
Citation: Pradhan, N.R.; Singh, A.P.;

Verma, S.; Kavita; Kaur, N.; Roy, D.S.;

Shafi, J.; Wozniak, M.; Ijaz, M.F. A

Novel Blockchain-Based Healthcare

System Design and Performance

Benchmarking on a Multi-Hosted

Testbed. Sensors 2022, 22, 3449.

https://doi.org/10.3390/s22093449

Academic Editor: Rongxing Lu

Received: 4 March 2022

Accepted: 26 April 2022

Published: 30 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Blockchain-Based Healthcare System Design and
Performance Benchmarking on a Multi-Hosted Testbed
Nihar Ranjan Pradhan 1 , Akhilendra Pratap Singh 1, Sahil Verma 2,3 , Kavita 2,4 , Navneet Kaur 2,5 ,
Diptendu Sinha Roy 1, Jana Shafi 6 , Marcin Wozniak 7,* and Muhammad Fazal Ijaz 8,*

1 Department of Computer Science and Engineering, National Institute of Technology Meghalaya,
Shillong 793003, India; niharpradhan@nitm.ac.in (N.R.P.); akhilendra.singh@nitm.ac.in (A.P.S.);
diptendu.sr@nitm.ac.in (D.S.R.)

2 Department of Computer Science and Engineering, Chandigarh University, Mohali 140413, India;
sahilverma@ieee.org (S.V.); kavita@ieee.org (K.); navneet.e11384@cumail.in (N.K.)

3 Bio and Health Informatics Research Lab, Chandigarh University, Mohali 140413, India
4 Machine Learning and Data Science Research Lab, Chandigarh University, Mohali 140413, India
5 Bio-Intelligence Research Lab, Chandigarh University, Mohali 140413, India
6 Department of Computer Science, College of Arts and Science, Prince Sattam Bin Abdul Aziz University,

Wadi Ad-Dawasir 11991, Saudi Arabia; j.jana@psau.edu.sa
7 Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
8 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea
* Correspondence: marcin.wozniak@polsl.pl (M.W.); fazal@sejong.ac.kr (M.F.I.)

Abstract: As a result of the proliferation of digital and network technologies in all facets of modern
society, including the healthcare systems, the widespread adoption of Electronic Healthcare Records
(EHRs) has become the norm. At the same time, Blockchain has been widely accepted as a potent
solution for addressing security issues in any untrusted, distributed, decentralized application and
has thus seen a slew of works on Blockchain-enabled EHRs. However, most such prototypes ignore
the performance aspects of proposed designs. In this paper, a prototype for a Blockchain-based EHR
has been presented that employs smart contracts with Hyperledger Fabric 2.0, which also provides
a unified performance analysis with Hyperledger Caliper 0.4.2. The additional contribution of this
paper lies in the use of a multi-hosted testbed for the performance analysis in addition to far more
realistic Gossip-based traffic scenario analysis with Tcpdump tools. Moreover, the prototype is tested
for performance with superior transaction ordering schemes such as Kafka and RAFT, unlike other
literature that mostly uses SOLO for the purpose, which accounts for superior fault tolerance. All of
these additional unique features make the performance evaluation presented herein much more realistic
and hence adds hugely to the credibility of the results obtained. The proposed framework within
the multi-host instances continues to behave more successfully with high throughput, low latency,
and low utilization of resources for opening, querying, and transferring transactions into a healthcare
Blockchain network. The results obtained in various rounds of evaluation demonstrate the superiority
of the proposed framework.

Keywords: Blockchain; Hyperledger Fabric; Gossip protocol; RAFT orderer; Electronic Healthcare
Records (EHR)

1. Introduction

Healthcare has always been one of the largest sectors of society dealing with managing
patients and their health data [1–3]. In the current scenario, data are being stored digitally
and are referred to as Electronic Health Records (EHRs) [4,5]. Currently, EHRs are not
designed in such a way that they could manage multi-institutional data. Patients’ data are
fragmented across different institutions. This makes accessing a patient’s past data difficult.
An additional barrier to this is the interoperability between different patient data providers
and hospital systems. Due to this, patients and providers face difficulties while initiating

Sensors 2022, 22, 3449. https://doi.org/10.3390/s22093449 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093449
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2193-3101
https://orcid.org/0000-0003-3136-4029
https://orcid.org/0000-0001-5422-1659
https://orcid.org/0000-0001-9086-4352
https://orcid.org/0000-0001-9731-2534
https://orcid.org/0000-0001-6859-670X
https://orcid.org/0000-0002-9073-5347
https://doi.org/10.3390/s22093449
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093449?type=check_update&version=3

Sensors 2022, 22, 3449 2 of 20

the data retrieval process [6–8]. While designing a new system to overcome the existing
issues, a decentralized database which is constantly updated may present many advantages
to the healthcare industry [9–11]. For example, different parties may need to access the
same information, and if the database is shared, then it becomes easy to access the records.
This is where the Blockchain technology seems to be more effective. For example, different
involved parties (e.g., general medical specialists [12,13], hospitals [14,15] therapists [16],
etc.) could act as a node on the Blockchain network and may share the information among
themselves [4,7]. Traditionally, the healthcare records are based on manual ledgers, but with
time, these ledgers became inefficient in storing patients’ information due to cumbersome
tracking records and increased cost [17–19].

