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Abstract: Localization is an important technology for autonomous driving. Map-matching using
road surface pattern features gives accurate position estimation and has been used in autonomous
driving tests on public roads. To provide highly safe autonomous driving, localization technology
that is not affected by the environment is required. In particular, in snowy environments, the features
of the road surface pattern may not be used for matching because the road surface is hidden. In such
cases, it is necessary to construct a robust system by rejecting the matching results or making up
for them with other sensors. On the other hand, millimeter-wave radar-based localization methods
are not as accurate as LiDAR-based methods due to their ranging accuracy, but it has successfully
achieved autonomous driving in snowy environments. Therefore, this paper proposes a localization
method that combines LiDAR and millimeter-wave radar. We constructed a system that emphasizes
LiDAR-based matching results during normal conditions when the road surface pattern is visible and
emphasizes radar matching results when the road surface is not visible due to snow cover or other
factors. This method achieves an accuracy that allows autonomous driving to continue regardless of
normal or snowy conditions and more robust position estimation.

Keywords: localization; sensor fusion; autonomous driving

1. Introduction

In autonomous driving, localization is important for path planning, decision-making,
operation, etc. Localization can be divided into two main types of methods. The first
is satellite positioning using the Global Navigation Satellite System (GNSS), which is
not available in places where radio waves do not reach, such as tunnels and mountain
areas, and in high buildings, where multipath can decrease the estimation accuracy [1]. The
second is map matching which estimates where the vehicle is located on a map by matching
sensor data with a map related in advance. Commonly used features in autonomous driving
include road surface patterns such as white lines and three-dimensional structures such as
poles and buildings. In many cases, autonomous driving is achieved by combining satellite
positioning and map matching, where satellite positioning is used to initialize and roughly
determine location, and map matching is used for more precise position estimation. Thus,
the challenge for safe autonomous driving is to increase the accuracy and robustness of
map matching.

The 2007 Urban Challenge was the first demonstration of autonomous driving in an
urban environment, and various universities and companies participated [2–4]. In this
project, Levinson et al. developed a road surface pattern-based map matching technique
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using LiDAR (Light Detection Furthermore, Ranging) to achieve position estimation with
RMS accuracy in the 10-cm range [5]. Since LiDAR has a ranging accuracy of a few cen-
timeters, it can provide a detailed representation of road surface patterns and object shapes.
For that reason, LiDAR-based map matching methods are mainly used in autonomous
driving [6–8].

Many of the LiDARs used in research and development are high cost, thus one of the
most important issues is to reduce the cost of LiDARs. As a low-cost sensor, MEMS (Micro
Electro Mechanical Systems) mirror type LiDAR has been developed and is expected to be
widely used in general vehicles. This sensor has a different field of view and resolution from
the typical ones because of the different laser scanning mechanisms [9]. Kato et al. proposed
and developed a localization method using MEMS mirror type LiDAR, considering its
characteristics, and achieved a position estimation accuracy of 0.15 m [10].

Matching methods using 3-D point clouds instead of road surface patterns have also
been proposed for LiDAR-based methods. Kato et al. have proposed a method for fast
localization by using Normal Distribution Transform (NDT) scan matching to align 3-D
point clouds [11]. Schaefer et al. have developed a method for extracting pole-like objects
from a 3-D point cloud and aligning them with a map using these points [12].

However, LiDAR-based map-matching has issues to be solved to provide accurate po-
sition estimation for autonomous driving in various situations. For example, under heavy
rain conditions, it may not be possible to correctly obtain the pattern and shape of the
road surface due to laser reflection and scattering. Furthermore, in snowy environments,
snow can change road shape and cover the road surface. Under such situations, the map
and sensor data features can be significantly different, causing incorrect matching results,
which decreases the estimation accuracy. The strategy to avoid this issue is to simply
reject the matching results. Rejecting the results will suppress the influence of the envi-
ronment, but if the problematic situation occurs over a certain long interval, the matching
results will be continuously rejected during that section, which may increase the error. To
solve this problem, other methods and sensors should be used in combination to ensure
system redundancy.

Millimeter-wave radar is a candidate sensor for use in combination with LiDAR. A
method based on the observation of objects such as poles and guardrails using millimeter-
wave radar and matching them by their features has been proposed to estimate the position,
achieving autonomous driving in urban areas during snowy weather [13]. Millimeter-wave
radar has a lower estimation accuracy than LiDAR-based localization in terms of ranging
accuracy, and quantitative evaluations have shown that the RSM accuracy is about 0.25 m.

