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Abstract: The complex underwater environment usually leads to the problem of quality degradation
in underwater images, and the distortion of sharpness and color are the main factors to the quality of
underwater images. The paper discloses an underwater sequence image dataset called TankImage-I
with gradually changing sharpness and color distortion collected in a pool. TankImage-I contains
two plane targets, a total of 78 images. It includes two lighting conditions and three different water
transparency. The imaging distance is also changed during the photographing process. The paper
introduces the relevant details of the photographing process, and provides the measurement results
of the sharpness and color distortion of the sequence images. In addition, we verify the performance
of 14 image quality assessment methods on TankImage-I, and analyze the results of 14 image quality
assessment methods from the aspects of sharpness and color, which provides a reference for the
design and improvement of underwater image quality assessment algorithm and underwater imaging
system design.

Keywords: underwater dataset; underwater image quality; sequence image

1. Introduction

Underwater vision is an important basis for scientific research in ocean exploration,
marine biological surveys, and underwater engineering monitoring [1–3]. Due to the
absorption and scattering effects of water bodies and substances in water and the com-
plexity of the underwater environment, there is usually quality degradation in optical
underwater images [4–7]. Therefore, underwater image/video quality evaluation is of
great significance for high-quality image screening and comparison of underwater image
enhancement/restoration results. The analysis of image quality and the design of corre-
sponding algorithm are closely related to the dataset with known real quality. The natural
image dataset with sequence distortion can be used to verify the consistency of image
quality assessment (IQA) method and distortion level, and can provide reference for the
improvement and design of IQA.

Different distortion level images cannot be obtained in a real underwater environment,
so acquiring image sequences by controlled pool imaging conditions is a common method,
such as the Turbid dataset [8], the OUC-Vision dataset [9], and the NWPU dataset [10],
but these datasets do not consider the effect of imaging distance variation on underwater
image quality, and did not provide measurements of image sharpness and color distortion,
making it difficult to fully validate the performance of the image quality evaluation method
in terms of sharpness and color distortion of sequential images.

This paper provides an underwater sequence image dataset called TankImage-I with
gradually sharpness and color distortion, and provides the corresponding sharpness and
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color distortion measurements. Two plane targets are included in TankImage-I: the Col-
orChecker card and the SFR board, with a total of 78 images. We photograph in three
different transparent water bodies. The light source conditions include underwater natural
light and artificial light source. During the photographing process, the imaging distance is
changed by moving the target position. As far as we know, TankImage-I is the underwater
image sequence with the most comprehensive experimental conditions in underwater
image quality measurement. This is conducive to underwater image enhancement and
image quality evaluation methods to measure sharpness and color respectively. In addition,
we conducted several experiments of image quality evaluation methods on this image
sequence and analyzed the results of the image quality evaluation methods from the two
aspects of sharpness and color, which provide guidance for the design and improvement
of subsequent underwater image quality evaluation algorithms and underwater image
enhancement algorithms in terms of sharpness and color.

2. Related Work
2.1. Underwater Image Database

At present, there are many real underwater image datasets, such as fish4knowledge
dataset for underwater target detection and recognition [11], which contains a variety of fish
images; Islam et al. built an underwater image database EUVP [12] for image enhancement.
The EUVP includes 10,000 pairs of images and 25,000 unpaired images. Unpaired images
are taken by seven different cameras. The photographing environment includes the marine
environment under different visibility conditions. The paired images are generated by
CycleGAN [13], forming an image pair with unpaired images; Li et al. similarly built a
database for underwater image enhancement (underwater image enhancement benchmark,
UIEB) [14] which included 950 real world underwater images, of which 890 were enhanced
by the authors, and the remaining 60 underwater images that could not obtain satisfactory
enhanced images were regarded as challenging data.

