
Citation: Salem, A.; Ibrahem, H.;

Yagoub, B.; Kang, H.-S. End-to-End

Residual Network for Light Field

Reconstruction on Raw Images and

View Image Stacks. Sensors 2022, 22,

3540. https://doi.org/10.3390/

s22093540

Academic Editors: Shih-Chia Huang,

Benjamin C. M. Fung, Cheng Zhang

and Yan-Tsung Peng

Received: 12 April 2022

Accepted: 4 May 2022

Published: 6 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

End-to-End Residual Network for Light Field Reconstruction on
Raw Images and View Image Stacks
Ahmed Salem 1,2 , Hatem Ibrahem 1 , Bilel Yagoub 1 and Hyun-Soo Kang 1,*

1 School of Information and Communication Engineering, College of Electrical and Computer Engineering,
Chungbuk National University, Cheongju 28644, Korea; ahmeddiefy@chungbuk.ac.kr (A.S.);
hatem@chungbuk.ac.kr (H.I.); bilel.yagoub@cbnu.ac.kr (B.Y.)

2 Electrical Engineering Department, Faculty of Engineering, Assiut University, Assiut 71515, Egypt
* Correspondence: hskang@cbnu.ac.kr; Tel.: +82-010-5167-8189

Abstract: Light field (LF) technology has become a focus of great interest (due to its use in many
applications), especially since the introduction of the consumer LF camera, which facilitated the
acquisition of dense LF images. Obtaining densely sampled LF images is costly due to the trade-off
between spatial and angular resolutions. Accordingly, in this research, we suggest a learning-based
solution to this challenging problem, reconstructing dense, high-quality LF images. Instead of training
our model with several images of the same scene, we used raw LF images (lenslet images). The raw LF
format enables the encoding of several images of the same scene into one image. Consequently, it helps
the network to understand and simulate the relationship between different images, resulting in higher
quality images. We divided our model into two successive modules: LFR and LF augmentation (LFA).
Each module is represented using a convolutional neural network-based residual network (CNN). We
trained our network to lessen the absolute error between the novel and reference views. Experimental
findings on real-world datasets show that our suggested method has excellent performance and
superiority over state-of-the-art approaches.

Keywords: light field reconstruction; based view synthesis; micro-lens image; convolutional
neural network

1. Introduction

In comparison to conventional photography, light field (LF) photography is character-
ized by its capacity to convey additional information about three-dimensional (3D) space.
On the other hand, traditional photography records only the 2D projection of visible light
by integrating light rays. In contrast, LF captures arrays of light arriving simultaneously
from all directions [1,2]. With the introduction of commercial light field cameras and
the proliferation of applications such as light field stitching [3], object segmentation [4],
de-occlusion [5], post-capture refocusing [6], depth-sensing [7], saliency detection [8], and
so on, LF photography has received a tremendous amount of attention.

Prior to the development of commercial LF cameras, LF was recorded using camera
arrays [9] and computer-controlled gantries [2]. Commercial LF cameras have provided
mobile and cost-effective choices to the issues above through the encoding of angular infor-
mation of incoming rays through a microlens array upstream of the picture sensor [10,11].
It is impossible to sample LF densely in both the spatial and angular dimensions because
of the low resolution of modern LF cameras.

There have been investigations to overcome the resolution constraint and obtain high-
resolution (HR) densely sampled LF images. By reconstructing high-resolution LF images
from their lower-resolution counterparts (spatial super-resolution) [12–14], others have
been conducted to reconstruct dense LF images from a limited number of views (angular
super-resolution) [15–17]. Spatial super-resolution of LF images is outside the scope of our
study since we are primarily concerned with LF reconstruction (angular super-resolution).
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The objective of our approach differs from the NeRF’s view concerning the viewpoint.
Our approach aims at reconstructing scenes from fixed viewpoints different from NeRF’s
method, which can reconstruct free-viewpoint images [18].