Other methods include camera-based localization. As a monocular camera-based
method, a technique for detecting road surface patterns such as lane marking and matching
them with a map has been proposed [14]. A stereo camera-based method has been proposed
that reconstructs a 3-D point cloud from disparities and applies scan matching for position
estimation [15]. Brubaker et al. have proposed a visual odometry-based self-localization
method using OpenStreetMap [16]. The unique feature of this method is that it can estimate
locations without GNSS data. The trajectory of a vehicle can be obtained using visual
odometry calculated from camera images, and the vehicle’s position can be determined
by matching the trajectory with the road structure of a map. However, the accuracy of
this method is in the range of a few meters, which is insufficient for safe autonomous
driving standalone. In addition, cameras are not suitable for use with LiDAR because they
cannot provide precise information in bad weather conditions, such as snow if their view
is occluded.

Several methods have been proposed that use multiple different sensors in combina-
tion. Tsuchiya et al. have proposed a method that combines a camera and LiDAR using a
map of road surface pattern and a 3-D point cloud map [17]. In the research, the difference
between the angle of the detected white line and that on the map at the predicted position
is used as the confidence level of the white line matching result. If the angular difference is
greater than a threshold, it can be rejected. The confidence level of the NDT scan matching
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of the 3-D point cloud is determined based on the histogram of the Mahalanobis distance.
If the percentage of point clouds with small Mahalanobis distances is less than a threshold,
the matching result can be rejected. This method achieves an accuracy of less than 0.1 m in
the vehicle lateral direction and about 0.3 m in the vehicle forward/backward direction.
However, the method of setting thresholds for the difference between observations and
predictions and the similarity of matching results can only reject obvious mismatches.

Lee et al. have proposed a self-localization method that combines a camera and
LiDAR and sets a confidence level for each sensor’s observation and each map used for
map matching [18]. For LiDAR, NDT matching of 3D point clouds is performed, and for
the camera, white line matching is performed. The confidence level of the LiDAR is set
based on the percentage of the number of objects determined to be stationary objects out
of the total number of objects detected by clustering among the observed point clouds.
When the number of stationary objects is high and the number of moving objects is low,
the confidence level of the observation is increased. The confidence level of the LiDAR
map is increased when the map contains many objects of a certain height and decreases
when there are few. Camera observation confidence is calculated based on the number
of white lines detected, and camera map confidence is calculated in the same way as
for observations.

Besides, a system using learning by Convolution Neural Network (CNN) has been
developed as a method for estimating the confidence level of matching [19]. This method
uses a particle filter to estimate position, and at the same time determines whether the
result is in the correct position. If it determines that the estimation has failed, it resets the
localization to recover the correct position. The purpose of our research in this paper is
to reject incorrect matching results and prevent a loss of estimation accuracy. Therefore,
the above method is a different approach from the requirements of this study.

In this paper, we propose a localization method that combines LiDAR and millimeter-
wave radar. During normal conditions when the road surface pattern is visible, the match-
ing results of LiDAR are emphasized for highly accurate position estimation. On the other
hand, when the road surface is not visible due to heavy rain or snowfall, radar matching
results are emphasized to provide position estimation that enables continued automated
driving, even if the accuracy is lower than that based on LiDAR. This provides weather-
independent localization. For this, it is necessary to determine whether the road surface
pattern is visible or not, and solving this problem is critical to realizing the system. For
this purpose, we propose a confidence estimation method based on deep learning. The
calculated confidence level is used as a weight when integrating LiDAR matching results,
thereby changing the influence of LiDAR results. We also implement the proposed method
and evaluate its effectiveness in autonomous driving by verifying its accuracy using actual
driving data in a real environment.

2. Proposed Method
2.1. Vehicle and Sensor Configuration

As a prerequisite, the vehicle and sensor configuration used in this study are described.
The test vehicle and sensor configuration are shown in Figure 1. The vehicle is equipped
with an Applanix POS-LV220 GNSS/INS(Global Navigation Satellite System/Inertial
Navigation System) that acquires position (latitude, longitude, and altitude) and attitude
angle (roll, pitch, and yaw) at a frequency of 100 Hz. In this study, positions, where off-line
post-processing corrections were performed on the POS-LV220 data, are used as ground
truth in the evaluation.

A camera is mounted on the front-side glass. This camera is used for traffic signal
recognition in autonomous driving. It is not used for self-position estimation, but it
provides important information about the conditions of the location when analyzing data,
such as when an issue is found.
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The LIDAR sensor is a Velodyne VLS-128 Alpha Prime, which has 128 laser transmit-
ting and receiving sensors. This sensor is capable of measuring three-dimensional distance
omnidirectional horizontally and can acquire data at a frequency of 10 Hz.