Decentralization, security, immutability, and distribution are the key properties of
Blockchain [20–22]. So, it can address many issues faced in healthcare systems and can
provide viable solutions to it. Hence, Blockchain technology can address issues faced in
current digital healthcare systems effectively [2,5]. Existing issues such as fragmented
patient data and data security of the healthcare may be resolved if new technologies
such as Blockchain are used. Blockchain has properties such as data privacy, security
and decentralization, which will help to transform existing systems and will make the
system more efficient. Blockchain uses a set of access right rules that can share the data
among needy users. The rules are nothing but the smart contract that are used in various
decentralized application [23,24].

In addition to security of healthcare transaction data, the Blockchain technique de-
pends on two key concepts: consensus and transaction broadcast [25,26]. Consensus among
the healthcare [27] peers is achieved by the addition of new blocks in an untrustworthy
network by the distributed Byzantine Fault Tolerant (BFT) algorithm. BFT in a public
blockchain healthcare network is not sufficient because of the miner who can append
ill-formed blocks to the chain and can lead to a threat for Sybil attacks [28,29]. However,
a Crash Fault Tolerant (CFT) is sufficient to solve the above issue [1,25]. Moreover, in a
permissioned blockchain-based healthcare framework, the trusted membership services
and identified participants transactions ordering, called an orderer, have provided a full
proof solution by Practical Byzantine Fault Tolerant (PBFT) [30]. HF provides various
consensus ordering mechanism such as SOLO [1], Kafka [19] and RAFT [20]. SOLO is
resilient to BFT and CFT and is not suitable for the healthcare industry, whereas Kafka and
RAFT ordering solutions are most suitable, as it supports distributed fault tolerance [1,25].

The broadcasting of transactions from the source to all other nodes in a Blockchain
network relies on the use of Gossip protocol. It spreads the information between nodes
in a randomized and probabilistic way, which impacts the transaction traffic and leads to
performance bottlenecks. Many studies [2,4] have provided significant solutions scalability
and performance of the consensus; however, few studies [3] have paid little attention to
the impact of Gossip-based broadcasting in HF [8]. Motivated from the above gap, we
designed and implemented a blockchain-based healthcare framework using Raft ordering
services that disseminates fair Gossip distribution.

The main contributions of this paper include the following:

• The Blockchain-enabled healthcare framework implementation and prototype design
using on-chain and off-chain scheme is presented. Hyperledger Fabric is used for enact-
ing smart contracts for client communications. A thorough performance evaluation of
this prototype is presented herein.

• Performance analysis of the implemented healthcare prototype on a multi-hosted
testbed by employing the Google Cloud Platform (GCP).

• Analysis of network transactions cost and fair optimized traffic owing to Gossip
protocols resulting in a fair and efficient dissemination. Such an attempt is not yet
studied for any Blockchain-based healthcare systems.

• The proposed framework enhances the propagation of blocks to all healthcare peers
by 8 times faster than actual implementation while decreasing the network bandwidth
and increasing throughput by more than 30%.

Sensors 2022, 22, 3449 3 of 20

• Integrated use of the latest and far more reliable transaction orderer services such as
Kafka and RAFT unlike SOLO [1].

To the best of the knowledge of the authors, this paper presents a complete and
comprehensive performance study for Blockchain-based healthcare systems with state-
of-the-art Raft, multi-host, docker swarm network schemes not yet investigated in the
literature. The rest of the paper is organized in the following manner. Section 2 reviews
the related work to a Blockchain-based healthcare system and performance benchmarking.
The proposed framework and system architecture has been introduced in Section 3. In
Section 4, a detailed implementation procedure has been given. Based on the performance
benchmarking, Section 5 provides an analysis. Finally, Section 6 concludes the paper with
future work.

2. Related Work

In this section an overview of related work on blockchain based solutions for EHR
system has been presented in Table 1. Jabarulla et al. [17] have proposed a proof-of-
concept-based Patient-Centric Image Management (PCIM) system, where a set of access
rules called patient-centric access control smart contract is implemented in the Blockchain.
The authors have implemented an Ethereum testnet Blockchain with an Inter Planetary
File System (IPFS) for storing the medical images and accessing globally through secure
hash values. Mazumdar et al. [9] have proposed an anonymous endorsement scheme for
Hyperledger fabric called fabrics constrain-sized linkable ring signature (FCsLRS). The
suggested scheme analyzed the security and performance of the network with variations of
the Rivest Shamir Adleman (RSA) key size. However, Hyperledger supports an Elliptical
Curve Digital Signature Algorithm (ECDSA), so the inclusion of RSA for endorsing policy in
the EHR system has performance bottlenecks. Stamatellis et al. [13] have designed privacy-
preserving healthcare using Hyperledger and implemented it with a proof of concept
consensus algorithm, and the results have been measured by performing benchmarking.
Pongnumkal et al. [10] have presented a performance analysis between Hyperledger Fabric
and the private Ethereum network, where it was found that Hyperledger performs better
than Ethereum, which can be expected. The authors conducted the simulation with 10,000
transactions and found that the latency of Ethereum is 8 s, whereas Hyperledger Fabric’s
latency is 35 s. Although a comprehensive performance evaluation has been performed,
the work does not consider evaluating the network transaction cost and traffic, which are
also vital factors. Adroulaki et al. [12] have dealt with a Hyperledger Fabric’s performance
evaluation using a single channel, Kafka ordering with Zookeeper and Kafka broker services.
The parameters were implemented by varying the block size, transaction per second, CPU
resources, number of peers, and organizations.

