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Abstract: To ensure the safe operation of highway traffic lines, given the imperfect feature extraction
of existing road pit defect detection models and the practicability of detection equipment, this
paper proposes a lightweight target detection algorithm with enhanced feature extraction based on
the YOLO (You Only Look Once) algorithm. The BIFPN (Bidirectional Feature Pyramid Network)
network structure is used for multi-scale feature fusion to enhance the feature extraction ability, and
Varifocal Loss is used to optimize the sample imbalance problem, which improves the accuracy of
road defect target detection. In the evaluation test of the model in the constructed PCD1 (Pavement
Check Dataset) dataset, the mAP@.5 (mean Average Precision when IoU = 0.5) of the BV-YOLOv5S
(BiFPN Varifocal Loss-YOLOv5S) model increased by 4.1%, 3%, and 0.9%, respectively, compared
with the YOLOv3-tiny, YOLOv5S, and B-YOLOv5S (BiFPN-YOLOv5S; BV-YOLOv5S does not use the
Improved Focal Loss function) models. Through the analysis and comparison of experimental results,
it is proved that the proposed BV-YOLOv5S network model performs better and is more reliable in
the detection of pavement defects and can meet the needs of road safety detection projects with high
real-time and flexibility requirements.

Keywords: pavement defects; deep learning; convolutional neural network; YOLOv5S; automated
inspection; embedded equipment

1. Introduction

It is understood that the United States has the largest highway network in the world.
As of 2019, the total mileage of the U.S. highway network reached 6,853,024 km, of which
about 63% has been paved. By 2020, the total mileage of China’s highway network reached
5,198,000 km, of which 95% has been paved [1,2]. As more and more roads are paved,
the maintenance of road pavements is a serious problem faced by the road maintenance
departments of various countries. Pavement structural damage is the main cause of pave-
ment defects. Once pavement cracks are formed, rainwater will accelerate the expansion of
defects and create traps for moving vehicles, becoming one of the causes of car accidents.
According to relevant data, from 2013 to 2016, a total of 11,386 people lost their lives due
to road defects in India, which means that on average, about seven people die every day
in India due to road surface defects [3]. In the United States, about half of the fatal car
accidents that occur each year are caused by poor road maintenance. An 18-month study
conducted by the Pacific Institute for Research and Evaluation examined information from
the National Highway Traffic Safety Administration, because road defects, road icing, and
other problems caused at least 42,000 Americans to lose their lives each year [4]. Pavement
defects have introduced huge safety hazards to people’s travel. Therefore, to protect peo-
ple’s lives and to provide for property safety, one of the important tasks of road safety and
road maintenance is to discover and master road pavement defects in a timely manner.
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In addition, highway engineering pavement defect detection technology is the most
basic method of quality control in the construction stage of the life cycle of highway
projects [5]. That technology is an important source of reference data for construction
quality inspection, quality supervision, and quality control of highway engineering projects.
It is also an important basis for engineering design parameters, construction quality control,
construction completion acceptance, maintenance management, etc.

Pavement is the first part of the highway structure to be contacted by an external
force. It bears the pressure of the passing vehicle loads and is also affected by other
indirect factors, such as temperature change, corrosion, and human damage [6]. The
damage to highway structures is often first manifested at the surface, so the quality of
surface structure directly affects the quality of the entire life cycle of highway engineering.
As an important component quality control in highway engineering construction, road
engineering pavement defect detection technology has great significance for scheduling
control and cost control during the life cycle of highway engineering. The detection of
pavement defects does not essentially reduce the costs of highway engineering; however,
through testing, a scientific and correct assessment of a highway project can be carried out
reasonably to enhance maintenance, reduce the rate of accidents that are due to poor quality,
reduce the costs of design, and prepare for preventive management and control to extend
the service life of highway projects [7]. Therefore, research on the detection technology of
pavement defects in highway engineering is of great importance.

The automatic detection of pavement defects is of great significance in the quality
assessment of asphalt pavements [8]. In the assessment specifications of asphalt pavement
in many countries, the assessment of pavement quality is determined according to the
road defect condition. For example, in China, according to the MQI (Maintenance Quality
Indicator) index of asphalt roads, the technical condition of roads is divided into five
grades [9]. Pavement condition assessment is time-consuming and laborious repetitive
work for humans, but it is simple and easy-to-operate work for computers. Therefore,
evaluating road conditions by using computer vision technology can save significant labor
costs and improve evaluation speed, while avoiding human subjective factors, to generate
different evaluation criteria.

At present, there are three main methods in the detection of road surface defects:
manual inspection, automatic detection, and image processing technology. In developing
countries, the inspection of highway pavements is usually completed by manual inspec-
tion [10]. Traditional manual inspection has resulted in poor safety, low efficiency, and high
costs, and is susceptible to subjective factors, resulting in different standards of judgment.

Defect detection of road pavement has been gradually replaced by automated equip-
ment, such as inspection vehicles equipped with infrared or sensor equipment [11,12].
However, due to the complex characteristics of pavement defects and the road surface
environment, automatic equipment brings certain difficulties to the detection of pavement
defects, and presents difficulties in meeting the needs of actual engineering in terms of
recognition accuracy and speed; in addition, the cost of automatic equipment is high and,
accordingly, the cost of automatic detection is high.

Image processing technology has the advantages of low cost and high efficiency, and
precision is gradually improved with the development of technology. Therefore, many
researchers use image processing technology to detect road surface damage [13–17]. Tra-
ditional image processing techniques usually use manually selected features, such as
color [18], texture [19], and geometric characteristics [20], to segment pavement defects,
and then perform a classification and matching of machine learning algorithms to achieve
the detection of pavement defects. However, given the complexity of road environments,
the traditional image processing method cannot meet the requirements of model general-
ization ability and robustness in practical engineering through artificially designed feature
extraction. Compared with traditional image processing technology, image processing
technology based on deep learning theory has higher precision faster speed, and strong
embeddability [21,22] in the detection of pavement defects, etc.
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Computer vision technology based on deep learning has been widely used in the study
of pavement defect detection. Hoang et al. [23] applied automatic detection technology to
the investigation phase of asphalt pavement, using computer vision technology to detect
repaired and unrepaired potholes, but its generalization ability was low. The technology
needs further improvement if is to be applied to practical projects. Riid et al. [24] improved
the detection performance of the model by manually selecting a deep convolutional neural
network orthogonal frameset for training and digitizing, but the factors considered were
too idealistic to be applied to actual highway engineering. Nguyen et al. [25] realized the
automatic detection of cracks and potholes through the VGG16 network, and improved
the robustness of the model through data enhancement processing technology, but the
network structure of this model was large and it was difficult to meet the flexibility of
embedded device applications. Maeda et al. [26] proposed the use of SSD Inception V2
and SSD MobileNet for road damage detection. The experimental results showed that the
optimal model could achieve acceptable accuracy (77%) and recall (71%), outperforming
conventional image processing techniques. Although the SSD network model can address
inaccuracy in the detection of pavement defects, its speed is not as good as that of the
YOLO series network in the detection of pavement defects.