Some studies estimate the depth and subsequently warp input views to reconstruct
dense LF images [15,19], whereas others do not explicitly estimate the depth [16,17,20]. On
the other hand, depth measurement and warping are complicated techniques, particularly
for LF photos with small discrepancies, making it simple to introduce defects and lose
image consistency. Other learning-based techniques try to upsample epipolar plane images
(EPIs) in many orientations. However, this approach does not completely evaluate angular
information and so does not restore texture features. Gul and Gunturk [21] suggested
using a lightweight model to double the spatial and angular resolution in LF pictures.
Salem et al. [20] proposed a network to improve the angular resolution; however, their
network could only reconstruct 7 × 7 views out of 3 × 3 views.

Densely sampled LF images are reconstructed from a small number of input views,
and the positions of these views are important for distinguishing between different recon-
struction (interpolation and extrapolation) tasks. In our research, we propose reconstructing
8 × 8 views from 2 × 2 views with three different orientations depending on the positions
of the input views, as shown in Figure 1.

Figure 1. LF input–output relationship for different reconstruction tasks; 8× 8 views are reconstructed
from 2 × 2 views to generate 60 novel views. Colored images represent ground-truth and input
views, while gray images represent output views to be reconstructed; (a) 8 × 8 ground-truth views
are used to train the network for different reconstruction tasks, (b) task 1: 2 × 2 − 8 × 8 extrapolation
0, (c) task 2: 2 × 2 − 8 × 8 extrapolation 1, (d) task 3: 2 × 2 − 8 × 8 extrapolation 2.

This research presents a deep residual network for densely sampled LF image recon-
struction from a limited number of input views to overcome the challenges above and
improve the quality of LF reconstruction. We trained the proposed model on raw LF
images. The raw LF image is formed by compressing a 2D array of gathered images of
the same scene into a single image. The network develops the ability to comprehend and



Sensors 2022, 22, 3540 3 of 14

model the connection between several images of the same scene while training on raw
images, which leads to better results. Our model is divided into two sequential modules: LF
reconstruction (LFR) and LF augmentation (LFA). Each module is modeled using a residual
network based on a convolutional neural network (CNN). The LFR module is responsible
for reconstructing an initial densely sampled LF. To rebuild high angular resolution LF
images, the LFA module investigates the spatial–angular relationships among the initially
estimated images.

Numerous experiments demonstrated our model’s advantage in reconstructing high-
quality LF images. Our paper makes the following significant contributions:

• We present a deep residual convolutional neural network (CNN) for reconstructing
high-quality LF pictures. Our network was built so that it can be used to model
different interpolation and extrapolation tasks for LF reconstruction with the same
network architecture.

• We fully trained our model using raw LF photos, enabling the network to represent the
non-local characteristics of the 4D LF images more effectively. Furthermore, utilizing
raw LF pictures simplifies our work by converting it from an image reconstruction to
an image-to-image translation.

• Comprehensive experiments on challenging datasets demonstrate our model’s ability
to outperform the state-of-the-art methods to reconstruct LF images in different tasks.

2. Related Work

LF could be collected by inserting a microlens array in front of the image sensor to
encode the angular information included in the incoming rays. Because of the low sensor
resolution of LF cameras, it is impossible to obtain densely sampled LF in both the spatial
and angular dimensions. Numerous studies have investigated LF angular reconstruction to
resolve the inherent compromise between spatial and angular resolution. It can be divided
into two groups based on how much the model relies on the scene’s depth.

2.1. Depth-Dependent LF Reconstruction

The learning process is split into two steps by depth-dependent methods: depth esti-
mation and LF enhancing. The initial stage is to predict a depth map for each reconstructed
image, and this map is then utilized to reconstruct novel views through a warping opera-
tion. The reconstructed images are optimized in the second step since the estimated depth
is often erroneous and noisy. To limit reconstruction errors, these two steps are trained
end-to-end. Numerous conventional ways have been presented to implement this strat-
egy. For example, Wanner and Goldluecke provided a variational framework [21]. They
used EPI analysis to estimate depth maps locally in their framework. Then, using convex
optimization methods, these depth maps were refined and utilized to rebuild LF pictures.
Later on, they refined this approach by recasting the issue as a continuous inverse problem,
allowing the inclusion of foreshortening effects [22]. Using a patch-based method, Mitra
and Veerara-Ghavan established a common framework for various LF tasks in which they
characterized LF patches using a Gaussian mixture model (GMM) [23]. Pendu et al. [24]
suggested obtaining depth layers for scene representation using a regularized least squares
regression. These layers may be manipulated and filtered to reconstruct images from
various viewpoints.