However, most of the underwater images in these underwater real image datasets only
include one scene, so it is difficult to measure the changes of sharpness and color distortion
in the image alone. Therefore, there are also some underwater image datasets with different
distortions obtained by controlling the experimental conditions, such as OUC-VISION [9],
a large underwater database for underwater salient target detection or saliency detection
proposed by Jian et al. which contains 4400 images of 220 objects, each using four pose
variations (front, opposite, left and right side views) and five spatial positions (top left,
top right, center, bottom left and bottom right) were photographed, while OUC-VISION
changed the transparency of the water body by adding soil to the water. In terms of
light source, the combination of three LEDs is used to simulate four lighting conditions,
However, the imaging distance in OUC-VISION is fixed, and the influence of the change of
imaging distance on underwater image quality cannot be simulated; Duarte et al. proposed
the TURBID sequence images [8], where the photographs of real underwater images were
taken and placed in a water tank, and then the turbidity of the water was changed by
controlling the milk added to the tank, Duarte et al. proposed the TURBID-3D dataset
based on the TURBID sequence image set, and the experimental objects in TURBID-3D
were increased with 3D objects such as rocks on the sea floor, corals. The TURBID and
TURBID-3D datasets only changed the transparency of the water body, and the imaging
distance and illumination conditions did not change. The experimental conditions of the
above underwater sequence image sets are not comprehensive enough, and there is a lack of
measurement results of sharpness and color distortion, so there are limitations in verifying
the performance of underwater quality evaluation algorithms and image enhancement
algorithms in sharpness and color distortion. Camilo et al. [15] proposed an underwater
sequence image set UIDLEIA-DATABASE with real quality score. The targets include five
colors, and the photographing environment includes different changes of water turbidity
and imaging distance. The image quality score is obtained by single stimulation method.
However, the illumination conditions of underwater environment are not changed in
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UIDLEIA-DATABASE, and the change of sharpness distortion is not measured. Table 1
gives a brief summary of the above databases.

Table 1. Comparison of partial underwater image datasets.

Dataset Year Image
Number Target Imaging

Distance
Water Trans-

parency
Illumination
Conditions

Distortion
Measure-

ment

Fish4Knowlege 2013 27,370 Fishes Fixed value

Natural
transparency

of water
body

Underwater
natural light None

TURBID 2015 80
Underwater
scenes and

artifacts
Fixed value

Control the
addition of

milk to water

Artificial
light source None

TURBID-3D 2016 82
Underwater
scenes and

artifacts
Fixed value

Control the
addition of

milk to water

Artificial
light source None

OUC-Vision 2017 4400
Stones and

other
artifacts

Fixed value

Controls the
amount of

soil added to
the water

body

Underwater
natural light
and artificial
light source

None

UIDLEIA-
DATABASE 2019 135

Different
colors

artifacts
Changed

Controls the
amount of
green tea

added to the
water body

Fixed None

EUVP 2020

10,000 image
pairs + 25,000

non image
pairs

Underwater
creatures
such as

stones and
fish

Fixed value

Natural
transparency

of water
body

Underwater
natural light None

2.2. Image Quality Assessment Method

Sheikh et al. first applied natural scenes statistics (NSS) in the field of image qual-
ity evaluation and proposed the NSS-based method JP2KNR for blind IQA (BIQA) [16],
JP2KNR showed that human perception of image quality and perception of distortion is
related to the natural statistics of images, then more and more methods based on NSS
features have been developed subsequently. Moorthy et al. proposed DIIVINE [17] based
on identifying the type of image distortion, DIIVINE uses wavelet decomposition at two
scales to obtain a directional bandpass response and then extracts a series of statistical
features using the obtained subband coefficients. Mittal et al. proposed BRISQUE [18] to
obtain the fitted coefficients by extracting the product of the mean subtracted contrast nor-
malized (MSCN) coefficients of the image and the adjacent coefficients of the MSCN, and
then fitting the above coefficients using the generalized gaussian distribution (GGD) [19]
as quality related features. Saad et al. proposed a method BLIINDS2 based on DCT do-
main [20]. BLIINDS2 learns the mapping from quality features to quality scores through
probability prediction model; Xue et al. proposed BIQA model GM-LOG based on gradient
magnitude (GM) and response of Laplacian of Gaussian (LOG) [21]; Zhang et al. proposed
the evaluation method ILNIQE integrating multiple NSS features [22]. Inspired by ILNIQE,
Liu et al. proposed SNPNIQE [23] to measure the degradation of image quality in terms of
changes in structure, naturalness, and perceptual quality, where changes in structure are
represented by deviations in phase congruency (PC) and gradient distribution, and changes
in naturalness are characterized by the product of MSCN and the products of pairs of the
adjacent MSCN coefficients, using a sparse model to simulate the changes in perception by
human vision. Liu et al. [24] proposed a NSS and Perceptual characteristics-based Quality
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Index (NPQI), which extracts a set of quality-aware NSS and perceptual characteristics-
related features, and then build a pristine multivariate Gaussian (MVG) model to infer the
image quality.

