf areas were not detected.
Comparing the segmentation result of the leaves from growth stage 48 of 0.47 mAP with
the result of the leaf area detection of 94.1%, it can be observed that due to the reduction in
the leaf-area determination to the leaf length, more minor deviations in the segmentation
do not have a substantial effect on the leaf-area calculation. This shows that the detection
of the leaves is of higher importance for the subsequent calculation of the leaf area than an
exact segmentation of the individual leaves.

To improve the detection results and an implementation into practice, larger data sets
would have to be generated and procedures for segmentation improvement would have
to be applied [52]. By only including the visible leaves in the calculation process, hidden
leaves remain unconsidered. Since these are only a few and contribute only minimally to the
photosynthetic performance of the plant, this influence is negligible for practical purposes.
Due to the independence of the leaf-area calculation from the fruit geometry, the developed
method for leaf-area determination could also be used for other leafy vegetable crops
or different cabbage varieties. Despite the inaccuracies shown, this method of leaf-area
calculation provides a reasonable basis for further work in vegetation monitoring due to its
simplicity and the resulting information. Especially the advantage of speed outweighs here.
Information about leaf length or fruit volume can be determined in seconds depending
on implementation and the system, which would take a manual worker several minutes
to measure.

5. Conclusions

A neural-network-based instance segmentation, as well as an SfM method for depth
calculation, were used to determine the volume and total leaf area of cabbage plants
by using a standard RGB camera over multiple growth stages. The measured standard
deviations of fruit size of up to 30% and leaf area of up to 20% show that despite the
same growth conditions, plants can differ significantly in their characteristics and that
a plant-individual analysis is necessary. By merging the two-dimensional segmentation
information from the Mask R-CNN with the three-dimensional information of the SfM
approach, several scientific and practice-relevant results could be achieved:

• With this method, the previous destructive and time-consuming steps of manual
measurements can be carried out significantly faster without damaging the plants. It
makes direct plant parameter measurement possible, thus enabling the avoidance of
measurements of inaccurate indicators such as the LAI, to gain information about the
plant development.

• By determining the fruit cross-section by the Mask R-CNN and assuming a spher-
ical shape, the fruit volume can be determined with 87% accuracy over several
growth stages.

• By determining the leaf-attachment point by the relative position of the leaves and
the leaf end point, the leaf length can be determined. The leaf length can then be
used to determine with 90.9% accuracy the total leaf area over several growth stages,
including overlapping leaf areas.

• The calculation of the leaf length provides a robust possibility to implement accurate
leaf-area determinations, even with deficient segmentation results.

• By capturing the depth information and segmenting individual plants, cabbages and
individual leaves with a minimal sensor setup, a basis for creating a digital twin for
smart farming applications is created.

To improve the method shown, more information about the leaf width needs to
be collected and approaches to improve detection need to be implemented. This work
demonstrates the possibility of creating a digital twin of cabbage, whereby a variety of
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plant parameters can be recorded remotely. This presents new possibilities for plant-specific
analysis in order to plan applications even more efficiently and sustainably.

In addition, future work could analyze the presented leaf-area calculation approach to
other cabbage varieties and field vegetables. Due to the independence of leaf-area deter-
mination from fruit geometry, this approach could be applied without many adaptations
to a wide range of varieties if they have a similar morphology. In the future, it would be
advisable to have the images taken by a drone in order to record plant parameters more
quickly and without the risk of damage to plants by the robot. The methods developed
would only have to be minimally adapted for this purpose.
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