Kalantari et al. [15] simulated the same process through two successive modules to
calculate disparity and then inferred colored novel views, one of the learning-based ways
of reconstructing a highly sampled LF. To train these networks to reconstruct high-quality
pictures from any angle, end-to-end training was utilized. Since this technique reconstructs
each view separately, it cannot link different views or give a high-quality reconstruction in
blocked regions. Salem et al. [19] further recommended employing a predefined convolu-
tional network at the initial step to save preprocessing time and dual disparity vectors to
reduce interpolation error when warping input views to reconstruct output views. This
method concentrates on small baseline images, different from Jin et al. [25], who suggested
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employing depth information to rebuild LF pictures with a broad baseline. This approach
involves computing a depth map for each picture to be constructed; after warping all the
input views with this depth, the warped images are blended to reconstruct the final views.
At the blending step, convolutional layers were used to analyze the spatial and angular
dimensions alternately to investigate the directional relationships between distinct pictures,
similar to the method utilized in [26].

2.2. Depth-Independent LF Reconstruction

Methods that do not rely on depth learn depth information to reconstruct densely
sampled LF pictures. Transform-assisted view synthesis assumes that a sparse signal’s
frequency representation can be computed using just a fraction of samples. To express
an LF as a linear combination of k non-zero continuous angular frequency coefficients
implies that it is k-sparse. This algorithm looks for frequency values and coefficients to
rebuild the deleted samples [27]. This method has been used to improve the quality of the
reconstruction and cut down on the number of samples needed. Vagharshakyan et al. [28]
recommended studying light field sampling and reconstitution using the shearlet transform.
This approach performed well in scenarios with semi-transparent objects.

Given deep learning’s huge success, various learning-based solutions have been pro-
posed. Examples include Yoon et al.’s [29,30] spatial and angular upsampling approach.
This method could only reconstruct 3 × 3 from 2 × 2 views. Except for the center image,
reconstruction uses only surrounding views in the horizontal or vertical directions. The
quality of reconstruction degrades due to the inefficient utilization of angular information.
In [31], the authors recreated several images using 2D alternating spatial–angular convolu-
tions. Because this approach ignores inter-view interactions, it makes wrong shadows and
ghosting artifacts at the margins of novel views.

Learning-based approaches have been used in the EPI field because EPIs might be
a way to reflect consistency. Wu et al. [29] employed a blur kernel to retrieve the low-
frequency components to eliminate ghosting artifacts. A deblur kernel was then employed
to restore high-frequency components. They trained another CNN to learn fusion scores
for upsampled EPIs with varying shearing values [29,30]. They did not utilize enough
angle data since they only used EPIs in one direction. Wang et al. [31] integrated two- and
three-dimensional CNNs to produce a pseudo-4D CNN using EPI and EPI stacking. They
improved the reconstruction quality by utilizing EPI structure-preserving loss [32]. They
only employed horizontal or vertical EPI stacks for the reconstruction, wasting angular
data. They also upsampled LF, which caused additional mistakes to accumulate in the
final reconstruction views. Liu et al. [16] proposed a multi-angular epipolar-based network
using horizontal, vertical, and two angular EPI stacks.

There are a few options for techniques that utilize raw LF images. Gul and Gunturk [33]
suggested using a shallow neural network to reconstruct LF images collected by a plenoptic
camera. This network was trained to enhance spatial and angular resolution. However,
this approach is only effective for achieving a magnification factor of two. Finally, the
trained model must be run to reconstruct the LF image for each viewpoint. A light network
was suggested by Salem et al. [34] in response to the VDSR network design [35] to super
resolve LF images by 2× and 4×. They designed their model to run on raw LF images
and have provided acceptable results. Very recently, Salem et al. [20] proposed a residual
network to reconstruct LF images on raw images, and they managed to provide good
results. Additionally, they used small-baseline LF characteristics by initializing the novel
views using the closest input view through the nearest view approach. This approach,
however, was confined to a single reconstruction task (7 × 7 views from 3 × 3 views).