In addition to the above methods based on NSS features, Ye et al. proposed a codebook
based method CORNIA [25], which extracts the mean value of image blocks for normaliza-
tion, and performs ZCA (zero components analysis) whitening, then uses the standardized
image blocks as local features for the construction of codebook; In HOSA [26] proposed by
Xu et al., image blocks are also extracted to establish codebook. Compared with CORNIA,
HOSA not only calculates the mean value of clusters, but also calculates the two high-order
features of variance and skewness for clustering; Liu et al. proposed SSEQ [27] to extract the
phase consistency and spatial entropy of the image as image features; Yang et al. proposed
MsKLT [28] based on the KLT transform, and MsKLT extracts the KLT coefficients of the
image and uses GGD to obtain the fitting parameters as quality related features.

The IQA methods described above were all experimented on natural image datasets,
so the performance of these methods in underwater images with complex distortion needs
to be confirmed.

2.3. Underwater Image Quality Assessment Method

Underwater IQA methods mostly focus on evaluating the enhancement and recovery
of grayscale underwater images [29–32]. For example, Schechner and Karpel et al. [33]
analyzed the physical impact of underwater visibility decline and restored the image
by enhancing the contrast of underwater image; Hou [34] et al. and others proposed
an image sharpness evaluation standard based on weighted gray scale angle (GSA) for
underwater target images with noise. Arredondo and lebart et al. [35] proposed a method
for quantitative evaluation of underwater noise in underwater video images.

For underwater color images, Karen et al. [36] proposed an underwater IQA method
UIQM (underwater image quality measure), which combines color measurement, sharpness
measurement and contrast measurement as a basis for evaluating the quality of underwater
images. Yang et al. proposed a UCIQE (underwater color image quality evaluation) [37]
metric for underwater color image quality evaluation, using CIELab spatial chroma, satu-
ration and contrast as quality measures, and uses the obtained MOS to fit the weighting
coefficient by multiple linear regression; The FDUM [38] proposed by Yang et al. also
extracts the component values of three aspects of underwater image: chroma, contrast and
sharpness. For the low contrast distortion caused by backscattering, FDUM proposes a
dark channel prior weighted contrast measure to enhance the discrimination ability of the
original contrast measurement, and the same sharpness, color and contrast components are
extracted and then weighted.

From the above underwater IQA methods, it can be seen that sharpness and color
are closely related to underwater image quality, so an underwater image quality dataset
with gradual changes in sharpness and color distortion is important for underwater image
quality evaluation methods.

3. TankImage-I Environment Setup and Analysis
3.1. Camera System and Lighting System

The tank for photographing was 2.53 m long, 1.02 m wide and 1.03 m high, with obser-
vation windows on both sides. The photographing targets of the water tank environment
are SFR board and ColorChecker card (21.59 × 27.94 cm), the tank and targets are shown in
Figure 1a–c. The camera selects OTI-UWC-325/P/E color camera. We choose three kinds
of water quality with different transparency for shooting: clear, medium turbid and turbid.
The transparency of water body measured by blackboard method [39] is 325 cm (clear),
182 cm (medium turbid) and 85 cm (turbid). We use a 150 W halogen lamp as the artificial
light source. As shown in Figure 1d, the artificial light source is placed 50 cm away from
the camera.
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(a) Tank (b) ColorChecker card

(c) SFR board (d) Artificial light source

Figure 1. Experimental environment and targets.

3.2. Imaging Distance Setting

The water depth in the tank was 90 cm, and the target was placed 45 cm from the
surface of the water body. Keeping the camera and lights stationary, the target was moved
every 10 cm, TankImage-I contains 12 sequences, a total of 78 images. The specific imaging
distance and other information are shown in Table 2. The higher the transparency in Table 2,
the higher the degree of visibility, i.e., the highest degree of visibility when the transparency
is 325 cm, the next highest transparency is 182 cm. The worst visibility is at 85 cm.

Table 2. Relevant information of images in Tankimage-I.