The authors in [1] have designed a Blockchain-enabled multi-party healthcare frame-
work using Hyperledger Fabric and Composer. They also designed the access rules for
each participant and finally measured the performances using Hyperledger Caliper.

It may be noted that most of the works have used SOLO or Kafka ordering services for
Hyperledger Fabric in a single host system for which the transaction rate is comparatively
low. Moreover, most works in the literature have not analyzed in detail the network
traffic and transaction-related traffic owing to Gossip and TCP protocol. In addition, the
performance of the RAFT orderer and its fault tolerance has not been studied to date.

Sensors 2022, 22, 3449 4 of 20

Table 1. Related work on blockchain-based approaches for the EHR system.

References Year Objective Performance Limitation Performance
Evaluation

Azaria et al. [26] 2016
MedRec: Ethereum
based permission

less mode of operation

It slows down
network computing

over the time and
makes the network

less transparent

Full
transparency No

Shen et al. [27] 2019

MedChain: patient
centric healthcare by

providing the privacy
preserving mechanism

for healthcare data

Only calculated average
response time, throughput
and average message time

based on Ethereum

Full
transparency Partially

Gorenflo et al. [28] 2018
To scale a blockchain

network using
Hyperledger Fabric

Demonstrable capability
of blockchain network

Increased computing
power needed No

Sun et al. [29] 2018

To propose a
decentralizing attribute
based signature using

blockchain

Verifiable secure sharing
of large-scale and distributed

EHR

Attribute certificates,
storage capacity Partially

Chen et al. [30] 2019
To design a searchable

encryption for EHR using
blockchain

Security analysis
with searchable

encryption algorithm
Scalability No

Singh et al. [1] 2020

To design and propose
an efficient blockchain

based EHR system using
HF and SOLO ordering

services

EHR with smart
contract, achieves

performance optimization
using Caliper

No fault tolerance
capacity of the

network
Yes

Proposed
Approach 2022

To design and propose
an efficient blockchain
based EHR sharing with
HF and RAFT ordering
services with on-chain and
off-chain storing scheme

Transaction traffic
analysis and performance

optimization using Caliper
Fault tolerance Yes

3. System Architecture for the Proposed Framework

The proposed framework is based on a prototype design, Multi-Host and optimized Gos-
sip Framework for Blockchain-Enabled Healthcare. Figure 1 depicts the proposed framework
for privacy preservation in a healthcare process.

Figure 1. Multi-Host Framework for Blockchain-Enabled Healthcare.

Sensors 2022, 22, 3449 5 of 20

3.1. Proposed Network Model

In this section, a Hyperledger Blockchain-based EHR application is proposed for
various hosts with an efficient RAFT orderer, as depicted in Figure 1. The organizations
with multiple peers are proposed in four virtual machines (VMs) in the Google cloud
platform. Organization 1 (Org 1) is designed to be hosted on a Virtual Machine (VM)
1, organization 2 (Org 2) on VM 2, Org 3 on VM 3, and orderer services org on VM 4.
Different services communicate with each other via the docker swarm network. Dedicated
certificate authority for each organization has been designed. Peer 0 is intended to be an
endorsing peer, where EHR smart contract resides and peer 1 is an anchor peer. Each
peer is proposed to have the current state database as the couch DB. The sequence of our
proposed work is the creation of a channel; then, each peer must join the channel, install
the EHR chain code, approve the chain code, commit the chain code if it gets sufficient
approvals from the organization, invoke the chain code, query the chain code and enable
client communication with Postman API. Figure 2 depicts the transaction flow sequence of
the proposed framework and the fault-tolerant capability of the RAFT orderer. It shows
that if any one of the orderers fails out of three orderers, still, the transaction endorsing and
committing takes place. Although there are several ordering services to handle transactions
and configurations, a RAFT orderer has been proposed for the following reasons. It is an
efficient crash fault-tolerant (CFT) algorithm that follows the leader and follower concept,
where the follower follows the decisions made by the leader node elected per channel.
It is designed to handle the distributed applications. The Kafka also follows the leader
and follower principle but utilizes Zookeeper ensembles and a broker, which creates an
overhead with respect to transaction latency and throughput. SOLO ordering services are
only used for testing purposes, not for production, as its designed principle is based on
a single organization with a single peer. RAFT provides a strategy for high availability
for ordering services because of its endorsement policy of majority voting.The Genesis
block was offered and executed after creating the crypto materials shown in Figure 3. The
proposed framework has been evaluated using Caliper, and network traffics have been
analyzed for the Gossip protocol.