3. Methodology
3.1. Problem Formulation

The two-plane parameterization is the most commonly used method for parameter-
izing the 4D LF [2]; hence, the light ray that crosses the two planes from any point P in
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the 3D space can be represented as L(u, v, s, t) where the intersection of the angular and
spatial planes are (u, v) and (s, t), respectively, as shown in Figure 2. In this research, we
aimed to reconstruct densely sampled LF: L ∈ RU×V×S×T from a sparse set of input views
L′ ∈ Ru×v×S×T . Where the angular resolution of the input LF and reconstructed LF is
represented by (u, v) and (U, V), respectively. (S, T) represents the spatial resolution of
each input or output view, where U > u and V > v. In our method, 8 × 8 views were
reconstructed from 2 × 2; hence, views (u = v = 2, and U = V = 8).

Figure 2. Parameterization and visualization of 4D LF. (a) L(u, v, s, t) denotes the light beam from an
arbitrary point P that crosses the two planes at the angular (u, v) and spatial (s, t) positions. (b) The
4D LF may be seen as a 2D array of view images, with neighboring images differing slightly from
one another.

3.2. Raw LF Image and View Image Stack Reconstruction

We propose generating raw LF images and viewing image stacks to exploit both
angular and spatial information adequately. The 2D array of LF pictures is reordered
using a periodic shuffling operator (PS) ∈ RU×V×S×T into the raw LF image ∈ RUS×VT as
proposed in [36]. A similar PS operator is used to rearrange the raw LF image ∈ RUS×VT

into a view image stack ∈ RUV×S×T as proposed in [37]. An example is given in Figure 3 to
explain briefly the 4D representation of LF images in addition to the reconstruction of raw
LF images and view image stacks.

3.3. Network Architecture
3.3.1. Overview

The proposed model is divided into two sequential modules: LF reconstruction (LFR)
and LF augmentation (LFA), as shown in Figure 4. The LFR module is responsible for
reconstructing densely-sampled initial LF images using a sparse set of input views. In
contrast, the LFA module is responsible for increasing the quality of the initial images that
have been reconstructed. The view stack images are reordered by a periodic shuffling
operator (PS) into raw LF images as proposed in [36] or reordering the raw LF image into
view stack images, as proposed in [37]. In our method, we reconstruct 8 × 8 views from
2 × 2 views with three different orientations depending on the positions of the input views,
as shown in Figure 1.
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Figure 3. The reconstruction of raw LF image and view image stack; (a) 2× 2 views of LF, where each
view is shown using one color and contains 9 pixels from 1 to 9 with size (u, v, S*, T*) = (2, 2, 3, 3),
(b) The mapping into a raw LF image of size (u × S*, v × T*) = (6, 6), (c) The mapping into a view
image stack of size (uv, S*, T*) = (4, 3, 3). (d) An example of a 4D LF image captured by a Lytro
Illum camera with size (U, V, S, T) = (8, 8, 541, 376). (e) The raw LF of the image in (d) with size
(US, VT) = (8 × 541, 8 × 376). (f) A close-up of a portion of the raw LF image shown in (e).

The 2 × 2 input views are fed to the network as a view image stack with size (4, H, W),
where a PS is used to rearrange the input stake to a raw LF image LFLR (low-resolution LF
image) with size (2H, 2W). The raw LF image is fed to the LFR to reconstruct 16 raw images
with size (16, 2H, 2W) denoted as LFVI (initial LF view image stack). Then, PS rearranges it
to the raw LF to obtain the initial LF image LFI. The initial LF image LFI is then fed to the
LFA to restore texture details and provide better quality for the final output LF image LFHR
(high-resolution LF image).

The LFR and LFA networks share the same structure: a convolution layer, multiple
residual blocks (RB) with a skip connection (we used five RBs in our implementation for
all networks), and another convolution layer. Our RB consists of three convolution layers
with two rectified linear units (ReLU) in between, as shown in Figure 4c, which is similar
to the RB used in [38], except that their RB consists only of two convolution layers with
a ReLU in between. This residual structure with cascaded RBs and a skip connection has
been proposed by [39] and is used in a lot of work. With such a structure, it is possible
to get rid of low-frequency information in LFLR images through skip connections to the
final output. The main parts of the network can instead focus and train on extracting more
features and restoring high-frequency components.