A total of nine 77 GHz millimeter-wave radars are mounted on the front and rear
bumpers, and the mounting positions and directions of the sensors are shown in Figure 2.
Each radar acquires the distance, angle, and relative velocity of an object at a frequency of
20 Hz.

!"#$%

&'(()*'(+",,"-./.01234.5%3630

73-.03

Figure 1. Test Vehicle.

Figure 2. Sensor layout of millimeter-wave radars. The vehicle has nine radars. The numbers are
sensor IDs.

2.2. Overview

The proposed method consists of two steps: dead-reckoning and map matching.
First, a rough position is estimated by dead reckoning using the velocity vector obtained
from GNSS/INS. A dead-reckoning position can be calculated by integration of velocity
vectors over time. Let a velocity vector in time t− 1 be vt−1, a time period be ∆t and the
dead-reckoning position in time t− 1 be xDR

t−1, the dead-reckoning position xDR
t in time t is

calculated by Equation (1).

xDR
t = xDR

t−1 + vt−1∆t (1)
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The dead-reckoning error (hereinafter, referred as to “offset”) increases proportionally
to the driven distance from the initial position because of the error accumulation. Therefore,
the proposed method estimates the offset ∆xDR

t in order to compute the actual position xv
t

of the vehicle as in (2).

xv
t = xDR

t + ∆xDR
t (2)

Figure 3 shows the flowchart of the proposed localization framework. When data is
acquired from LiDAR and radar, the data is matched with a map for each sensor. Matching
is performed on an image basis, resulting in a correlation distribution. The probability
distribution of the offset is updated by a histogram filter using the correlation distribution
as the likelihood of the offset.

!"##$%"# &'()*+',-./0/1

!'/'+(20/1*

30&45*06(1'

!'/'+(20/1*

+()(+*06(1'

7'689(2'*6(2,:0/1

30&45*6(8

5()(+*6(8

7'689(2'*6(2,:0/1

;.++'9(20./*

)0<2+0=>20./

;.++'9(20./*

)0<2+0=>20./

!

!
4,,>6>9(20./

?+.=(=0902@*

)0<2+0=>20./

30&45*,.++'9(20./<

(/)*,./A0)'/,'*9'B'9<

5()(+*,.++'9(20./

!"#$

C8)(2'*.A*?+.=(=0902@*)0<2+0=>20./

;./A0)'/,'*'<206(20./

.A*30&45*6(2,:0/1*+'<>92

DAA<'2

5()(+

30&45

E01:

3.F

Figure 3. The overview of the localization framework.

2.3. Map-Matching

This section explains map-matching for LiDAR and radar, respectively. The map
matching procedure is performed as follows:

1. Project the sensor data onto a two-dimensional plane and create an image (observation
image).

2. Cut out the map image corresponding to the vehicle position.
3. Calculate the correlation distribution by template matching.

The only difference for each sensor is the part of generating the observation image
(procedure 1), while procedures 2 and 3 are common to both sensors.

2.3.1. LiDAR Observation Image

The LiDAR observation image is obtained by mapping the laser reflectivity of the
road surface onto a two-dimensional image. The center pixel of the observation image
is always the vehicle position estimated by dead-reckoning because position estimation
can be performed without a large increase in error if dead-reckoning is limited to short
intervals of a few seconds. Let the vehicle position in absolute coordinate system be
xv

t =
[
xv

t yv
t
]T , a rotation matrix representing the vehicle attitude (roll, pitch and yaw) be

R, and the position of the LiDAR observation point in the vehicle coordinate system be
xVCS

obs the position xACS
obs of an observation in the absolute coordinate system is calculated by

Equation (3).

xACS
obs = R xVCS

obs + xv
t . (3)
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To consider quantization errors in mapping, the position of the center pixel in the
absolute coordinate system is computed from Equation (4). Then, a point cloud of the road
surface is projected onto the image. An arbitrary LiDAR observation point is mapped to a
pixel according to the relationship shown in Figure 4, which is obtained by Equation (5).[

xcenter
ycenter

]
=

[
Dres · round(xv

t /Dres)
Dres · round(yv

t /Dres)

]
(4)[

uobs
vobs

]
=

[
round((xACS

obs − xcenter)/Dres) + ucenter
round((ycenter − yACS

obs )/Dres) + vcenter

]
, (5)

where Dres is the resolution of the image, and Dres = 0.125 [m/pixel]. Since the thickness
of a typical white line is 0.15 [m], the resolution is set to 0.125 [m].

If multiple points are projected to the same pixel, the average reflectivity is assigned
to that pixel. Since a single frame by itself provides a sparse observation image, a dense
observation image is generated by integrating frames over several seconds. For multi-frame
integration, the position of the vehicle at the time of each frame is used to generate the
observed image, and the overlap among images is determined by calculating the amount
of motion between frames based on the vehicle velocity. For pixels that overlap between
frames, the average reflectivity is assigned in the same way as in the single-frame case.