Ping et al. [27] conducted experiments on the performance of YOLO, SSD, HOG with
SVM, and Faster R-CNN network models for pavement defect detection; they constructed
a dataset of pavement defects and then used different models for comparison The experi-
mental results showed that the YOLOv3 model of the YOLO network algorithm series had
the best performance in the detection of road surface defects, with fast speed and reliable
detection results. Du et al. [28] used the YOLOv3 algorithm to construct a pavement defect
detection model to achieve automatic feature extraction, and the detection speed was in-
creased, but the flexibility was still poor, and it was difficult to meet the flexibility required
by embedded systems. Liu et al. [29] used the combination of 3D ground-penetrating radar
and the YOLO algorithm to detect damage to pavement structures. This method explored
the damage in the deep structure of pavement through radar, which can detect potential
structural damage in advance, but the cost was high. Park et al. [30] used YOLOv4 to carry
out defect detection research for pavement potholes, but their research only focused on the
ground penetration of pavement pothole defects, without more challenging crack detection
studies. Baek et al. [31] improved the detection speed of the model by processing images
of road pits in grayscale and then inputting them into the YOLO detection mode, and
achieved good performance. To a certain extent, the processed images reduced the amount
of information, resulting in the reduction of the generalization ability and robustness of
the model. Pena-Caballero et al. [32] proposed deploying the YOLOv3 algorithm to an
embeddable device to detect pavement defects, but the experimental results showed that
due to the large network structure of the YOLOv3 network model, the performance of
real-time detection in embedded systems needs to be improved. Ahmed [33] used YOLOv5,
YOLOR, and Faster R-CNN deep learning network models in detecting pavement defects.
The resulting analysis showed that the YOLOv5 model is extremely flexible and suitable
for real-time detection scenarios of embedded devices. However, in terms of accuracy
(mAP@0.5: 58.9%), further improvement was needed.

The prospects for the application of target detection technology based on deep learning
theory in highway pavement defect detection are very considerable, but there are still some
difficulties, including the following: (1) The existing pavement defect dataset is insufficient,
and the field collection of data is dangerous, low in inefficiency, and high in cost. (2) The
road environment is easily affected by passing vehicles and roadside greening facilities,
which cause uneven light intensity, bringing difficulties to the target detection model.
(3) Some pavement defects are small in size, large in number, and easily missed, and the
target detection model has low detection accuracy for pavement defects [33]. To solve these
problems, in this paper we adopt a new strategy to build a PCD1 dataset on pavement
defects. Inspired by the YOLOv5 [34] model, we propose the BV-YOLOv5S deep learning
network model, which improves the YOLOv5 model’s performance. The feature extraction
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network adopts the BiFPN network structure [35] to strengthen the feature extraction
network, which aims to mine deep-level information about pavement defects in an image,
improve the feature extraction performance of the model, and reduce missed detection
caused by lighting and size. Further, based on the BV-YOLOv5S deep learning network
model, Varifocal Loss [36] will be used to replace Focal Loss, so that the attention of model
training is biased toward high-quality samples, making full use of the effective information
in the dataset, and further improving the detection accuracy of the model.

The rest of this paper is organized as follows: (1) In Section 1, we introduce the current
status of pavement defects and existing pavement defect detection methods. (2) The
improved method of lightweight convolutional neural network for pavement defects is
introduced in detail in Section 2. (3) In Section 3, we present the details of the experiment.
(4) In Section 4, we discuss a comparison of the experimental results. (5) Finally, in Section 5,
we summarize our work.

2. Methods
2.1. Introduction to Algorithm and Network Structure

YOLOv5S is a target detection method based on deep learning theory. It mines the
data features in samples through a deep network structure [37], making the trained model
more suitable for detection of targets with complex features, such as road defects, which
can be detected by transfer learning [38]. Transfer learning quickly completes the training
of network models and deploys them to target detection tasks in different backgrounds.
Target detection work is an important branch in the field of computer vision [39]. The target
detection network based on deep learning theory is mainly divided into two categories,
according to the generation of candidate frames: the single-stage target detection network,
without candidate frame generation, and the two-stage object detection network for box
proposal generation. Typical single-stage detection networks include the YOLO [40] series
networks and the SSD [41] series networks. The main operating principle of the single-stage
target detection network is dividing the image into small squares, each of which has a
preset fixed anchor. Then, the objects in the picture are divided into different small squares
for classification, and the target detection work of the image to be tested is completed.

The two-stage target detection algorithm includes Fast RCNN [42], Faster RCNN [43],
SPPNet [44], Mask R-CNN [45], and other network algorithms. The network principle is
mainly that a large number of Windows are generated in the first stage. Windows uses
a binary classification method to distinguish foreground and background. In the second
stage, the region of interest (ROI) of target detection is used to deduct features from the
feature map extracted by the convolutional neural network, and then the classification is
performed again, which is different process compared to that of the first stage. The second
stage of classification work is multi-target classification, which is used to distinguish the
categories of different targets and to predict the position of an object by regression.

The accuracy of the single-stage detection network is limited, due to the imbalance
of the samples. However, with the introduction of Focal Loss, the accuracy of the single-
stage network target detection network has been greatly improved [46], and the single-
stage network has an absolute advantage in terms of speed. Therefore, the single-stage
detection network has been applied on a larger scale in the field of real-time detection,
and the lightweight model based on the YOLO network has shown great flexibility in the
deployment tests of embedded devices [47].