We propose two similar designs for the LFA network based on the reconstruction
task. LFA1 has one block that works on LF raw images, and LFA2 has two main blocks,
one of which works on view image stacks while the other works on LF raw images.
As mentioned earlier, LFA1 is employed in the case of extrapolation tasks (tasks 2, 3),
while LFA2 is employed in the case of interpolation tasks (task 1). The interpolation
task is more challenging since the input LFs are far from the LFs to be reconstructed
than the extrapolation task. Accordingly, we applied two augmentation methods for the
interpolation task: first, a spatial augmentation was applied on the reconstructed view
image stack; second, an angular augmentation was applied on the raw LF image similar to
the LFA1.
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Figure 4. A visual representation of the proposed network architecture. (a) The sparse set of input
views are rearranged into raw LF representation LFLR using the periodic shuffling operator (PS)
to reconstruct the input raw LF image, and this image is then fed into the LF reconstruction block
(LFR) to generate the initial LF images LFVI. These images are then rearranged into the raw LF
representation using the PS. The initial raw LF image LFI is fed into the LF augmentation block (LFA)
to improve the quality and generate the final high-resolution image LFHR. (b) (LFR): this block is
responsible for reconstructing dense LF images from a few input images. It can be called a magnifier
where the magnification percentage depends on the reconstruction task (number of input images and
the number of images to be reconstructed). (c) The residual block (RB) is the network’s central unit,
consisting of cascaded convolutions and ReLU connected by a skip connection, where the red block
represents the convolutional layer (Conv). In contrast, the blue ones represent the rectified linear unit
(ReLU). (d) (LFA1): this block is responsible for enhancing the quality of the initial reconstructed LF
images. It consists of one block that works on the raw LF images to perform an angular augmentation.
(e) (LFA2): this block performs the same function as the LFA1 block; however, the first main block
here works on the view stack images to perform a spatial augmentation rather than working on the
raw LF images to perform an angular augmentation. Where LFA1 is used for the extrapolation tasks
(task 2: 2 × 2 − 8 × 8 extrapolation 1, and task 3: 2 × 2 − 8 × 8 extrapolation 2.), while LFA2 is used
for the interpolation task (task 1: 2 × 2 − 8 × 8 Extrapolation 0) as shown in Figure 1.

Specifically, four LF images were fed to our network, where they were rearranged by
a PS from a view image stack of size (4, H, W) into a raw LF image LFLR of size (2H, 2W).
The LFLR was then fed to the LFR block to generate a view raw image stack LFVI of size
(16, 2H, 2W). Using a PS, the LFVI was rearranged into a view image stack of size (64, H, W)
representing the initial reconstructed LFs. At this stage, the images corresponding to the
input views were replaced after being deformed due to processing in the LFR block with
the original input views. Finally, another PS was used to rearrange the view image stack
of size (64, H, W) into the initial raw LF image LFI of size (8H, 8W). After that, the LFA
block was applied to enhance the quality of the initial reconstructed LFs. In the case of the
extrapolation tasks, an angular augmentation was applied only using LFA1, which is a
modified version of the residual block (RB) proposed by [39] and the same as the one used
in [20], except for the RB, which is bigger in our research. In the case of the interpolation
tasks, both spatial and angular augmentations were used. First, spatial augmentation was
applied to the view image stack instead of the raw LF image with a cascading structure
similar to angular augmentation. The initial reconstructed 64 images represent the input



Sensors 2022, 22, 3540 8 of 14

channels for the spatial augmentation block. A factor n increases the number of channels.
Factor n was used with a value of 4, as it was found that it provided the best result. Finally,
a PS was used to rearrange the view image stack of size (64, H, W) into a raw LF image
of size (8H, 8W) to be applied to the angular augmentation block to generate the final
image LFHR.

3.3.2. Loss Function

Our network was trained to reconstruct a high-resolution (HR) LF raw image LFHR
given a low-resolution (LR) LF raw image LFLR. The learning process can be stated
as follows:

LFHR = f (LFLR, θ)

The function that reconstructs the HR image from its counterpart LR image is repre-
sented by f (·), implemented by the proposed network, and θ denotes the network parame-
ters learned during training.