!"#$%&'()*+,)-'.$
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xACS
obs

yACS
obs

XACS

YACS

Figure 4. Mapping of a LiDAR observation to absolute coordinate system.

2.3.2. Radar Observation Image

Since millimeter-wave radar has lower ranging accuracy and angular accuracy than
LiDAR, the mapping needs to consider the sensor characteristics. The probability of the
existence of a stationary obstacle, including the observation error, is projected onto the
observation image as shown Figure 5. A projected pixel of the observed object can be
calculated in the same way as for LiDAR. Next, consider the error ellipse of the observation
position that extends around this pixel. This error ellipse can be computed from elements
in the covariance matrix of observation information, especially concerning position only.
The error model is based on the study in [20].

The size of the error ellipse can be defined from the chi-square distribution by deter-
mining the number of dimensions and the significance level. By setting the number of
dimensions to two (direction and orientation) and the significance level to 0.05, the size of
the error ellipse is calculated to be 5.99, and the region where the observation information
is considered to be obtained with 95[%] probability can be determined. The computed
probabilities are converted to pixel values to generate an observation image. Furthermore,
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when the frames are accumulated over several seconds, a binary Bayes filter [21] is used to
update the existence probabilities of the objects.
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Figure 5. Mapping of a radar observation.

2.3.3. Pre-Defined Map

The map used for matching is created offline by driving the target area once and
collecting sensor data. Based on the GNSS/INS position, LiDAR and radar data can be
mapped onto an image using the method described above to create a map for each sensor.
The region around the estimated position xv

t of the vehicle is cut out and used in the
matching process. Examples of LiDAR and radar map images are shown in Figures 6 and 7.

Figure 6. LiDAR map. The resolution of the image is 0.125 [m]. Each pixel represents an infrared
reflectivity. Road surface patterns such as white lines are mapped in white because of their high re-
flectivity.



Sensors 2022, 22, 3545 8 of 20

Figure 7. Radar map. The resolution is the same as the LiDAR map. Each pixel represents the
existence probability of a stationary object at that point, with a white pixel representing a higher
probability, i.e., the existence of an object.

2.3.4. Template Matching

For each sensor, a correlation distribution is computed by template matching between
the observed image and the map image. As shown in Figure 8, the correlation distribution
is the distribution of similarity when two images are overlapped by a shift of (∆U, ∆V).
This method uses ZNCC (Zero-means Normalized Cross-Correlation) as the similarity. The
correlation value is highest at the position corresponding to the vehicle’s location on the
map image. It can be regarded as a likelihood distribution of offsets. Since the observation
image is created centered on the vehicle origin and the map image is cropped around the
estimated position of the vehicle, the offset (∆x, ∆y) is a shift in the center between the
two images. Let (Cmap

u , Cmap
v ) be the center pixel of the map image and (Cobs

u , Cobs
v ) be the

center pixel of the observation image, the relationship between the offset (∆x, ∆y) and the
shift (∆U, ∆V) can be expressed by the following Equation (6).[

∆x
∆y

]
= Dres

[
Cobs

u + ∆U − Cmap
u

Cmap
v − (Cobs

v + ∆V)

]
(6)

However, this assumes that the observation image has the same appearance as the
map image, and if the road surface is covered by snow, the pattern will be different from
the map image and the correlation value may not be high at the correct position. Therefore,
it is important to estimate the confidence level that the matching result is correct for LiDAR
template matching.
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Figure 8. Correlation distribution and likelihood of offset.

2.4. Confidence Estimation of LiDAR Matching Result

This section explains the confidence estimation of LiDAR matching results. As men-
tioned above, if the road surface pattern of the observation image is different from that
of the map image at the same location, high correlation values may not be calculated at
the correct location. In fact, during snowfall or heavy rain, the correlation peaks often
appear in incorrect locations due to the lack of visibility of the road surface pattern. In
other words, if the observation image does not have the same road surface pattern as the
map, the reliability of the matching result can be regarded as low. This binary classification
problem takes two images as input and determines whether the observation image has the
same road surface pattern as the map image.

A classifier is created using a convolutional neural network (CNN), which is often
used for image classification. Figure 9 shows the structure of the classifier for confidence
estimation. Here, the architecture is modeled in reference to the method used to calculate
the similarity between two images [22]. For each input image, convolution layers and
max-pooling layers are used to extract features. The computed features are concatenated
into a single vector. The feature is learned using fully-connected layers, ReLU activation
functions, and dropout layers, and finally, a sigmoid function converts the computed result
to a value between 0 and 1 and outputs it as a confidence level.
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Figure 9. The learning structure for confidence estimation.