Figure 2. Transaction flow sequence in the proposed system.

Sensors 2022, 22, 3449 6 of 20

Figure 3. Genesis block creation by crypto materials.

3.2. Proposed Transactions

The transaction authentication in the proposed framework is divided into two parts,
namely, off chain and on chain as shown in Algorithm 1. Off-chain in Algorithm 1 deals with
the doctor, patient, and pharmacy validator nodes in the network by issuing them access
rights and identity privacy. These participants broadcast their appointment, prescription,
and buying medicine data details by signing with their individual private keys, as shown
in (1)–(3). The integration of messages are named as I1, I2, and I3. The RAFT orderer nodes
O1 and O2 sign the transaction and add a timestamp if it finds a match, as shown in (4)
and (5). After this, the on-chain permissioning starts. The on-chain permissioning deals
with the network that verifies and validates the transaction in their respective peer nodes
and submit transactions by adding their keys. The actual patient-related transaction, R,
is calculated by using Keccak and has functions as shown in (6). Finally, the Blockchain
transaction record, TR, is added to the ledger by integrating (I4) the timestamp with the
patient transaction hash record, as shown in (7). The participants, i.e., patient, doctor, and
chemist authentication is designed in the framework by specifying the access rights and
unique identity. The patients, doctors, and chemists register their diseases, specialization,
and chemist details by signing with their private keys as depicted in Equations (1)–(3).

PatientData = I1(PId, PAddr, PDiseases, PPK, PAS, PBM) (1)

PAS—Appointment status of patient
PBM—Buy medicine by patient

DoctorData = I2(DId, DAddr, DAS, DPK, DPId, DSpecializations) (2)

DAS—Appointment status of doctor
DPID—Prescription ID suggested by doctor
DPK—Private key of the doctor

ChemistData = I3(CId, CAddr, CSM, CBill Id, DPK) (3)

CSM—Sell medicine by chemist
Then, with the Raft orderer, the transactions are time stamped, as shown in

Equations (4) and (5).
O1 = (DPId, PId, TS1) (4)

O2 = (CSM, PBM, TS2) (5)

The Blockchain transaction (TX) only records the orderer details along with the hash
value of participants ID, as shown in Equations (6) and (7). Deploying any EHR application
on a single host machine with multiple peers, organizations, and orderers does not neces-

Sensors 2022, 22, 3449 7 of 20

sarily constitute a decentralized application. The network model, participants, assets, and
transactions have been discussed to justify the applicability of the proposed framework.

R = Keccak256hash(PId, DId, CId) (6)

TX = I4(O1, O2, R) (7)

Algorithm 1: Algorithm for participant creating, initializing and querying health-
care records (buying, selling medicine and appointment status matching)

Input: ID and key requested from NAdmin;
Output: Record transaction into Blockchain network;
Initialization: CID, PID, DID should be valid participants;
Initialization: (PId) . Patient ID,
PAddr . Account address of Patient,
(PBM) . Patient buying medicine,
(PPK) . Private key of Patient,
(DId) . Doctors ID,
(CId) . Chemist ID,
DAddr . Account address of Doctor,
while True do

if PID in CID then
if PID not in CID then

PatientData = I1(PId, PAddr, PDis, PPK, PAS, PBM) (8)

DoctorData = I2(DId, DAddr, DAS, DPK, DPId, DSpc) (9)

ChemistData = I3(CId, CAddr, CSM, CBill Id, DPK) (10)

else
record(PID, Pdisease, BCID);

end
else

Not_valid(ID)
end

end
int N; 0 or 1: Participants availability;
if (AS(DID, PID) then

MPID = Medrecord(PID, DID);
if N then

Grant_records(MPID);
Generate_Receipt(PID, DID);

O1 = (DPId, PId, TS1) (11)

else
NOTIFY(“Error!”);

end
else

end

Sensors 2022, 22, 3449 8 of 20

Algorithm 1: Cont.

int N: (0 or 1: Payment Status);
if (Buying_Medicine(CID, PID) then

MPID = Medrecord(PID, CID);

O2 = (CSM, PBM, TS2) (12)

if N then
Grant_records(MPID);
Generate_Receipt(PID, CID);

else
NOTIFY(”Error!”) ;

end
else

R = Keccak256hash(PId, DId, CId) (13)

BlockchainTX = I4(O1, O2, R) (14)

end

3.3. Proposed Participants, and Assets

For the proposed Blockchain-based multi-hosting healthcare framework, the basic en-
tities are participants, assets, transactions, and control logic designed through Hyperledger
Fabric 2.0. These entities are designed to perform some particular functionality governed
by a set of rules called EHR smart contracts.

• Participants: The individual entities in healthcare organizations such as doctors,
patients, chemists, insurers, and path lab are called participants.