With the large-scale application of GPU and the rapid development of computer vision
technology, the target detection technology based on deep learning theory has an absolute
advantage in performance compared with traditional image processing technology [48,49].
At present, highway pavement defect detection has become an important topic in the field
of computer vision technology. Single-stage object detection networks can be effectively
transferred to highway pavement defect detection through transfer learning. Compared
with other object detection algorithms, YOLOv5S has the advantages of fast detection
speed, high accuracy, and flexibility [24]. However, when it is applied to the detection of
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road pavement defects, there are still problems, such as difficulty in identification due to
the small defect target, a high missed detection rate, and difficulty in mining the deep-
level information of a defect image. To solve these difficulties, this paper proposes the
BV-YOLOv5S network model, the network structure of which is shown in Figure 1, The
network structure is mainly composed of backbone networks, feature extraction networks,
and detection networks. To further improve accuracy, the BV-YOLOv5S deep learning
network model uses Varifocal Loss to solve the sample imbalance problem in the single-
stage target detection network model.
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Figure 1. BV-YOLOv5S network structure. It is mainly composed of three parts: backbone networks,
feature extraction networks, and detection networks.

To present the enhanced feature extraction network designed in this work in a more
complete and detailed manner, we have drawn a detailed processing flow chart for the
BV-YOLOv5S model to achieve road defect detection. Through the model’s processing flow
chart, we express the main work of this paper in detail, comprehensively and intuitively,
as shown in Figure 2. In Figure 2, we divide the implementation process of the pavement
defect detection algorithm into three parts: anchor, backbone, and head. We mainly
redesigned the network structure for the head layer, in which the color deepened in the
BifPN network structure, and an enhanced feature extraction network as shown in Figure 2
is constructed. Regarding the detailed network structure of BiFPN, we will introduce it in
detail in Section 2.2.

2.2. Feature Extraction Networks of the BV-YOLOv5S Model

In the deep learning network model, with the continuous deepening of the number
of network layers, each layer of a network will cause the loss of information to a certain
extent and lead to the loss of features. By fusing multi-scale feature fusion networks, the
detection accuracy of the model can be improved [50]. The feature extraction network
of the YOLOv5S model adopts the PANet network structure. Focusing on the specificity
of pavement defects, especially the characteristics of small pavement cracks, the model
excavates deeper information about pavement defects shown in the picture. We improved
the original feature extraction network, PANet, into a BiFPN network structure. It aims
to enhance the depth of information mining and to further improve the feature extraction
capability of the model. The network structures of BiFPN and PANet are shown in Figure 3.
As shown in Figure 3b, the BiFPN structure diagram, the blue arrow is the top-down
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path, which transmits the semantic information of high-level features, the red arrow is the
bottom-up path, which transmits the location information of low-level features, and the
purple part is an additional path when the input point and output point are located in the
same layer, to fuse more features. Figure 4 is a visualization of the feature extraction of
four types of road surfaces by PANet and BiFPN.
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Figure 2. The detailed processing flow of the BV-YOLOv5S model to realize road defect detection.
(Depth_multiple and width_multiple are the depth and width of the network, respectively. The
anchor part is the size setting of the anchor. The content expression format of the backbone part
[number, module, args] were from the input of the layer, where number is the number of the layer,
module is the class name, and args is the initialization parameter of the class. The head part is the
same as the backbone part in terms of content expression format).
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Figure 4. Feature extraction diagram of four types of pavement defects by BiFPN and PANet network
structures. (a) lateral cracking, (b) longitudinal cracking, (c) alligator cracking, and (d) pothole.

To enhance the transmission of image features of the deep learning model, we adopted
the BiFPN network structure to strengthen the feature extraction ability of the deep learn-
ing network, compared with the original feature fusion network, PANet, as shown in
Figure 3a, eliminating single-sided input nodes with less contribution to fusion. As shown
in Figure 3b, the BiFPN network strengthens higher-level feature fusion in the processing
path, processing each bidirectional path (top-down and bottom-up) as a feature network
layer, and repeats this process multiple times in the same layer. Through the fusion of
weighted features, the importance of different input features is learned, and differentiated
fusion is carried out for different features. BiFPN uses fast normalized fusion to fuse
weighted features, which are defined as in Equation (1). The learning weight, wi, uses the
ReLU activation function, with a value of ε = 0.0001, to strengthen the stability of the value.
To further improve the detection efficiency of the deep network learning model, BiFPN uses
separable convolutional fusion features and adds batch normalization and activation after
each convolution. We took layer 6, as shown in Figure 4b, as an example and described the
definitions of two fusion features as shown in Equation (2).

O = ∑i
wi

ε + ∑j wj
·Ii (1)

Ptd
6 = Conv

(
w1·Pin

6 +w2 ·Rwsize (Pin
7 )

w1+w2+ε

)
Pout

6 = Conv
(

w′1·P
in
6 +w′2·P

td
6 +w′3 · Resize (Pout

5 )
w′1+w′2+w′3+ε

) (2)

where Ptd
6 represents the middle feature of the sixth layer from top to bottom and Pout

6
is the output feature of the sixth layer from the bottom up. Through the interconnection
and fusion between different layers, BiFPN’s bidirectional cross-scale connection and fast
normalization fusion are finally realized.
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2.3. Improved Focal Loss Function of BV-YOLOv5S Model

Existing detectors rank NMS detections by predicting an additional IoU score [52] or a
center score [53] as an indicator incorporated into the prediction criteria, which can alleviate
the error between a classification score and localization accuracy. However, the standard
obtained by multiplying two imperfect scores may produce larger errors, and experiments
have shown that this is not a perfect practice in the field of object detection [36]. In this
paper, we determined an IoU-aware classification score as the target presence confidence
by simultaneously predicting the perceptual classification score (IACS), representing the
localization accuracy of a specific object class to be detected; we also determined the
generated bounding box by incorporating additional predictions into the classification
score, for a joint representation of the localization accuracy. The YOLOv5 deep learning
network model uses Focal Loss to deal with the imbalance of positive and negative samples
in the target detection of the YOLOv5 model. Its definition formula is shown in Equation (3),
where α is the lost weight and pγ is the weight of different samples; the sample weight
increases for samples that are difficult to classify, reducing the impact of easy-to-classify
samples on the loss function. The model pays more attention to the training of samples
that are difficult to classify, but creates positive and negative samples equally; thus, it does
not put the focus of training on high-quality samples. Given the complex background of
pavement defects, the effective features in the sample images are difficult to highlight. In
the BV-YOLOv5S deep network model, we used Varifocal Loss to deal with the problem of
sample imbalance and to increase the weight of positive sample losses with high IoU values.

Focusing training on high-quality samples increases the robustness of the model. Its
definition formula is as in Equation (4), where p is the predicted Iou-aware Cls_score (IACS)
and q is the target IoU score. For the positive sample q in training, it is the IoU between the
b box and the gt box, and for the negative sample q in the training, the value is 0.