Sequence Number of
Images Target Turbidty

(cm)

With
Artificial

Light Source
or Not

Min
Distance

(cm)

Max
Distance

(cm)

Distance
Interval (cm)

Sequence1 7 SFR 325 Y 50 110 10
Sequence2 8 SFR 325 N 50 120 10
Sequence3 8 Colorchart 325 Y 50 120 10
Sequence4 8 Colorchart 325 N 50 120 10
Sequence5 7 SFR 182 Y 60 120 10
Sequence6 7 SFR 182 N 60 120 10
Sequence7 8 Colorchart 182 Y 50 120 10
Sequence8 8 Colorchart 182 N 50 120 10
Sequence9 3 SFR 85 Y 60 100 10

Sequence10 4 SFR 85 N 50 100 10
Sequence11 6 Colorchart 85 Y 60 110 10
Sequence12 4 Colorchart 85 N 50 80 10

3.3. Imatest Quality Evaluation Software Evaluation

We use Imatest software to measure the sharpness and color distortion of the image
in TankImage-I. Imatest software tests cameras and imaging systems by comparing the
differences between standard images from a graphics card and captured test images.
Imatest includes modules such as SFR, Colorcheck, and Stepchart. In order to measure
the change of sharpness and color in underwater images as the experimental conditions
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change, two plane targets, the SFR board and the ColorChecker card, are selected as imaging
targets in this paper. The SFR plus module automatically analyzes the sharpness, field of
view, aberrations and other image quality parameters of the SFR board; the Colorcheck
module analyzes the color accuracy, tonal response, gamma, signal-to-noise ratio and other
parameters of the ColorChecker card.

The sharpness in the SFR plus module can be obtained by measuring the spatial
frequency response (SFR), also called the modulation transfer function (MTF). We chose to
use the value of MTF50 as the sharpness indicator since the 50% MTF is in good agreement
with the human vision of the sharpness results. Table 3 shows the results of the SFR board
images analyzed using the SFR plus module. (where “\” indicates that no image was taken
at that distance).

Table 3. Analysis results of SFR plus module on SFR board.

Transparency Distance from
Camera (cm)

Artificial Light
Source

MTF50
(LW/PH)

Distance from
Camera (cm)

Artificial Light
Source

MTF50
(LW/PH)

325 cm

50

Yes

192.3 50

No

148.2
60 260.5 60 127.5
70 245.1 70 120.8
80 256.8 80 116.2
90 227.1 90 118.6

100 224.8 100 128.3
110 260.6 110 133.3
\ \ 120 109.1

182 cm

60

Yes

236.9 60

No

146.9
70 232.4 70 132.9
80 208.4 80 117.8
90 210.0 90 120.0

100 206.3 100 117.3
110 196.7 110 131.6
120 222.1 120 127.8

85 cm

60

Yes

74.3 50

No

96.2
70 79.2 60 97.1
80 47.0 70 51.8
\ \ 80 46.0

The color error ∆E∗ab between the standard ColorChecker card and the captured
ColorChecker card image on the CIELAB color space is calculated in the Colorcheck
module. ∆E∗ab is calculated as shown in Equation (1).

∆E∗ab = ((L2 − L1)
2 + (a2 − a1)

2 + (b2 − b1)
2)1/2 (1)

where L1, L2 represent the luminance of the standard ColorChecker test card and the
experimentally taken ColorChecker test card, respectively, a2 and a2 are the values of the
green red channel in CIELAB space, and b1 and b1 are the values of the blue yellow channel.
and we choose ∆E∗ab as the color distortion index of the image. Table 4 shows the results
of the ColorChecker test card images analyzed using the Colorcheck module.
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Table 4. Analysis results of ColorCheck module on ColorCheck card.

Transparency Distance from
Camera (cm)

Artificial Light
Source ∆E∗

ab
Distance from
Camera (cm)