• Assets: Doctors as a participant create a prescription asset for the patients. The patient
as a participant pays a cash or coin asset for buying medicine, consulting doctors
fees, and collecting path lab testing reports. The chemist, as a participant, generates a
receipt for the sold drugs. Similarly, the path lab as a participant generates lab test
reports as an asset for patients. Assets are tangible or intangible.

• Transactions: A transaction in a healthcare system is a read, write, or update operation
that follows the sequence such as instantiated, invoked, endorsed, validated, ordered,
committed, and finally broadcasted to the intended users. In our proposed work, three
transactions are considered as creating an EHR, initializing the ledger, and querying a
healthcare system.

4. Implementation

This section is the deployment and implementation of the proposed framework.

4.1. Experimental Setup

Instead of working with real systems and real hardware, this approach simulates the
interaction of different components, without necessarily imitating the complete network
stack. This provides a completely controlled and reproducible environment in which
the experiments are conducted. Because there is no direct dependency on hardware and
real networks, it is easier to scale the size of the network by varying the total number of
transactions, rate control, number of virtual machines, blocksize, number of rounds, and
so forth. The possibility to keep the complete evaluation on a single machine provides
easier debugging and even time manipulation, which allows simulating large loads on
the network. These aspects would be more difficult on other evaluation platforms and
hardware because of their distributed architecture. There are different kinds of software
platforms that can be used to evaluate network technologies such as Blockchain and
Distributed Ledger Technologies (DLTs). We have used Hyperledger Caliper. Caliper is

Sensors 2022, 22, 3449 9 of 20

a benchmarking tool for Blockchain. It supports some Hyperledger Fabric Blockchain
implementations and is built to be easily extensible to other technologies. In this paper, this
tool is utilized to define, generate, and execute the workloads. Additionally, it also provides
the on-chain metrics for evaluation. The EHR smart contract is written in JavaScript and
deployed in the source file.

4.2. Deployment of Virtual Machines and Other Prerequisites

Four numbers of virtual machines have been deployed on the GCP. Fabric 2.0 has been
installed in order to perform multi-hosts for all the virtual machines by using Secure File
Transfer Protocol (SFTP). The setting of virtual machine 1 has been carried out and cloned
up for machines 2, 3, and 4. The host has been added with IP 35.102.12.31 and connected
remotely using visual studio code. The requirements and specification of our proposed
network has been shown in Table 2. The Genesis block has been created by configuring
the configtx.yaml file. Similarly, the artifacts have been created by configuring the create-
artifacts.sh scripting file. In the src file, the EHR smart contract has been loaded. This EHR
smart contract contains different methods to invoke and query transactions. For VM 1, all
the necessary service files related to Org 1 such as API 2.0 for accessing the application,
channel artifacts for secure communication, certificate with CA for authorization, base.yaml
for peer configuration, deployChaincode.sh for EHR chain code deploy, docker-compose file for
Org 1 services, environment variables for peer0, peer1, CouchDB 0, and CouchDB 1 and
a command-line interface (CLI) container have been implemented. The same procedure
is applied for Org 2, Org 3, and the orderer. For virtual machines 2, 3, and 4, it does not
require a CLI container. Similarly, VM 4 does not require API as it is having multiple
orderers. The MSP values of all these organizations is created for the Genesis block and
channel. Individual certificate authority has been implemented to complete and sign the
certificate for all the participants in the organization. In order to run the RAFT orderer, the
genesis block file has been created.

Table 2. Requirements and specification of proposed EHR Blockchain network.

Requirements Specification

Operating System Ubuntu Linux 18.04 (8 GB RAM)(64 bit)
Virtual machine 1 (35.102.12 .31) Ubuntu Linux 18.04 (2core, 8 GB RAM, 30 GB memory, 64 bit)
Virtual machine 2 (35.102.12 .34) Ubuntu Linux 18.04 (2core, 4 GB RAM, 30 GB memory, 64 bit)
Virtual machine 3 (35.102.12 .33) Ubuntu Linux 18.04 (2core, 4 GB RAM, 30 GB memory, 64 bit)
Virtual machine 4 (35.102.12 .32) Ubuntu Linux 18.04 (2core, 4 GB RAM, 30 GB memory, 64 bit)
cURL Tool Version 7.74.0
Docker engine Version 17.06.2
Docker Composer Version 1.14
Javascript 1.8.5
Node JS Version 10.21
NPM Version 6.14.4
Hyperledger Fabric 2.0.1
VS Code 1.49.1
Docker Swarm Network 12.06
Postman API v7.333.0
Hyperledger Caliper v0.4.2
Fauxton Apache couch DB version 6.1

4.3. Crypto Materials for Org 1, Org 2, Org 3 and RAFT Orderer

The environmental variables are set in docker-compose.yaml so that it can export the
services to the 7054 port number. The instances are started; thereby, the certificate authority
1 (CA1) creates the own public and private key and self signs the certificate. The command
docker-compose up-d was executed to create a fabric CA materials. The key-store inside the