FL(p, y) =
{

−α(1− p)γlog(p)
−(1− α)pγlog(1− p)

if y = 1
otherwise

(3)

VFL(p, q) =
{
−q(qlog(p) + (1− q)log(1− p))

−αpγlog(1− p)
q < 0
q = 0

(4)

Compared with other target detection objects, pavement defect images have the
characteristics of complex backgrounds and diverse shapes; there is a high false detection
rate during recognition, and the preparation of high-quality datasets raises problems of
low efficiency and high cost. To solve these problems, we used Varifocal Loss instead of
Focal Loss for calculation, predicting IACS and classification scores. At the same time, we
focused on high-quality samples for training, and for efficiently we used the information in
the dataset.

In this paper, our detailed improvement steps for the sample imbalance function,
Focal Loss are as follows: first, according to the source code of Varifocal Loss [40], the
applicability of the source code was converted to make the source code conform to the
network structure of the YOLO algorithm; then, the original sample imbalance processing
function was replaced to complete the construction of the BV-YOLOv5S road surface defect
detection model.

3. Experiment
3.1. Experiment Environment and Evaluation Index
3.1.1. Experiment Environment

The model proposed in this paper was tested under laboratory conditions and the
results were analyzed quantitatively and qualitatively. The deep learning model devel-
opment tool used was Anaconda3, and the deep network learning model development
hardware and environment in the laboratory were CPU: Intel(R) Xeon(R) Gold 5218; GPU:
GeForce RTX 2080 Ti/11 GB; system: ubuntu18.04, CUDA10.2 with model acceleration
training function, cuDNN7; pytorch1.7.0 was used as the training framework of the model.
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3.1.2. Evaluation Metrics

To verify the performance of our proposed BV-YOLOv5S network model in pavement
defect detection, a confusion matrix evaluation index was introduced to evaluate the model.
The confusion matrix contains four types of definitions: TN (predict negative samples as
negative samples), FN (predict positive samples as negative samples), TP (predict positive
samples as positive samples), and FP (predict negative samples as positive samples).

(1) Precision, Recall, F1-score evaluation indicators

To comprehensively evaluate the performance of the model in the PCD1 dataset, we
introduced quantitative analysis indicators: precision, recall, and F1-score as defined in
Equations (5)–(7). Precision, recall, and F1-score have commonly used evaluation indicators
for target detection algorithms, and they play an irreplaceable role in the evaluation
of models.

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

F1− score =
2× P× R

P + R
(7)

(2) Detection rate

Detection speed is a critical requirement for engineering practical applications, and
we used frame rate (FPS) to show detection speed, which is an important metric for model
evaluation. Generally speaking, if FPS is ≥30, it can basically meet the demand, and the
video detection function of FPS ≥ 60 is smooth.

(3) PR curve, mAP@.5 evaluation indicators

The PR curve takes recall as the abscissa and precision as the ordinate to draw the
curve. If the PR curve of one model could completely wrap up the PR curve of the other
model, then the performance of the former model could be considered to be better. If it
could not be judged directly, the comparison could be made according to the area under
each model curve.

mAP@.5 means that under the condition of lOU = 0.5, the average value of precision
is calculated for the four types of defects. The average value of precision is an important
indicator in the model evaluation process. AP is calculated by precision and recall, and AP
is defined as:

AP =
1

11 ∑
γ∈{0,0.1,0.2··· ,1}

ρinterp(r) (8)

When we calculated the AP of the four categories of defects under the condition of
lOU = 0.5, we obtained the detected mAP@.5, which is defined as follows:

mAP =
∑4

i=1 APi

4
(9)

3.2. Data Collection and Processing

In this paper, we have constructed a pavement defect detection dataset—the PCD1
dataset. As far as we know, the current public datasets for defect recognition have different
standards for such indicators as image shooting angle, light intensity, and clarity. The
quality of such datasets is such that it is difficult to meet the requirements of use, so we
decided to build our own defect dataset for road surfaces. Based on the existing public
datasets, RDD2020 [54] and SDNET2018 [55], the quality of the PCD1 dataset was improved
by using the Baidu Street View Map and web crawler technology, as well as field collection.
The field acquisition device was the Huawei Mate30pro rear 40-megapixel camera. Some
of the acquisition parameters were ISO = 50, F:1.6, S:1/1182 s, focal length: 27 mm, and
shooting depression angle: 45◦–60◦. The PCD1 dataset was built based on diverse data,
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clear pictures, and a shooting angle of 45◦–60◦. To make full use of the dataset and to
improve the generalization ability of the model, the images containing multiple types
of defects were preferentially used. After careful selection, the collected images were
standardized before model training, and the images were reduced to 640 × 640 size so
that the YOLO model could exert the best training performance. After standardization,
according to different types of pavement defects, labeling was used to manually label data.
The file format of the labeling was txt, and a total of 5600 pieces of data were formed.
Figure 5 shows four typical defect types in PCD1. According to the needs of the experiment,
it was randomly divided into a training set, a validation set, and a test set, according to
6:2:2. The details of the defect distribution of the dataset are shown in Table 1.
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Table 1. Details of defect distribution in the PCD1 dataset.

Type of Dataset Lateral Cracking Longitudinal Cracking Alligator Cracking Pothole

Number 1350 1050 1400 1800

3.3. Data Collection and Processing

We trained YOLOv3-Tiny, YOLOv5s, B-YOLOv5s, and BV-YOLOv5S, as proposed in
this paper, in the same training set that was independent of the validation and test sets. The
YOLOv3-Tiny and YOLOv5S algorithms are widely used in the field of defect detection,
due to their strong flexibility, high accuracy, and fast speed, and they are advanced in
the application of lightweight convolutional neural networks [56]. Many researchers in
other professional fields have applied the BiFPN network structure to the YOLO algorithm
series and achieved good target detection results [57–59]. For this reason, we established
the B-YOLOv5S network and applied it to the detection of pavement defects. We further
compared and evaluated the performance of the BV-YOLOv5S model proposed in this
paper in pavement defect applications.

We set the epoch to 1000 for the training of this study and used the cosine annealing
method to adjust the learning rate. The initial learning rate was lr0 = 0.01, and the cyclic
learning rate was lrf = 0.2, which was helpful for the model’s convergence loss. To apply
the YOLO network structure, the size of all input images was 640 × 640, and the training
process of the whole model took about 6 h. Loss represented the gap between the predicted
value and the actual value. As the gap gradually decreased and converged, it meant
that the model approached the upper limit of performance determined by the dataset. A
comparison of the training loss function curves of the four models is shown in Figure 6.
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object loss.