Artificial Light
Source ∆E∗

ab

325 cm

50

Yes

34.9 50

No

61.0
60 43.7 60 55.6
70 44.8 70 58.1
80 47.7 80 60.1
90 40.8 90 61.3

100 38.6 100 62.6
110 38.2 110 63.5
120 37.0 120 63.7

182 cm

50

Yes

27.8 50

No

51.3
60 39.5 60 54.2
70 45.8 70 56.8
80 50.0 80 58.6
90 47.7 90 61.3

100 48.6 100 62.6
110 47.9 110 63.5
120 49.7 120 63.7

85 cm

60

Yes

60.2 50

No

50.2
70 60.4 60 50.9
80 57.0 70 52.7
90 51.4 80 53.6

100 47.7 \ \
110 43.9 \ \

4. Experiment and Analysis
4.1. Result Analysis of Image Quality Evaluation Method on Tankimage-I

In this paper, we select 11 natural image quality assessment methods: BLIINDS2 [20],
BRISQUE [18], CORNIA [25], DIIVINE [17], Grad_Log [21], ILNIQE [22], HOSA [26],
SNPNIQE [23], SSEQ [27], MSKLT [28] and NPQI [24]; three underwater image quality
assessment methods: UCIQE [37], UIQM [36] and FDUM [38], a total of 14 methods to
evaluate the quality of each sequence image set in TankImage-I. The prediction quality
score curves of each method are shown in Figure 2, and the abscissa is imaging distance.
The water transparency of the image in the leftmost column in Figure 2 is 325 cm, the water
transparency of the image in the middle column is 182 cm, and the water transparency of
the image in the rightmost column is 85 cm.
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Figure 2. Predict score curves of each quality evaluation method on Tankimage-I.

For the SFR board image, under the water transparency of 325 cm and artificial light
source, as shown in Figure 3, when the imaging distance is small there is a bright reflection
area in the image, which makes the local clarity of the image change, and with the increase
of the imaging distance, the presence of suspended matter in the water makes the noise
in the image, and the backward scattering becomes the main attenuation component, the
evaluation result of UCIQE is in good agreement with the change of blurring degree of the
SFR board. When the lighting condition is natural light, as shown in Figure 4, foggy blur
and low contrast distortion caused by scattering are mainly present in the image. At this
time, the scores of BRISQUE, HOSA and UCIQE are in good agreement with the change of
blurring degree of SFR board. And the distortion when the water transparency is 182 cm
is similar to the distortion when the water transparency is 325 cm. When the imaging
distance is larger, the noise in the image under artificial light source is more serious, and
the evaluation results of BRISQUE, HOSA and UIQM have better consistency in the change
of blurring degree of SFR plate. And the consistency of the blurring degree change of SFR
plate is better for the evaluation results of BRISQUE, SNPNIQE and UCIQE under natural
light. (d is the imaging distance)

For ColorChecker card images, the evaluation results of MsKLT and ILNIQE were in
good agreement with the change of color distortion degree under the water transparency of
325 cm and artificial light source; the evaluation results of UCIQE were in good agreement
with the change of color distortion degree under natural light. While the transparency of
water body is 82 cm, the evaluation results of ILNIQE, UCIQE and UIQM under artificial
light source are in better agreement with the change of color distortion degree.
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(a) d = 50 cm (b) d = 60 cm

(c) d = 70 cm (d) d = 80 cm

Figure 3. The transparency of water body is 325 cm, and some images under artificial light source.

(a) d = 50 cm (b) d = 60 cm

(c) d = 70 cm (d) d = 80 cm

Figure 4. The transparency of the water body is 325 cm, which is part of the images under natural light.

4.2. Consistency Analysis of Image Quality Evaluation Methods and Sharpness and
Color Distortion

In order to further analyze the relationship between the evaluation results of the
14 quality evaluation methods on TankImage-I and the sharpness and color distortion, we
calculated the PLCC values between the evaluation results of the above quality evaluation
methods on the SFR board and the MTF50 measured under the corresponding experimental
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conditions, and the results are shown in Table 5. (SFR images at 85 cm transparency are
too few, so they are not calculated separately). In addition, we also calculated the PLCC
values between the evaluation results of the five color image quality evaluation methods
on the ColorCherker card and the ∆E∗ab measured under the corresponding experimental
conditions, and the results are shown in Table 6. The corresponding curves of PLCC
between IQA prediction results and MTF50, and PLCC between IQA prediction results and
∆E∗ab are shown in Figures 5 and 6.

Table 5. PLCC between each method and MTF50 under different experimental conditions.

Water
Transparency 325 cm 325 cm 182 cm 182 cm

Mean ValueIllumination
Conditions

Artificial Light
Source Natural Light Artificial Light

Source Natural Light

BLIINDS2 [20] 0.18 0.68 0.60 0.72 0.55
BRISQUE [18] 0.38 0.66 0.78 0.69 0.63
CORNIA [25] 0.39 0.17 0.24 0.07 0.22
DIIVINE [17] 0.15 0.49 0.64 0.69 0.49

Grad_Log [21] 0.23 0.52 0.28 0.17 0.30
HOSA [26] 0.52 0.72 0.58 0.68 0.63

ILNIQE [22] 0.61 0.35 0.76 0.52 0.56
MsKLT [28] 0.27 0.01 0.38 0.50 0.29

SNPNIQE [23] 0.41 0.47 0.71 0.75 0.59
SSEQ [27] 0.10 0.60 0.49 0.09 0.32
NPQI [24] 0.24 0.53 0.58 0.70 0.51

UCIQE [37] 0.48 0.63 0.40 0.86 0.59
UIQM [36] 0.08 0.65 0.75 0.65 0.53
FDUM [38] 0.21 0.59 0.60 0.91 0.58

Table 6. PLCC between each method and ∆E∗ab under different experimental conditions.