2.5. Probability Update and Offset Estimation

The correlation distributions computed by the map matching are integrated into a
single probability distribution over time to integrate the two types of observation results,
LiDAR, and radar. Since LiDAR provides more accurate observations than radar, a prob-
ability distribution is generated that is significantly influenced by LiDAR observations
under normal conditions. The influence of LiDAR can be changed depending on the sit-
uation by giving the confidence level of the matching result as a weight when updating
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the probability distribution using LiDAR, and it is also possible to generate a probability
distribution that relies on the radar.

When the correlation distribution is obtained by map matching, the likelihood distribu-
tion of the offset at present is created as explained above. It would be better if the likelihood
distribution had a peak value and only one expected position for the offset, but if there are
few features in the observation image, the shape of the distribution becomes ambiguous
and the peak may not always be at the correct position. Therefore, this method processes
the likelihood distribution over time and integrates the LiDAR and radar matching results
into a single posterior probability distribution. This process provides a stable and reliable
distribution for estimating offsets.

The posterior probability distribution represents where the offset is most likely to be
located. The computation of the posterior probability distribution consists of two processes:
time update and observation update. Time update predicts the distribution at the current
time based on the posterior probability distribution of the previous frame and creates a prior
probability distribution based on the amount of movement of the vehicle. The observation
update combines the prior probability distribution with the likelihood distribution at the
current time to generate a posterior probability distribution. The posterior probability
distribution is updated by a binary Bayes filter based on Bayes’ rule.

2.5.1. Time Update

This section describes the time update that predicts the prior probability distribution
Pt/t−1 at the current time t based on the posterior probability distribution Pt−1/t−1 gen-
erated at the previous time t− 1. The left subscript t of the distribution Pt/t−1 denotes
the distribution at time t, and the right subscript t− 1 denotes the distribution calculated
using the likelihood distribution up to time t− 1. When predicting the prior probability
distribution at the current time from the prior probability distribution at the previous
time, considering that the vehicle is moving, its position is calculated from the GNSS/INS
measurements, which have errors, and is modeled as a Gaussian distribution based on
that position. Assuming that the GNSS/INS errors are similar in the longitudinal and
lateral directions of the vehicle, the probability in the prior probability distribution can be
expressed by (7).

Pt/t−1 = ∑
i,j

Pt−1/t−1(i, j) exp
(
− (i− ∆x)2 + (j− ∆y)2

2σ2
t

)
, (7)

where σt = αvt−1|∆t| represents the error variance, ∆t is the elapsed time between time
t and t − 1, and α is a constant. The error covariance is determined using the vehicle
movement per unit time with vehicle velocity vt−1.

2.5.2. Observation Update for LiDAR

This section explains how to transform the results of LiDAR frame matching into a
probability distribution and how to update the posterior probability distribution. Gamma
correction and normalization of the correlation distribution are performed as preprocessing.
This process is based on previous studies [5,7] and is applied to increase the difference
in likelihood. The gamma correction is empirically computed to the fourth power of the
correlation value, and negative values are not processed and assigned the value of 0. For
the exponential part of the gamma correction, the value is empirically determined from the
correlation values obtained by template matching. The correlation distribution CORRLiDAR
of LiDAR generated by this preprocessing is shown in (8).

CORRLiDAR = max(ZNCC, 0)4/CORRmax, (8)

where CORRmax is the maximum value in the raw correlation distribution.
Next, the correlation values are transformed into probabilities, and the distribution

obtained here is regarded as the likelihood distribution at the current time. The binary
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Bayes filter increases the posterior probability if the observation probability (likelihood)
is greater than 0.5 and decreases the posterior probability if it is less than 0.5. Therefore,
as shown in Figure 10, we transform the correlation so that the probability is 0.5 if the
correlation value is at a given threshold CORRth. In addition, the range of probability is
adjusted according to the confidence level gc of the LiDAR matching results estimated by
CNN. The likelihood CORRt,LiDAR(∆x) of offset ∆x is calculated by (9).

CORRt,LiDAR(∆x) =

{ gc
2

CORRLiDAR(∆x)−CORRth
1−Rth

+ 0.5 (CORRLiDAR(∆x) ≥ Rth)

0.5− gc
2

CORRLiDAR(∆x)
CORRth

(CORRLiDAR(∆x) < CORRth)
(9)

Finally, the posterior probability distribution is computed from the prior probability
distribution and the likelihood distribution. Binary Bayesian filters can be computed by the
simple addition of odds values, using a log-odds representation of probability. The log-odds
L are expressed as L = ln(p/1− p) for probability p. Let the log-odds of the prior, likeli-
hood distribution, and posterior probabilities be Lt/t−1(∆x), Lt,LiDAR(∆x), and Lt/t(∆x),
respectively, then the probability can be updated using the following Equation (10).