As shown in Figure 6, the loss value fluctuates greatly at the beginning of training for
each category, indicating that the initial hyperparameters we used were reasonable. After a
certain number of iterations, the fluctuation of the loss curve gradually decreased, but as
shown in Figure 6, we found that the convergence loss performance of YOLOv3-Tiny was
poor. The loss function convergence performance of B-YOLOv5S and BV-YOLOv5S was
similar, and better than the loss performance of YOLOv5S.

4. Results and Discussion
4.1. Evaluation Metrics

After the training of the four models, we used the test dataset independent of the
training and validation sets to evaluate the models. During testing, we set IoU to 0.5 to
divide the positive and negative samples, and we plotted the PR curves for the performance
of different models. As shown in Figure 7, through the PR curve we could see that
the performance of the improved YOLOv5S model was significantly better than that of
YOLOv3-Tiny and YOLOv5S.
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4.2. Discussion of Results

In Table 2, we summarize the performance of four deep learning network models
in the PCD1 test dataset, and their confusion matrices are shown in Figure 8. From the
confusion matrix, we found that BV-YOLOv5S was ahead or even far ahead of the other
three models in the correct classification of pothole and alligator cracking, and was the
same as B-YOLOv5 in the correct classification of longitudinal cracking and ahead of the
other two models. In the correct classification of lateral cracking, although it was ahead of
YOLOv3-Tiny and YOLOv5S, the correct rate was lower than that of B-YOLOv5S. Overall,
the BV-YOLOv5S classification performance outperformed the other three models in the
confusion matrix. However, for the defects of lateral cracking and longitudinal cracking,
the classification effect of the four models was poor, resulting in a largely missed detection
phenomenon. This phenomenon occurred because, for the deep network learning model,
the small target of the crack, the variety of shape, and the uncertainty of the width caused
certain difficulties in the feature information extraction of the target detection model, which
was the difficulty in the field of small target detection.

Table 2. Test results of different defect detection models in the pavement defect dataset. (Through
independent test set testing, the precision, recall, and F1-score values of each category were provided
and averaged).

Model mAP@.5 Precision Recall F1-Score FPS

YOLOv3-Tiny 0.594 0.737 0.573 0.646 167
YOLOv5S 0.605 0.859 0.549 0.670 238

B-YOLOv5S 0.626 0.876 0.561 0.684 278
BV-YOLOv5S 0.635 0.864 0.590 0.701 263

This phenomenon will be the focus of our future work. In the next step, we will
enhance the accuracy of the model in crack detection by further improving the feature
extraction ability of the object detection model network.

Specifically, compared with the YOLOv3-Tiny model, the deep network learning model
BV-YOLOv5S, the YOLOv5S model, and the B-YOLOv5S model mAP@.5 increased by 4.1%,
3%, and 0.9%, respectively. Precision increased by 12.7% and 0.5%, respectively, which was
1.2% lower than that of the B-YOLOv5S model; recall increased by 1.7%, 4.1%, and 2.9%,
respectively. The F1-score increased by 5.5%, 3.1%, and 1.7%, respectively. As shown in
Table 2, we found that the recall values of the four types of models were low, mainly due to
the shallow network layers of the lightweight deep learning network model, The ability
to extract features and learn was low, but this improved the running speed and flexibility
of the model in meeting the needs of terminal deployment and practical engineering.
We found that BV-YOLOv5S was significantly enhanced compared to YOLOv3-Tiny and
YOLOv5S, in terms of speed, recall, and F1-score, which proved that our work is effective
and can be used as a reference for other work in the defect detection field. According to
the analysis of the experimental results of the detection speed, we found that the BiFPN
network structure information processing speed was faster than that of the PANet network
structure, which not only strengthened the feature extraction ability but also improved the
detection speed of the model, and had better performance in real-time detection. However,
the BV-YOLOv5S model adopted a more complex calculation method to deal with the
problem of sample imbalance, which reduced the detection speed to a certain extent;
nevertheless, it was sufficient for real-time detection requirements. In conclusion, our
proposed BV-YOLOv5S deep network learning model comprehensively outperformed the
YOLOv5S model in mAP@.5, precision, recall, F1-score, and its detection speed metrics
went far beyond the current YOLOv3-Tiny network model, which is representative of
lightweight target detection models.
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Through comprehensive comparative analysis of mAP@.5, precision, recall, F1-score,
and FPS evaluation indicators in the experimental results, we believe that the BV-YOLOv5S
model is more robust in performance than the YOLOv3-Tiny, YOLOv5S, and B-YOLOv5S
network models. The BV-YOLOv5S model proposed in this paper has higher accuracy and
flexibility, and has stronger advantages for the deployment and practical application of
embedded devices.

Due to the complex road surface environment, especially on rural roads, there are
many defects in road surfaces. To comprehensively measure the performance of the BV-
YOLOv5S model, we used small targets, multi-targets, and shadow-occluded targets to
conduct visual experiments, as shown in Figure 9.

As shown in Figure 9a, we found that the detection performance of the YOLOv3-Tiny
model is obviously disturbed by rutting and lane boundaries, and the anti-interference
ability was poor. The detection performance of YOLOv5S and B-YOLOv5S was also
interfered with by rutting and roadway boundaries to a certain extent, and BV-YOLOv5S
had strong anti-interference ability in this environment. However, Figure 9a shows that the
model was too sensitive to the detection of pavement potholes; it is necessary to further
improve the generalization ability of the model in the future.
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Figure 9. The test results of different network models in a complex environment. (a) The model
detection results of four types of pavement defects in a rutting interference environment. (b) Detection
results of four types of pavement defect models under the conditions of many and small targets.
(c) The detection results of the four types of pavement defect models under environments of uneven
illumination intensity. (d) The model detection results of four types of pavement defects under partial
shadow occlusion conditions. (e) Alligator crack detection in the presence of small target potholes.

As shown in Figure 9b, we tested the performance of the four defect models under
the condition of multiple small targets, It can be seen from the figure that the YOLOv3-
Tiny detection performance was average, and the small holes nearby were missed, which
showed that the model was not sensitive to small targets, The performance of the YOLOv5S
model was the worst; recent potholes were missed, and there were serious defects in
performance. The B-YOLOv5S model had relatively good detection results. However,
despite the missed detection of pits with inconspicuous defect characteristics in the vicinity
and the missed detection of small targets at a distance, the BV-YOLOv5 model had the best
performance in this detection. It could detect the pits in this range, showing an absolute
advantage in performance.