Water
Transparency 325 cm 325 cm 182 cm 182 cm 85 cm

Mean ValueIllumination
Conditions

Artificial Light
Source Natural Light Artificial Light

Source Natural Light Artificial Light
Source

ILNIQE [22] 0.59 0.77 0.21 0.85 0.95 0.67
MsKLT [28] 0.53 0.73 0.50 0.85 0.54 0.63
UCIQE [37] 0.12 0.67 0.97 0.98 0.98 0.74
UIQM [36] 0.11 0.66 0.82 0.99 0.92 0.70
FDUM [38] 0.39 0.68 0.58 0.98 0.28 0.58

From Figure 5, it can be seen that the average PLCC values of BLIINDS2, BRISQUE,
HOSA, ILNIQE, NPQI and SNPNIQE in the natural image quality evaluation methods
are all over 0.5, where BLIINDS2 has a PLCC value less than 0.2 under the transparency
of 325 cm and artificial light source from Table 5. When the imaging distance is small, as
shown in Figure 3, it can be seen that there is a bright reflection on the SFR board, and
the sharpness around the high bright reflection area changes, which affects the score of
BLIINDS2. As shown in Figure 7, there is a highlighted area in (a), and BLIINDS2 prediction
score (The higher the DMOS value, the worse the image quality) misjudged the relative
quality of image pairs of (a) and (b). Therefore, the transparency of BLIINDS2, UIQM and
FDUM in Figure 2 is 325 cm, and the score curve under artificial light source is inconsistent
with the change of sharpness distortion.
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(a)

(b)

Figure 5. PLCC curve between IQA predict results and MTF50 value. (a) PLCC curve between
results of natural IQA methods and MTF50 value, (b) PLCC curve between results of underwater
IQA methods and MTF50 value.

Figure 6. PLCC curve between IQA predict results and ∆E∗ab value.
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In addition, although the PLCC values between BLIINDS2 score and MTF50 in natural
light exceed 0.6 for both transparency of 325 cm and 182 cm, BLIINDS2 score curve at
transparency of 325 cm and natural light are not consistent with the change in the degree
of sharpness distortion. This may be due to the fact that the DCT coefficients extracted
by BLIINDS2 do not adequately represent the distortion variation in underwater images,
which are mainly affected by backscatter. As shown in Figure 8, both (a) and (b) have
blurring and low contrast caused by backward scattering, and the distortion is more
severe in (b) than in (a), while BLIINDS2 prediction score misjudged the relative quality
of image pairs of (a) and (b), and BLIINDS2 also averages the extracted local features,
which can cause further damage to the performance of BLIINDS2. Therefore, when the
transparency is 325cm and the illumination condition is natural light, the predict result of
BLIINDS2 is inconsistent with the change of sharpness distortion. The phase consistency
feature extracted from SNPNIQE is easily affected by noise, which may cause the score
of SNPNIQE under artificial light source to be inconsistent with the change of sharpness
distortion, as shown in Figure 9.

(a) (b)

Figure 7. Bliinds2, UIQM and FDUM misjudgment example. (a) Bliinds2(DMOS)=20 UIQM = 0.93
FDUM = 0.43, (b) Bliinds2(DMOS) = 29 UIQM = 0.91 FDUM = 0.06.

(a) (b)

Figure 8. Bliinds2 and FDUM misjudgment example. (a) Bliinds2(DMOS) = 8 FDUM = 0.31, (b)
Bliinds2(DMOS) = 15 FDUM = 0.24.
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(a) (b)

Figure 9. SNPNIQE misjudgment example. (a) SNPNIQE(DMOS) = 7.40, (b) SNPNIQE(DMOS) = 9.47.