Lt/t(∆x) = Lt/t−1(∆x) + kLiDARLt,LiDAR(∆x), (10)

where kLiDAR is a gain and is set to a constant value. In this paper, kLiDAR = 1 is set
experimentally.

!

"

"#$

%&'()*+)

,)'()*+)

gc

! CORRLiDAR(∆x)

CORRt,LiDAR(∆x)

CORRth

Figure 10. Calculating likelihood from correlation.

2.5.3. Observation Update for Radar

For radar, the probability distribution is updated as in the case of LiDAR. Because
of the lower ranging accuracy of radar compared to LiDAR, the likelihood distribution is
calculated to consider the instability of the measurement. Gamma correction is performed
by cubing the correlation value as in (11). As in the case of LiDAR, the exponential part of
the gamma correction is determined empirically from the correlations. The conversion to
likelihood is calculated so that the range of probability becomes small, as shown in (12).

CORRRadar = max(ZNCC, 0)3/CORRmax, (11)

CORRt,Radar(∆x) = 0.4(CORRRadar − 0.125) + 0.5, (12)

where CORRmax is the maximum value in the raw correlation distribution.
The posterior probability distribution is calculated by adding the log odds as well as

LiDAR. Let the log-odds of the prior, likelihood distribution, and posterior probabilities be
Lt/t−1(∆x), Lt,Radar(∆x), and Lt/t(∆x), respectively, then the probability can be updated
using the following Equation (13).

Lt/t(∆x) = Lt/t−1(∆x) + kRadarLt,Radar(∆x), (13)

where kRadar is a gain. In this paper, kRadar = 0.045 is set experimentally.
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2.6. Offset Calculation

In the posterior probability distribution, a pixel with a higher value represents a
higher likelihood of being a true offset. First, pixels with a probability higher than a given
threshold are extracted for peak detection. In this method, the threshold is set to 75[%].
Next, the offset is computed by weighted mean of the extracted pixels. Let the probability
distribution after peak extraction be P∗, the offset ∆xt =

[
∆xt ∆yt

]T at the present time is
calculated by (14).

∆xt =
∑∆x(P∗(∆x)∆x)

∑∆x(P∗(∆x)

∆yt =
∑∆x(P∗(∆x)∆y)

∑∆x(P∗(∆x)
(14)

In practice, a smoother offset estimation can be performed by applying a low-pass
filter.

3. Results

In this section, two main evaluations are conducted. First, the effectiveness of the pro-
posed confidence estimation model for CNNs is verified. Next, the accuracy of localization
using vehicle driving data is verified. The estimation accuracy of the proposed method is
compared with that of the conventional LiDAR-based and radar-based methods.

3.1. Accuracy of Confidence Estimation

This section presents the results of the confidence estimation of the proposed model
with training data. Train and validation datasets were created from data previously mea-
sured by the test vehicle. Observation and map images with visible road surface patterns
were given the label “LaneLine”, while those with no visible patterns were given the label
“NoLine”. The training was performed so that the model outputs 1 if the pattern is visible
and 0 otherwise. Examples of training data are shown in Figure 11.

!"#$%&'()*+,)-'.$ /'0,)-'.$ !"#$%&'()*+,)-'.$ /'0,)-'.$

1'"$23 !"#$!%#$ 1'"$23 &'!%#$

Figure 11. Exapmles of training data.

Table 1 shows the number of datasets created. As a component of the data given the
label “NoLine”, approximately 20% of the images show no white lines because the road
surface is wet (in heavy rain condition), 50% of images show the road surface completely
covered with snow, and the remaining 30% of images show the road surface partially
covered with remaining snow. When assigning labels, “LaneLine” is assigned to images
that can be judged to be white lines by the human eye, and “NoLine” is assigned to those
that are not. In this study, images that are difficult to judge are not included in this dataset.
Data for snow-covered road surfaces were collected in January 2021, and data for dry road
surfaces were collected in May 2021.
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Table 1. The number of data for training and validation.

LaneLine NoLine

Train 3158 5835
Validation 1392 288

The Optimizer is Adam and the loss function is BCE loss [23]. The learning rate was
determined to be 0.000001, the number of epochs to be 1000, and the batch size to be 32.
The data were randomly flipped horizontally/vertically and randomly rotated in the range
of −180 to 180 degrees for data augmentation. The GPU used for training was an NVIDIA
GeForce GTX 1070, and training took about 40 h. Figure 12 shows the training results of
the model obtained with the above dataset and training conditions. Accuracy and loss for
both Train/Validation have converged, and the learning process is progressing. Table 2
shows the Loss and Accuracy for the training and validation data at the end of training.
Recall = 0.986 and Precision = 0.913 were obtained from the confusion matrix shown in
Table 3. The results show that the system almost always correctly determines whether the
road surface pattern is visible or not.