As shown in Figure 9c, the pavement defect detection performance of the four models
was tested under the condition of uneven illumination intensity. It can be seen that the
YOLOv3-Tiny and YOLOv5S networks were greatly interfered with by light intensity,
resulting in obvious losses in detection performance. The B-YOLOv5S model could detect
defects but had low confidence. The BV-YOLOv5S could accurately detect defects with a
high degree of confidence. It was not interfered with by uneven light intensity and had a
strong anti-interference ability with respect to the external environment.

As shown in Figure 9d, the four models had similar detection capabilities under the
condition of partial shadow occlusion, and a small part of the shadow did not have a great
impact on the models. As shown in Figure 9e, we tested the model to detect alligator
cracks under the interference of small target potholes. Through testing, we found that
YOLOv3-Tiny had the lowest confidence, and the BV-YOLOv5S model had the highest
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confidence in alligator crack detection, and only this model could detect potholes for small
objects. This shows that, to a certain extent, the handling of sample imbalance by Varifocal
Loss enhances the model’s detection ability for small objects. It can be seen that by using
BiFPN to enhance feature extraction, the detection accuracy of the model can be improved
to a certain extent; in addition, by optimizing the sample imbalance processing method,
the sensitivity of small target recognition can be improved, and the missed detection rate of
targets with insignificant features can be reduced, with better performance in the detection
of pavement defects. By further testing our improved model’s performance, we confirmed
its performance advantages. The BV-YOLOv5S showed stronger practical advantages,
compared with the YOLOv3-Tiny, YOLOv5S, and B-YOLOv5S models. In the quantitative
evaluation results and the qualitative analysis, the BV-YOLOv5S model proposed in this
paper showed strong anti-interference ability, high sensitivity to small targets, a low multi-
target missed detection rate, and little influence of external environment interference, with
good robustness and generalization.

In this experiment, we used asphalt pavement as the background of the defect detec-
tion model. Compared with cement pavement, the feature structure of asphalt pavement is
more complex. Through the experiments in this dataset, we confirmed our results. At the
same time, we could quickly carry out the training and deployment of the pavement defect
detection model for cement pavement and other targets through transfer learning.

5. Conclusions

In this paper, an improved lightweight deep network learning model, BV-YOLOv5S,
was proposed for the detection of asphalt road surface defects by embedded devices. First,
we established a high-standard, high-quality PCD1 dataset employing public datasets,
Baidu Street View maps, web crawler, and field photography. The data types of the
datasets were enriched, and new data collection strategies contributed to the target detection
datasets. Second, to realize the applicability of the model in embedded systems and to
perform accurate detection under complex road conditions, we proposed a BV-YOLOv5S
deep network learning model, based on the YOLOv5S deep network learning model.
In the feature extraction network, the BiFPN network was used to replace the PANet
network, with the aim of mining deeper information in the pavement defect images. The
BV-YOLOv5S network model improved the Focal Loss and used Varifocal Loss as the
loss function to deal with the imbalance problem between samples. More of the model’s
attention was transferred to high-quality dataset samples, making full use of the effective
information in the dataset. We trained and tested the proposed BV-YOLOv5S model and
the YOLOv3-Tiny, YOLOv5S, and B-YOLOv5S network models under the same conditions.
The experimental results showed that our proposed BV-YOLOv5S model in the mAP@.5
index improved by 4.1%, 3%, and 0.9%, respectively, compared with the deep network
learning models YOLOv3-Tiny, YOLOv5S, and B-YOLOv5S. In addition, the recall and
F1-score evaluation metrics were higher or even much higher than those of the B-YOLOv5S,
YOLOv5S, and YOLOv3-Tiny models, O\outperforming YOLOv5S in detection speed and
precision, and far exceeding YOLOv3-Tiny. The experimental results demonstrated that
our proposed work is advanced.

Our proposed BV-YOLOv5S deep network learning model is most suitable for defect
detection under actual road conditions and has good practicability and advancement.
Compared with other object detection models, our model can be more flexibly deployed in
mobile embedded devices, and compared with other lightweight object detection models, it
has shown good performance in the tests. In subsequent work, the BV-YOLOv5S proposed
in this paper will be applied to embedded devices in ordinary cars to further improve and
realize the automatic detection of road surface defects.

Author Contributions: Conceptualization, F.-J.D. and S.-J.J.; methodology, software, validation,
formal analysis, investigation, F.-J.D.; resources, F.-J.D.; data curation, writing—original draft prepa-
ration, F.-J.D.; writing—review and editing F.-J.D.; visualization, F.-J.D.; supervision, S.-J.J.; project
administration, F.-J.D. All authors have read and agreed to the published version of the manuscript.



Sensors 2022, 22, 3537 16 of 18

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available, as they involve the subsequent applications
for patents, software copyright, and the publication of project deliverables.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. CIA. Roadways—The World Factbook. Available online: www.cia.gov (accessed on 12 July 2021).
2. CIA. Public Road Length—2017 Miles by Functional System. Available online: www.cia.gov/the-world-factbook (accessed on 2

February 2019).
3. The Times of India. Deadly pits: Potholes Claimed 11,386 Lives during 2013–2016. Available online: https://timesofindia.

indiatimes.com/india/deadly-pits-potholes-claimed-11386-lives-during-2013-16/articleshow/60774243.cms (accessed on 21
September 2017).

4. Greg Colemanlaw. Accidents and Injuries Caused by Bad Road Conditions. Available online: https://www.gregcolemanlaw.
com/bad-road-damages-and-effects.html (accessed on 1 January 2022).

5. Pasha, A.; Mansourian, A.; Ravanshadnia, M. Evaluation of Work Zone Road User Cost of Pavements Based on Rehabilitation
Strategy Approach. J. Transp. Eng. Part B Pavements 2021, 147, 4021015. [CrossRef]

6. Hosseini, A.; Faheem, A.; Titi, H.; Schwandt, S. Evaluation of the long-term performance of flexible pavements with respect to
production and construction quality control indicators. Constr. Build. Mater. 2020, 230, 116998. [CrossRef]

7. Kumar, P.; Sharma, A.; Kota, S.R. Automatic Multiclass Instance Segmentation of Concrete Damage Using Deep Learning Model.
IEEE Access 2021, 9, 90330–90345. [CrossRef]

8. Majidifard, H.; Adu-Gyamfi, Y.; Buttlar, W.G. Deep machine learning approach to develop a new asphalt pavement condition
index. Constr. Build. Mater. 2020, 247, 118513. [CrossRef]

9. JTG H20-2007; Chinese Highway Technical Condition Evaluation Standard. Ministry of Transportation: Beijing, China, 2007.
10. Hoang, N.-D.; Nguyen, Q.-L. Automatic Recognition of Asphalt Pavement Cracks Based on Image Processing and Machine

Learning Approaches: A Comparative Study on Classifier Performance. Math. Probl. Eng. 2018, 2018, 6290498. [CrossRef]
11. Radopoulou, S.C.; Brilakis, I. Automated Detection of Multiple Pavement Defects. J. Comput. Civ. Eng. 2017, 31, 4016057.