Sensors 2022, 22, 3449 10 of 20

generated CA materials contains the private key. The create certificate script file contains a
method named createcertificateOrg 1(), where it enrolls the admin identity running on the
7054 port, which is the host-provided TLS certificate to communicate with Org 1. Finally,
the node organization unit contains the nodes such as the peer, admin, client, and orderer.
While registering, the peer’s CA details, ID name, password, TLS certificate have been
provided. The same process was followed by other peers, users, and admins. To create
the peer 0 membership service provider (MSP), the peers, users, and admins are enrolled.
The peer TLS certificate has been generated, which is used to communicate between
two peers of the same organization or with a different organization. Running the script
./create-certificate-with-ca.sh creates a crypto configuration folder, and all the certificates
are generated. All the node organization unit materials related to CA, MSP, peers, TLSca,
and users for organization 1 have been received. In the same way, crypto materials are
created for organizations 2 and 3, and the services are exported to port numbers 8054 and
10054, respectively.

4.4. Creating Docker Swarm Network

Services are running on different virtual machines. However, to communicate with
each other, the docker swarm network has been installed. It has created a network across
these virtual machines, and they shared with each other. All the virtual machines are
connected through SSH and the respective IP address through console mode. The IP
address of all the virtual machines is given in Table 1. To install the docker swarm network,
the command, as shown in Listing 1, has been executed on virtual machine 1. To add other
virtual machines as a manager into the docker swarm network, the commands are executed
as shown in Listing 1. It generates a token value which runs in other virtual machines with
their respective IP address. Virtual machine 1 contains the docker network with artifacts.
The network artifacts were available in other virtual machines by executing the command
’docker network create attachable’.

Listing 1. Creating Docker Swarm Network.

1 {
2 //for virtual machine 1(org 1)
3 docker swarm init --advertise //-addr 35.102.12 .31,
4 //for virtual machine 2 (org 2)
5 docker swarm join --token <SWMTKN ...> 35.102.12 .31 //--advertise -addr

35.102.12 .34,
6 //for virtual machine 3 (org 3)
7 docker swarm join --token <SWMTKN ...> 35.102.12 .31 //--advertise -addr

35.102.12 .33,
8 //for virtual machine 4 (org 4)
9 docker swarm join --token <SWMTKN ...> 35.102.12 .31 //--advertise -addr

35.102.12 .32,
10 }

4.5. Creating Channel Artifacts

To configure channel artifacts, three scripting files, i.e., configtx.yaml, create-artifacts.sh,
and crypto-config.yaml files are being executed. To create genesis block and channel transac-
tion files, the MSP of a particular organization is fetched. The MSP directory path of the
organizations and orderer has been provided correctly inside the configtx.yaml file. The
policies are customized for reading, writing, and endorsements by the majority out of three
organizations; at least two organizations must approve, as shown in Listing 2. Genesis.block,
mychannel.tx, Org 1 MSPanchors.tx, Org 2 MSPanchors.tx, Org 3 MSPanchors.tx, system
channel, and application channels are created while running the artifacts scripting file. All
the crypto materials are added to their virtual machines. To up the services across the
network, all the docker containers are executed. Services for peer0, peer1, CLI, couchdb1,
and couchdb2 of the respective organization and RAFT orderer, orderer 2, and orderer 3
have been started. These services run inside a container, the communication was started
with each other, and the same has been verified in the docker log file.

Sensors 2022, 22, 3449 11 of 20

Listing 2. EHR Chaincode Approvals Endorsement Policy.
1 { ./ deployChaincode.sh
2 { "approvals"
3 {
4 "org 1MSP" : True , "org 2MSP" : True ,
5 "org 3MSP" : False }}}

4.6. Creating and Joining Channel

The peer channel creates an IP address: the 7050 channel name command is executed
to create the channel, but although an orderer is running in virtual machine 4, the IP
address was provided instead of the local host. Similarly, running create channel.sh, a
channel was created, and my channel.block has been generated to connect peer 0 and
peer 1 of organization 1. Anchor peers are updated by running the same script file. For
organization 2, creating a channel is not required. Fetching and joining the channel is done
by running the joinchannel.sh file. Bringing the latest configuration block and joining the
channel occurred by providing the IP address of virtual machine 2 and orderer properly
with respect to peer 0 and peer 1. The same procedure is applied to virtual machine 3.

4.7. EHR Chaincode Deployment

The EHR smart contract is written in JavaScript and deployed in the source file. There
are many methods defined inside the EHR file. However, three functions are used such
as createEHR(), initledger() and queryEHR(). CreateEHR() takes five arguments such as
patients name, patient ID, disease name, consulting doctor ID, and medicine suggested.
QueryEHR() takes one argument, i.e., patient ID through which the data retrieval takes
place from the blockchain network and sending it to the client. The Init function is used for
instantiating the chain code, and the invoking method is used for invoking the contract.