We trained our network to reduce the L1 loss (the sum of all the absolute differences)
between the reconstructed HR image and its corresponding ground-truth image. When
a training set contains N combinations of input and ground-truth pictures, the L1 loss is
defined as follows:

L1(θ) =
1
N

N

∑
i=1

∣∣∣LFi
HR − f

(
LFi

LR

)∣∣∣
1

3.3.3. Training Details

We trained the proposed model and assessed the results using PSNR and SSIM [40] on
the Y channel (luminance) of the converted YCbCr space. Moreover, 3× 3 2D convolutional
kernels were used to build our network with zero-padding and 64 filters in each convolution
layer. We used 100 LF images to train our model. These images were captured by Lytro
Illum cameras and made publicly available [15,41]. The spatial resolution of the images
was 376 × 541, and the angular resolution was 14 × 14. We trained our model on central
8 × 8 views to avoid optical distortion and light falloff. First, we constructed input and
corresponding ground-truth patches. We extracted patches (32 × 32 in size) with one
stride from each view to obtain input patches of size (4, 32, 32) and output patches of size
(256, 256). Our training dataset has 17,600 pairs of input and ground-truth patches, which
is adequate for the training. Our model was trained with a batch size of 32 by ADAM
optimizer [42] with β1 = 0.9, β2 = 0.999, and ǫ = 10−8. The initial learning rate was set to
10−4 and dropped exponentially by 0.1 per 100 epochs. We used TensorFlow [43] to train
our model for 150 epochs on an NVIDIA GeForce RTX 3090 GPU.

4. Experiments and Discussion
4.1. Comparison with the State-of-the-Art

The proposed framework is compared to cutting-edge learning-based LF recon-
struction approaches, such as Kalantari et al. [15], Shi et al. [44], Yeung et al. [45], and
Zhang et al. [17]. Real-world LF datasets, such as 30 scenes (30 LFs) [15], refractive and
reflective surfaces (31 LFs), and occlusions (43 LFs) from the Stanford Lytro Light Field
Archive were used for the evaluation [41]. The overall reconstructed views’ average PSNR
and SSIM [43] of the luminance (Y channel) were calculated to quantify the reconstruction
quality. For the evaluation, we used one interpolation task (task 1: 2 × 2 − 8 × 8 extrap-
olation 0), and two extrapolation tasks (task 2: 2 × 2 − 8 × 8 extrapolation 1, and task 3:
2 × 2 − 8 × 8 extrapolation 2).

Interpolation Task (2 × 2 − 8 × 8 Extrapolation 0)

Table 1 summarizes the numerical results in terms of (PSNR/SSIM). The results
demonstrate that the proposed model achieves the highest reconstruction quality, with
average PSNR gains of 0.35, 1.12, 1.21, and 2.22 dB, with average PSNR increases over
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Zhang et al. [17], Yeung et al. [45], Shi et al. [44], and Kalantari et al. [15], respectively.
Additionally, our model has the best SSIM on two datasets and a very close second-best
result on one dataset. Kalantari et al. [15] and Shi et al. [44] create novel views by warping
the input views based on their estimated disparity. However, on the other hand, depth
estimation and warping are very difficult, especially for LF images with a small difference
in depth, making it easy to have flaws and look out of place. Due to Yeung et al.’s [45]
disregard for the links between separate views, their technique results in false shadows
and ghosting artifacts along the boundaries of reconstructed views. Zhang et al. [17]
explored additional LF information using micro-lens images and view image stacks, and
their suggested model performs well.

Table 1. Numerical comparison (PSNR/SSIM) of the proposed model for LF reconstruction using the
dataset 30 scenes, reflective, and occlusions on task 1: 2 × 2 − 8 × 8 extrapolation 0.