[CrossRef]
12. Koch, C.; Georgieva, K.; Kasireddy, V.; Akinci, B.; Fieguth, P. A review on computer vision based defect detection and condition

assessment of concrete and asphalt civil infrastructure. Adv. Eng. Inform. 2015, 29, 196–210. [CrossRef]
13. Li, Z.; Wang, W.; Shui, P. Parameter Estimation and Two-Stage Segmentation Algorithm for the Chan-Vese Model. In Proceedings

of the 2006 International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; pp. 201–204, ISBN 1-4244-0480-0.
14. Subirats, P.; Dumoulin, J.; Legeay, V.; Barba, D. Automation of Pavement Surface Crack Detection using the Continuous Wavelet

Transform. In Proceedings of the 2006 International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; IEEE:
Piscataway, NJ, USA, 2006; pp. 3037–3040, ISBN 1-4244-0480-0.

15. Li, B.; Wang, K.C.P.; Zhang, A.; Fei, Y.; Sollazzo, G. Automatic Segmentation and Enhancement of Pavement Cracks Based on 3D
Pavement Images. J. Adv. Transp. 2019, 2019, 1813763. [CrossRef]

16. Zou, Q.; Cao, Y.; Li, Q.; Mao, Q.; Wang, S. CrackTree: Automatic crack detection from pavement images. Pattern Recognit. Lett.
2012, 33, 227–238. [CrossRef]

17. Hoang, N.-D.; Nguyen, Q.-L. A novel method for asphalt pavement crack classification based on image processing and machine
learning. Eng. Comput. 2019, 35, 487–498. [CrossRef]

18. Salari, E.; Bao, G. Pavement Distress Detection and Severity Analysis. Adv. Eng. Inform. 2011, 7877, 25–27.
19. Moghadas Nejad, F.; Zakeri, H. A comparison of multi-resolution methods for detection and isolation of pavement distress.

Expert Syst. Appl. 2011, 38, 2857–2872. [CrossRef]
20. Koch, C.; Brilakis, I. Pothole detection in asphalt pavement images. Adv. Eng. Inform. 2011, 25, 507–515. [CrossRef]
21. Zhang, L.; Yang, F.; Daniel Zhang, Y.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of

the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2006; IEEE: Piscataway,
NJ, USA, 2006; pp. 3708–3712, ISBN 978-1-4673-9961-6.

22. Aswath, M.; Raj, S.J.; Mohanaprasad, K. Real-Time Pothole Detection with Onboard Sensors and Camera on Vehicles. In
Futuristic Communication and Network Technologies; Sivasubramanian, A., Shastry, P.N., Hong, P.C., Eds.; Springer: Singapore, 2022;
pp. 479–488, ISBN 978-981-16-4624-9.

23. Hoang, N.-D.; Huynh, T.-C.; Tran, V.-D. Computer Vision-Based Patched and Unpatched Pothole Classification Using Machine
Learning Approach Optimized by Forensic-Based Investigation Metaheuristic. Complexity 2021, 2021, 3511375. [CrossRef]

24. Riid, A.; Lõuk, R.; Pihlak, R.; Tepljakov, A.; Vassiljeva, K. Pavement Distress Detection with Deep Learning Using the Orthoframes
Acquired by a Mobile Mapping System. Appl. Sci. 2019, 9, 4829. [CrossRef]

www.cia.gov
www.cia.gov/the-world-factbook
https://timesofindia.indiatimes.com/india/deadly-pits-potholes-claimed-11386-lives-during-2013-16/articleshow/60774243.cms
https://timesofindia.indiatimes.com/india/deadly-pits-potholes-claimed-11386-lives-during-2013-16/articleshow/60774243.cms
https://www.gregcolemanlaw.com/bad-road-damages-and-effects.html
https://www.gregcolemanlaw.com/bad-road-damages-and-effects.html
http://doi.org/10.1061/JPEODX.0000268
http://doi.org/10.1016/j.conbuildmat.2019.116998
http://doi.org/10.1109/ACCESS.2021.3090961
http://doi.org/10.1016/j.conbuildmat.2020.118513
http://doi.org/10.1155/2018/6290498
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000623
http://doi.org/10.1016/j.aei.2015.01.008
http://doi.org/10.1155/2019/1813763
http://doi.org/10.1016/j.patrec.2011.11.004
http://doi.org/10.1007/s00366-018-0611-9
http://doi.org/10.1016/j.eswa.2010.08.079
http://doi.org/10.1016/j.aei.2011.01.002
http://doi.org/10.1155/2021/3511375
http://doi.org/10.3390/app9224829


Sensors 2022, 22, 3537 17 of 18

25. Nguyen, H.T.; Nguyen, L.T.; Afanasiev, A.D.; Pham, L.T. Classification of Road Pavement Defects Based on Convolution Neural
Network in Keras. Aut. Control Comp. Sci. 2022, 56, 17–25. [CrossRef]

26. Maeda, H.; Sekimoto, Y.; Seto, T.; Kashiyama, T.; Omata, H. Road Damage Detection and Classification Using Deep Neural
Networks with Smartphone Images. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 1127–1141. [CrossRef]

27. Ping, P.; Yang, X.; Gao, Z. A Deep Learning Approach for Street Pothole Detection. In Proceedings of the 2020 IEEE Sixth
International Conference on Big Data Computing Service and Applications (BigDataService), Oxford, UK, 3–6 August 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 198–204, ISBN 978-1-7281-7022-0.

28. Du, Y.; Pan, N.; Xu, Z.; Deng, F.; Shen, Y.; Kang, H. Pavement distress detection and classification based on YOLO network. Int. J.
Pavement Eng. 2021, 22, 1659–1672. [CrossRef]

29. Liu, C.; Wu, Y.; Liu, J.; Han, J. MTI-YOLO: A Light-Weight and Real-Time Deep Neural Network for Insulator Detection in
Complex Aerial Images. Energies 2021, 14, 1426. [CrossRef]

30. Park, S.-S.; Tran, V.-T.; Lee, D.-E. Application of Various YOLO Models for Computer Vision-Based Real-Time Pothole Detection.
Appl. Sci. 2021, 11, 11229. [CrossRef]

31. Baek, J.-W.; Chung, K. Pothole Classification Model Using Edge Detection in Road Image. Appl. Sci. 2020, 10, 6662. [CrossRef]
32. Pena-Caballero, C.; Kim, D.; Gonzalez, A.; Castellanos, O.; Cantu, A.; Ho, J. Real-Time Road Hazard Information System.