Figure 12. Training results. As the number of epochs increases, the accuracy and loss of both
Train/Validation converge, which shows that learning has been successfully achieved.

Table 2. Loss and accuracy at the end of learning.

Loss Accuracy

Train 0.0013 0.9996
Validation 0.0874 0.9833
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Table 3. Confusion matrix.

Prediction

LaneLine NoLine

Ground LaneLine 1364 27
truth NoLine 4 284

3.2. Localization Accuracy

Next, we evaluate the accuracy of position when confidence estimation is integrated
into LiDAR and radar-based localization. By applying post-processing corrections to
GNSS/INS data, a very accurate position can be obtained. The post-processing position was
used as the ground truth, and the errors of the estimated position in longitudinal and lateral
directions of the vehicle were evaluated. For evaluation, experiments were conducted in
two different environments: a dry road surface condition and a snow-covered road surface
condition. The evaluation route is shown in Figure 13. The route is approximately 4.6 [km]
long and covers the urban area of Kanazawa, Ishikawa, Japan.

!!"#$%&'($$')*#
&'*('

+,*-

.(/!(,*0!12(3*4$

&%,564,7$($0!(,*0!12(3*4$

8*9$(*!:9*;$1

Figure 13. Evaluation route. The driving distance is approximately 4.6 km in one direction. Camera
images are also shown as examples of actual road surface conditions under the two situations.

3.2.1. Dry Road Surface Condition

Table 4 shows the RMS and maximum errors, and Figures 14 and 15 show the longitu-
dinal and lateral errors for each method. Table 4 shows that the RMS errors for all methods
are within a similar range, and the radar-based position estimation appears to be more
accurate when compared in terms of maximum error.

However, the graphs in Figures 14 and 15 provide another perspective from which
to evaluate accuracy. The horizontal axis of these graphs shows the amount of error,
and the vertical axis shows the ratio of data within the error to the total data. For example,
focusing on Figure 15, the percentage of the lateral error within 0.2 [m] is about 84% for
the standalone radar method, while it is about 98% for the standalone LiDAR and the
proposed method. In other words, the standalone LiDAR method has more data for highly
accurate position estimation than the radar method. Furthermore, the ratio of the proposed
method is equivalent to that of the LiDAR results. Therefore, on dry road surfaces, both
longitudinal and lateral accuracies of the proposed method are comparable to those of
LiDAR-based localization.
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Table 4. RMS and max errors on dry road surface condition.

Longitudinal Error [m] Lateral Error [m]

Method RMS Max RMS Max

Proposed 0.164 0.776 0.075 0.475
LiDAR 0.172 0.666 0.087 0.507
Radar 0.164 0.476 0.139 0.297
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Figure 14. Longitudinal error in dry road surface condition.
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Figure 15. Lateral error in dry road surface condition.
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3.2.2. Snow-Covered Road Surface Condition

Table 5 show the RMS and maximum errors, and Figures 16 and 17 show the longi-
tudinal and lateral errors for each method on snow-covered road surface. Table 5 shows
that the errors of the standalone LiDAR method are much larger than those of the radar
one, which means that the position estimation is incorrect. Comparing the cumulative
ratio of errors, the LiDAR method has a small percentage of data within a small error. The
RMS and maximum errors of the proposed method are comparable to those of the radar
method, and the charts of the ratio of errors overlap with the radar results in both vertical
and horizontal directions. Therefore, it can be seen that in snowy environments where the
road surface is not visible, the accuracy of position estimation is equivalent to that of a
standalone radar system. In addition, the results of the proposed method show that more
than 90% of the data are within 0.5 [m] of the error. Considering that a typical road width
is 4 [m], a 0.5 [m] deviation corresponds to about 1/8 of the lane width. This error can
cause, for example, a vehicle to drive close to the edge of the road when it is supposed to be
traveling in the center of the lane. Although it cannot be guaranteed to be safe, the accuracy
of the system is considered sufficient to achieve autonomous driving, assuming that the
system can be covered by object recognition and path planning technologies.

These results provide evidence that position estimation can be performed as intended,
focusing on LiDAR matching results when the road surface is visible, and focusing on
radar results when it is not.

Table 5. RMS and max errors on snow-covered road surface condition.