Dataset Kalantari [15] Shi [44] Yeung [45] Zhang [17] Proposed

30 Scenes 40.11/0.979 41.12/0.985 41.21/0.982 41.98/0.986 42.33/0.985
Reflective 37.35/0.954 38.10/0.958 38.09/0.959 38.71/0.962 38.86/0.962
Occlusions 33.21/0.911 34.41/0.929 34.50/0.921 34.76/0.918 34.69/0.922

Average 36.89/0.948 37.88/0.957 37.93/0.954 38.48/0.955 38.62/0.956

Using raw LF images, the network can interpret and model the relationship between
several views of the same scene, recovering more features and providing a better quality
image. In addition to that, the use of this proposed residual model eases passing the
low-frequency information through skip connections to the final output. The main parts of
the network can instead focus and train on extracting more features and restoring high-
frequency components. Figure 5 illustrates a visual comparison between our model’s
reconstructions and two other models. Even when obscuring objects or the backdrop is
complicated, our approach can reconstruct higher-quality images with distinct margins
around object boundaries. Error maps provide a more accurate comparison of the recon-
structed pictures. For instance, the red ellipse indicates the automobile’s difficult area error
with the rock barrier and longitudinal leaf in the rock scene.

4.2. Extrapolation Tasks (2: 2 × 2 − 8 × 8 Extrapolation 1, 2)

Reconstructing 8 × 8 out of 2 × 2 views is a challenging task due to the sparseness of
the input views. Yeung et al. [45] observed that the reconstruction quality of the center views
is much worse than that of the views located near the input views, as shown in Figure 5
in [45]. Because the center view is the farthest distance from any input views, inferring
the details with greater accuracy presents the biggest problem. Therefore, they proposed
different combinations of interpolation and extrapolation to reconstruct LF images. As a
result, the average distance from all the novel views is shorter than before, increasing the
reconstruction quality of the center views.

Most available algorithms are optimized for interpolation tasks and cannot predict
extrapolated views. That is why ghosting and artifacts often appear around thin structures
and occluded regions. Extrapolation is more challenging than interpolation because certain
portions of the reconstructed views are not present in the input views. In addition, it
cannot keep the slopes of the lines in the reconstructed EPIs the same. It is challenging to
devise a method for dealing with different relationships between input and output views.
However, with our proposed approach using the raw LF image, the task becomes more
feasible and efficient. The numerical results for the extrapolation tasks are summarized
in Tables 2 and 3. The results reveal that the proposed model outperforms state-of-the-art
approaches in terms of PSNR and SSIM.
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Figure 5. Comparison of LF image reconstruction to other approaches using the relevant ground-truth
images on task 1: 2 × 2 − 8 × 8 extrapolation 0 [15,45]. Additionally, error maps are given between
the reconstructed LF images and the relevant ground truth images. A diagram shows the input,
output, and images to be reconstructed relationships on the left-hand side. Red boxes indicate the
extracted EPIs, whereas blue and green boxes indicate a close-up of reconstructed LF image parts.
The performance of our strategy is proven through error maps, for example, by the red ellipse around
the tree limb in the Cars scene. The red ellipse in the rock scene denotes the complicated area of the
automobile with the rock barrier and the longitudinal leaf.
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Table 2. Numerical comparison (PSNR/SSIM) of the proposed model for LF reconstruction using the
dataset 30 scenes, reflective, and occlusions on task 2: 2 × 2 − 8 × 8 extrapolation 1.

Dataset Yeung [45] Zhang [17] Proposed

30 Scenes 42.47/0.985 43.57/0.989 43.76/0.988
Reflective 41.61/0.973 42.33/0.975 42.44/0.974
Occlusions 37.28/0.934 37.61/0.937 37.93/0.948

Average 40.45/0.964 41.17/0.967 41.38/0.970

Table 3. Numerical comparison (PSNR/SSIM) of the proposed model for LF reconstruction using the
dataset 30 scenes, reflective, and occlusions on task 3: 2 × 2 − 8 × 8 extrapolation 2.