Infrastructures 2020, 5, 75. [CrossRef]
33. Ahmed, K.R. Smart Pothole Detection Using Deep Learning Based on Dilated Convolution. Sensors 2021, 21, 8406. [CrossRef]

[PubMed]
34. Ultralytics. Yolov5. Available online: https://github.com/ultralytics/yolov5 (accessed on 1 January 2021).
35. Tan, M.; Pang, R.; Le, V.Q. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.
36. Zhang, H.; Wang, Y.; Dayoub, F.; Sünderhauf, N. VarifocalNet: An IoU-aware Dense Object Detector. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8514–8523.
37. Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst.

2019, 30, 3212–3232. [CrossRef]
38. Lu, J.; Behbood, V.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer learning using computational intelligence: A survey. Knowl.-Based

Syst. 2015, 80, 14–23. [CrossRef]
39. Wu, X.; Sahoo, D.; Hoi, S.C.H. Recent advances in deep learning for object detection. Neurocomputing 2020, 396, 39–64. [CrossRef]
40. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
41. Cheng, Y.; Chen, C.; Gan, Z. Enhanced Single Shot MultiBox Detector for Pedestrian Detection. In Proceedings of the 3rd

International Conference on Computer Science and Application Engineering, Sanya, China, 22–24 October 2019; pp. 1–7.
42. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13

December 2015; pp. 1440–1448.
43. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv

2015, arXiv:1506.01497v3. [CrossRef]
44. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2014, 37, 1904–1916. [CrossRef]
45. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer

Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.
46. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
47. Jiang, Z.; Zhao, L.; Li, S.; Jia, Y. Real-time object detection method based on improved YOLOv4-tiny. arXiv 2020, arXiv:2011.04244.
48. Ma, D.; Fang, H.; Wang, N.; Xue, B.; Dong, J.; Wang, F. A real-time crack detection algorithm for pavement based on CNN with

multiple feature layers. Road Mater. Pavement Des. 2021, 10338, 1–17. [CrossRef]
49. Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks.

Comput. -Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]
50. Liu, C.; Wu, Y.; Liu, J.; Sun, Z.; Xu, H. Insulator Faults Detection in Aerial Images from High-Voltage Transmission Lines Based on

Deep Learning Model. Appl. Sci. 2021, 11, 4647. [CrossRef]
51. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.
52. Wu, S.; Li, X.; Wang, X. IoU-Aware Single-Stage Object Detector for Accurate Localization. Image Vis. Comput. 2019, 97, 103911.

Available online: http://arxiv.org/pdf/1912.05992v4 (accessed on 1 February 2022). [CrossRef]
53. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9627–9636.
54. Arya, D.; Maeda, H.; Ghosh, S.K.; Toshniwal, D.; Sekimoto, Y. RDD2020: An annotated image dataset for automatic road damage

detection using deep learning. Data Brief 2021, 36, 107133. [CrossRef]
55. Maguire, M.; Dorafshan, S.; Thomas, R.J. SDNET2018: A Concrete Crack Image Dataset for Machine Learning Applications. 2018.

Available online: https://digitalcommons.usu.edu/all_datasets/48 (accessed on 1 February 2022).

http://doi.org/10.3103/S0146411622010084
http://doi.org/10.1111/mice.12387
http://doi.org/10.1080/10298436.2020.1714047
http://doi.org/10.3390/en14051426
http://doi.org/10.3390/app112311229
http://doi.org/10.3390/app10196662
http://doi.org/10.3390/infrastructures5090075
http://doi.org/10.3390/s21248406
http://www.ncbi.nlm.nih.gov/pubmed/34960498
https://github.com/ultralytics/yolov5
http://doi.org/10.1109/TNNLS.2018.2876865
http://doi.org/10.1016/j.knosys.2015.01.010
http://doi.org/10.1016/j.neucom.2020.01.085
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1109/TPAMI.2015.2389824
http://doi.org/10.1080/14680629.2021.1925578
http://doi.org/10.1111/mice.12263
http://doi.org/10.3390/app11104647
http://arxiv.org/pdf/1912.05992v4
http://doi.org/10.1016/j.imavis.2020.103911
http://doi.org/10.1016/j.dib.2021.107133
https://digitalcommons.usu.edu/all_datasets/48


Sensors 2022, 22, 3537 18 of 18

56. Adibhatla, V.A.; Chih, H.-C.; Hsu, C.-C.; Cheng, J.; Abbod, M.F.; Shieh, J.-S. Applying deep learning to defect detection in printed
circuit boards via a newest model of you-only-look-once. Math. Biosci. Eng. 2021, 18, 4411–4428. [CrossRef] [PubMed]

57. Jing, Y.; Ren, Y.; Liu, Y.; Wang, D.; Yu, L. Automatic Extraction of Damaged Houses by Earthquake Based on Improved YOLOv5:
A Case Study in Yangbi. Remote Sens. 2022, 14, 382. [CrossRef]

58. Wang, Y.; Hua, C.; Ding, W.; Wu, R. Real-time detection of flame and smoke using an improved YOLOv4 network. Signal Image
Video Processing 2022, 288, 30. [CrossRef]

59. Zhang, Z.; Lu, X.; Cao, G.; Yang, Y.; Jiao, L.; Liu, F. ViT-YOLO: Transformer-Based YOLO for Object Detection. In Proceedings of
the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 2799–2808, ISBN 978-1-6654-0191-3.

http://doi.org/10.3934/mbe.2021223
http://www.ncbi.nlm.nih.gov/pubmed/34198445
http://doi.org/10.3390/rs14020382
http://doi.org/10.1007/s11760-021-02060-8

	Introduction 
	Methods 
	Introduction to Algorithm and Network Structure 
	Feature Extraction Networks of the BV-YOLOv5S Model 
	Improved Focal Loss Function of BV-YOLOv5S Model 

	Experiment 
	Experiment Environment and Evaluation Index 
	Experiment Environment 
	Evaluation Metrics 

	Data Collection and Processing 
	Data Collection and Processing 

	Results and Discussion 
	Evaluation Metrics 
	Discussion of Results 

	Conclusions 
	References