4.8. Install, Approve, Commit, and Invoke EHR Chain Code

The chain code dependency is executed by setting the preset-up method inside the
deploy chain code scripting file. Before installation of the chain code, it is packaged in
the tar file. Installing the chain code has been carried out in endorsing peers. Peer 0 of all
organizations is set to endorsing peer; that is why the installation of EHR chain code on
peer 0 will return the console’s response. The chain code was fetched in order to determine
whether the chain code was appropriately installed or not. Then the query method was
executed. For the chain code approval policy of majority organizations, the approval for
any two organizations is conducted, as shown in Listing 2. To cross-check the approvals, a
check commit has been executed, resulting in true or false from various organizations.

4.9. Commit Chain Code and Invoke Transaction

Committing the chain code is performed by exporting the peer address, and response
is received from all the peers with status, as shown in Listing 3. Similarly, Invoking a
transaction is done inside the CLI container bash file, which returns a status ID of success or
failures, as shown in Listing 4. The docker shows the EHR chain code inside the container.
The query committed on-chain code is found displaying an executed EHR chain code,
endorsing system chain code (ESCC), validating system chain code (VSCC), and approvals
from organizations. The creation EHR method with a patient ID was invoked successfully,
and verification is performed through Faux-ton and the IP address of the virtual machine 1.

Sensors 2022, 22, 3449 12 of 20

Listing 3. EHR Chaincode Invoke.
1 {
2 peer chaincode invoke -o RAFT orderer.healthcare.com: PORT NO \ --

ordererTLSHostnameOverride orderer.healthcare.com \ --tls \ --
cafile /etc/hyperledger/channel/crypto -config/ordererOrganizations

3 /example.com/orderers/orderer.example.com/msp/tlscacerts
4 /tlsca.example.com -cert.pem -C mychannel -n EHR \
5 --peerAddresses peer 0.org 1. healthcare.com: Port Number --tlsRootCertFiles
6 /etc/hyperledger/channel/crypto -config/peerOrganizations/ org 1. healthcare.

com/peers
7 /peer 0.org 1. example.com/tls/ca.crt -c ’{"function ": "createEHR","Args":
8 ["666666" , "Surgery", "R8", "Eye", "Patient Name **"]} ’
9 }

Listing 4. EHR Chaincode Query.
1 {
2 peer chaincode query -C $my -channel -n ${CC_NAME} -c
3 ’{"function ": "queryEHR","Args ":["666666"]} ’
4 }

5. Performance Analysis and Discussion

In this section, the network resource cost of transactions and traffic inside the fabric
multi-host network has been analyzed. Performance comparisons are presented for a
Blockchain network with RAFT orderer. Figures 4–9 depict the performance benchmarking
of different blockchain platform such as Hyperledger Fabric RAFT, Kafka and Ethereum
with respect to throughput, memory consumption, latency, and CPU utilization. In all case
we found that the proposed framework works fine in terms of low latency, high throughput
and low memory and CPU utilization.

Figure 4. Memory Consumption for Open.

Sensors 2022, 22, 3449 13 of 20

Figure 5. Memory Consumption for Transfer.

Figure 6. Throughput for Open.

Figure 7. CPU Utilization for Open.

Sensors 2022, 22, 3449 14 of 20

Figure 8. CPU Utilization for Transfer.

Figure 9. Latency for Open.

5.1. Measurement of GOSSIP Traffic

Hyperledger Fabric 2.0 generates a background network while communicating from
one peer to other peers in the network. Without measurement of Gossip traffic, it is tough
to measure the other background traffic associated with transaction and block distribution.
This work performs a network traffic analysis between all the peers, organizations, and
virtual machines during an ideal period of Fabric 2.0. So that it prevents the background
traffic from interfering with other traffic, this work has not used Hyperledger Caliper
during this measurement. Through tcpdump, the transnational traffic has been measured
by gathering the PCAP files. The Fabric 2.0 network takes a little time to settle, and the
network was started and waited for some time. The start of the fabric network generates
extra traffic. A delay has been introduced in order to avoid the mixing of transnational
traffic with other traffic. The results are with a delay of two minutes. Although most of
the Fabric network communication utilizes the TCP protocol, we used a packet filter to
capture the SSH traffic and the peers traffic. All the individual pcap files are collected
along with merged pcap files, which have been trimmed to force the virtual instances to
report data from equal time spans. The Wireshark CLI tool is used to merge and trim the
files. A merged pcap file was analyzed, and Gossip protocol was calculated. We found
that the transnational traffic is more intra-organizational than inter-organizational. As
noticed, the data transmission among the caliper client and other organizations, peers, and
orderers is exceptionally high. This work discovered that most of the traffic is not created

Sensors 2022, 22, 3449 15 of 20

by transactions. This work filtered out this traffic to obtain results from the transaction
alone. Figures 10 and 11 represents the heatmap of transaction traffic for SOLO and RAFT
ordering. Figures 12–15 depict the virtual machines communication with respect to caliper
client and RAFT orderer.

Figure 10. Heatmap of Transaction Traffic Gossip (SOLO).

Figure 11. Heatmap of Transaction Traffic Gossip for Proposed Framework (RAFT).

Figure 12. Transaction Traffic for VM 1.