From Figure 6, for the natural IQA methods, when the water transparency is 325 cm
and under the artificial light source, PLCC value between the prediction score of ILNIQE
and ∆E∗ab are large, which means ILNIQE has a good assessment performance on the color
evaluation of underwater image at this time. PLCC value between the predicted scores
of ILNIQE and MsKLT under natural light and the corresponding ∆E∗ab exceed 0.7, that
is, the predicted results of ILNIQE and MsKLT are in good agreement with the change of
color distortion degree of underwater image. When the water transparency is 182 cm, it
can be seen from Table 6 that the PLCC between the predicted score of ILNIQE and the
measured value of color distortion under artificial light source is only 0.21. At this time,
the backscattering of suspended solids in the underwater background makes noise exist
in the image, and ILNIQE is sensitive to noise, which may affects the prediction results
of ILNIQE.

For the underwater IQA methods UCIQE and UIQM, when the water transparency is
325 cm and under the artificial light source, the PLCC value between the prediction scores
and ∆E∗ab are smaller, which may be due to the existence of highlighted areas in the image
and affects the calculation results of contrast components in UCIQE and UIQM.

Therefore, in relatively clear water and under artificial light source, ILNIQE can
be considered to evaluate the sharpness and color of underwater image, while UIQM
and UCIQE under natural light are more suitable to evaluate the sharpness and color of
underwater image. In the turbid water body, ILNIQE and UIQM are more suitable to
evaluate the definition and color of underwater image under artificial light source, while
UCIQE and FDUM are more suitable to evaluate the sharpness and color of underwater
image under natural light.

4.3. Underwater Real Image Database Experiment

UIEB [14] database is a database of 950 real-world underwater images. The author
enhanced 890 of them and gave the enhanced images. In addition, 60 images with unsatis-
factory enhancement effect are regarded as challenging by the author. We selected 8 pair
of images, including the original image and the enhanced image, as shown in Figure 10.
Among them, the enhanced image in (a)–(d) is better than the image before the enhance-
ment in terms of color, and the enhanced image in (e)–(h) is better than the image before
the enhancement in terms of sharpness and contrast. In order to further verify our analysis
on the sharpness and color of IQA methods, we analyzed the accuracy results of each IQA
method on these 8 image pairs. The results are shown in Table 7. (“T” indicates that the
result of the image quality evaluation method correctly judges the relative quality of the
image pair, “F” indicates that the result of the image quality evaluation method misjudges
the relative quality of the image pair.)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. (a–h) are image pairs selected from UIEB, in which the upper image of each pair is the
image after enhancement and the lower image is the image before enhancement.

Table 7. Judgment results of each evaluation method on 8 pairs of images in the UIEB database.

Method (a) (b) (c) (d) (e) (f) (g) (h) Accuracy

DIVINE [28] F F F F T T T T 50%
BRISQUE [18] T T T T T F F T 75%
BLIINDS2 [20] F T T T F F F F 37.5%
Grad_Log [21] T T T F T T T T 87.5%
ILNIQE [22] T T T T T T T T 100%
SNPNIQE [23] F F F F T T T T 50%
SSEQ [27] F F T F T T T T 62.5%
MsKLT [28] F F T F T T T T 62.5%
CORNIA [25] F F F T T T T T 62.5%
HOSA [26] F T T F T T T T 75%
UCIQE [37] T T T T T T T T 100%
UIQM [36] T T T T T T T T 100%
FDUM [38] T T T T T T T T 100%

From the Table 7, it can be seen that the accuracy of all three underwater image quality
evaluation methods reached 100%, and the accuracy of ILNIQE also reached 100%, because
the features extracted by ILNIQE are very rich and include a variety of statistical features.
And BLIINDS2 has the lowest accuracy rate. From the results of accuracy, we can see that
the pairs with wrong judgment are basically concentrated in (a)–(d), and these pairs have
significantly improved the color after enhancement, which indicates that these evaluation
methods do not fully utilize the color information of the image, and there is room for further
improvement in the processing and utilization of color information in future underwater
image quality evaluation methods.
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5. Conclusions

In this paper, underwater sequence images with gradual changes in sharpness and
color distortion were obtained by controlling the experimental conditions and environment,
and provides the analysis results of the sharpness and color distortion of the sequence im-
ages obtained by using the image quality test software imatest. In addition, the commonly
used image quality evaluation methods in 13 are evaluated on each sequence image, and
the experimental results are analyzed and further validated, which provides a reference for
the design of future algorithms for underwater image quality evaluation, image enhance-
ment, and also provides some ideas for the improvement of the currently existing quality
evaluation algorithms.
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