Longitudinal Error [m] Lateral Error [m]

Method RMS Max RMS Max

Proposed 0.365 1.08 0.321 0.975
LiDAR 2.38 4.75 1.54 4.36
Radar 0.360 1.05 0.318 0.971
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Figure 16. Longitudinal error in snow-covered road surface condition.
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Figure 17. Lateral error in snow-covered road surface condition.

3.2.3. Processing Time

To evaluate the computational complexity, we measured the processing time. As a
result, the average computation time per frame was 76.0 ms (standard deviation: 7.0 ms)
and the maximum computation time was 110.7 ms. Since 99.9% of the measured data was
less than 100 ms and within 0.1 s, which is the data acquisition cycle of LiDAR, this method
can be practically used in real-time.

4. Disscusison

The evaluation results in the previous section concluded that the system can be used
for autonomous driving, thus we conducted a test on a public road. The experiment was
conducted in Abashiri City, Hokkaido, Japan, an environment with a lot of snow. This
area allows for a long-distance route and includes various scenes such as urban areas and
country roads. The relatively low traffic volume also made it possible to experiment with
sufficient safety considerations. The actual autonomous driving can be checked in the video
at the following URL: https://www.dropbox.com/s/ox1cenosdgpadiy/test_abashiri.mp4
(accessed on 9 February 2022). As a result, autonomous driving was successful for the most
part, but some issues were found. In this section, we discuss these issues.

4.1. Incorrect Estimation of Confidence Level

In sections where the road surface is partially covered, a high confidence level is
calculated, causing a problem in which incorrect matching results are used for offset
estimation, resulting in large positional deviations. Figure 18 shows an actual example
of a false estimation. In the training of confidence estimation, the test data was provided
with images that were relatively easy to determine, so that cases in which the road surface
was partially hidden were omitted from the data. Therefore, adding such images to the
training data and re-learning them is the first solution to this problem. However, there is a
concern that even if the road surface is visible, the confidence level may be low if the road
surface pattern is partially blurred. It is also very difficult to determine the criteria for the

https://www.dropbox.com/s/ox1cenosdgpadiy/test_abashiri.mp4
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correct labeling, i.e., how much region of the road surface that is hidden should be labeled
as “NoLane”.

Another solution is not a binary classification problem, but a method to determine
pixels in the observation image where occlusion occurs or where features different from
those in the map appear. This allows matching to be performed while ignoring pixels with
features that differ from those in the map, thereby improving matching accuracy.
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Figure 18. Example of incorrect confidence estimation. The area corresponding to the snow-covered
region shown in the camera image is circled by a dotted line on the map and observed images. The
peak of the correlation is at a different location from the true position, but a very high confidence
level of 0.984 is estimated.

4.2. Mismatching of Radar Images

In snowy environments, position estimation relies on radar matching results, but there
are situations where radar matching errors decrease accuracy. Originally, radar penetrates
snow and can detect poles and other objects located behind it. However, if the amount of
snow is heavy and compressed, the snow itself may be detected as an object. Figure 19
shows an example of radar mismatching. Edges that do not exist in the map image appear in
the observation image. This causes the peak of the correlation distribution in the matching
result to appear in the incorrect position, leading to incorrect offset estimation. As in the
case of LiDAR, this problem is caused by the difference in features between the map image
and the observation image, and such matching results should be rejected. In this study,
we mainly considered confidence estimation of LiDAR matching results, but to develop a
more robust system, it is necessary to introduce confidence estimation for radar results as
well. Alternatively, other methods could be combined to improve system redundancy.
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Figure 19. Example of incorrect matching of radar images. The area corresponding to the compressed
snow shown in the camera image is circled by a dotted line in the map and observation images. It can
be found that objects that do not exist in the map image appear in the observation image. Because the
features between the two images are quite different, a peak of correlation appears at a location that
deviated from the true position due to the matching.
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5. Conclusions

Map-matching methods based on LiDAR can provide highly accurate position es-
timation. However, in situations where the road surface is hidden, such as in snowy
environments, the accuracy of position estimation is decreased because the features of
the map and sensor data differ significantly, and matching results can be incorrect. To
solve this problem, this paper proposed a localization system that uses both LiDAR and
millimeter-wave radar, giving priority to LiDAR results when the road surface pattern is
visible and radar results when the road surface pattern is not. By determining whether the
road surface pattern is visible using deep learning, we estimate the confidence level of the
LiDAR matching result, which in effect changes the influence of LiDAR on the position
estimation. We conducted experiments under the condition that the road surface was visi-
ble and in snowy environments, and confirmed that the estimation accuracy was sufficient
for autonomous driving under both conditions. To achieve a more robust system, it is
necessary to increase the training data for confidence estimation and to estimate confidence
levels for radar matching results.
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