Dataset Yeung [45] Zhang [17] Proposed

30 Scenes 42.74/0.986 43.41/0.989 43.43/0.987
Reflective 41.52/0.972 42.09/0.975 42.26/0.975
Occlusions 36.96/0.937 37.60/0.944 37.91/0.945

Average 40.41/0.965 41.03/0.969 41.20/0.969

4.3. Ablation Study

In the case of the first reconstruction task (extrapolation 0), we evaluated four different
designs to demonstrate the influence of the model’s various components, as indicated in
Table 4. First, we started with a model with the LFR block only, and then we compared
two different models with the LFR block and one type of augmentation block only. Finally,
we checked the proposed model with LFR and LFA blocks. It is clear from the results that
the LFR block cannot reconstruct high-quality LFs; however, it can provide good initial
LFs. The results demonstrate that although the LFR block is incapable of reconstructing
high-quality LFs, it may give adequate initial LFs. When comparing the effect of angular
augmentation to spatial augmentation, we find that angular augmentation on the raw LFs
gives better results. Still, it is not sufficient to achieve the best performance.

Table 4. In investigating the proposed architecture, including the spatial and angular augmentation
blocks, where Xmeans this augmentation block while X not using it. We observe the best PSNR (dB)
and SSIM values on three real-world LF datasets.

Spatial Angular 30 Scenes Reflective Occlusions Average

X X 36.69/0.958 36.02/0.944 31.35/0.888 34.69/0.930
X X 37.30/0.963 36.36/0.946 31.60/0.891 35.09/0.933
X X 41.53/0.981 38.62/0.959 34.46/0.926 38.20/0.955
X X 42.33/0.985 38.86/0.962 34.69/0.922 38.62/0.956

In the case of the second and third reconstruction tasks (extrapolation 1, 2), we eval-
uated four different designs, as indicated in Tables 5 and 6. First, we start with a model
with the LFR block only, and then we compare by adding one LFA block, two LFA blocks,
and three LFA blocks, where the LFA type used here is the angular augmentation. The LFR
block is not enough to produce satisfactory results. By adding more augmentation blocks,
the model starts fitting. Therefore, we used the LFR block with one LFA block only.

Table 5. In investigating the proposed architecture, including the angular augmentation block, we
observe the best PSNR (dB) and SSIM values on task 2: 2 × 2 − 8 × 8 extrapolation 1.

Dataset Inter Aug1 Aug2 Aug3

30 Scenes 38.72/0.973 43.76/0.988 43.82/0.988 43.88/0.988
Reflective 40.13/0.967 42.44/0.974 42.45/0.975 42.46/0.975
Occlusions 34.50/0.927 37.93/0.948 37.91/0.947 37.98/0.948

Average 37.78/0.955 41.38/0.970 41.39/0.970 41.44/0.970
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Table 6. In investigating the proposed architecture, including the angular augmentation block, we
observe the best PSNR (dB) and SSIM values on task 2: 2 × 2 − 8 × 8 extrapolation 2.

Dataset Inter Aug1 Aug2 Aug3

30 Scenes 40.10/0.979 43.43/0.987 43.57/0.987 43.61/0.987
Reflective 39.52/0.967 42.26/0.975 42.29/0.975 42.29/0.975
Occlusions 35.01/0.930 37.91/0.945 38.01/0.946 37.93/0.945

Average 38.21/0.959 41.20/0.969 41.29/0.969 41.28/0.969

5. Limitations and Future Work

We proposed a method to reconstruct LF images using raw LF representation. How-
ever, our method works well for some reconstruction tasks, but it cannot be applied to
other tasks. For example, we can reconstruct 8 × 8 out of 2 × 2 views in three different
ways (extrapolation 0, 1, and 2), but other tasks cannot be applied, such as reconstructing
7 × 7 out of 2 × 2 or out of 3 × 3 views. We want to develop a reconstruction approach
that works well for all reconstruction tasks in the future. Despite the improvement brought
about by the proposed method, it is marginal and, hence, we will attempt to design another
method that produces more accurate results. Additionally, we will attempt to develop a
model capable of working with both broad and small baseline LF images since the model
suggested in this study is only capable of working with small baseline images.

6. Conclusions

We presented a learning-based technique for LF reconstruction. To investigate the
non-local properties of 4D LF effectively, we used raw LF representation, which allowed
the network to comprehend and model the relationship accurately, hence recovering more
texture information and improving quality. Additionally, we presented a residual archi-
tecture for problems involving interpolation and extrapolation. We trained our network
intending to minimize the L1 loss between the reconstructed and ground truth images. Ex-
periments on three real-world datasets demonstrate that our proposed model outperforms
the state-of-the-art methods.
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