Sensors 2022, 22, 3449 16 of 20

Figure 13. Transaction Traffic for VM 2.

Figure 14. Transaction Traffic for VM 3.

Figure 15. Transaction Traffic for RAFT orderer.

5.2. Performance Measurement Using Caliper

In this section, the evaluation of the performance metrics are evaluated and monitored;
then, we compared the performance of the proposed framework based system with different
types of Blockchain-based healthcare systems. We consider Hyperledger Fabric Blockchain

Sensors 2022, 22, 3449 17 of 20

platforms and two types of consensus algorithms (i.e., RAFT and Kafka) for the performance
evaluation. We also used Hyperledger Caliper benchmarking process as shown in Figure 16
to see the performance behavior of our proposed healthcare framework by giving a load
of 1000 transactions with two rounds (i.e., open and query) and three sub-rounds with
varied rate control (i.e., 50, 100, and 150). We open a pre-defined JavaScript file to open
and initialize the states. Similarly, queryState() is used to read state from the ledger (in
Fabric implemented by invoking but not committing a chain code). The performance
metrics used for comparison are block time, latency, throughput, transaction success rate,
fail rate, memory, and CPU utilization. The performance result indicates that the proposed
RAFT-based system has better performance than other consensus mechanism. Table 2 in
the paper has additionally been added to justify the work proposed [1].

Figure 16. Caliper benchmarking process.

Here, the equations for Latency, throughput and disc read writes are given.

TL = ((CT) ∗ (NT))− (ST) (15)

TT =
TCT
TTS

− (NCN) (16)

RL = (RR − ST) (17)

RT = (RO − TT) (18)

where TL: Transaction Latency, CT: Confirmation Time, NT: Network Threshold, ST: Submit
Time for transaction TT: Transaction Throughput, RL: Read Latency, and WL: Write Latency.

From Table 3, we found that the proposed framework is more successful in making
transactions, i.e., open. Out of 1000 transactions each, RAFT could perform 946 transactions,
whereas Kafka completed only 727 transactions. Comparing the throughput, RAFT has
a higher throughput compared to that of Kafka. Querying a transaction in a block in
RAFT and Kafka has the same probability of success, i.e., 100 %. However, the throughput
of Kafka is measured high as compared to that of RAFT. The reason behind the higher
throughput of Kafka is due to its batch time and batch size. Transferring a transaction value
from one account to another also has an equal probability of success, whereas considering
RAFT’s throughput is faster than that of Kafka. RAFT’s success is RAFT’s consenter
invoking the transaction directly from the orderer nodes, whereas Kafka depends on the
Kafka brokers and Zookeeper services. After the first and second rounds for a multi-host
Raft orderer, the optimized resource consumption values are given in Tables 4 and 5.

Sensors 2022, 22, 3449 18 of 20

Table 3. Efficacy of the proposed multi-host, RAFT framework with 1000 transactions.

Name No. of TXs Succ Send Rate (TPS) Avg Latency (s) Throughput

RAFT (Open) 1000 946 50, 150, 250 0.2, 0.3, 0.5 50, 135, 185
Kafka (Open) 1000 727 50, 150, 250 3.8, 4.2, 6.1 42, 122, 164

RAFT (Query) 1000 1000 50, 150, 250 0.12, 3.63, 7.62 66, 77, 87
Kafka (Query) 1000 1000 50, 150, 250 4.12, 5.86, 8.11 67, 84, 105

RAFT (Transfer) 1000 1000 50, 150, 250 0.2, 0.3, 1.3 45, 61, 92
Kafka (Transfer) 1000 1000 50, 150, 250 3.2, 3.3, 4.6 32, 53, 84

Table 4. Resource consumption after first round (RAFT).

Type Name Memory (Max MB) Memory (Avg MB) CPU (Max) CPU (Avg) Traffic In Traffic Out Disc Write

Docker peer 0.org 1.35.102.12.31 403.8 389.3 5.23% 3.13% 3.3 1.9 18.3
Docker peer 1.org 1.35.102.12.31 512.9 406.4 4.52% 3.7 % 3.3 1.86 18.3
Docker peer 0.org 2.35.102.12.34 205.3 200.3 5.16% 3.03% 3.3 1.7 17.3
Docker peer1.org2.35.102.12.34 201.3 200.3 4.57% 3.23% 3.3 1.77 17.3
Docker peer 0.org 3.35.102.12.33 203.9 200.3 5.64% 3.01% 3.3 1.81 16.3
Docker peer 1.org 3.35.102.12.33 146.6 119.3 4.28% 3.04% 3.3 2.0 16.3
Docker RAFTorderer.35.102.12.32 19.6 18.0 1.01% 0.26% 2.3 4.5 8.0
Docker ca.org 1.35.102.12.31 8.3 7.6 0.13% 0.00% 1.5 0 0
Docker ca.org 2.35.102.12.34 8.3 7.6 0.13% 0.00% 1.5 0 B 0 B
Docker ca.org 3.35.102.12.33 8.6 7.8 0.29% 0.00% 1.4 0 0

Table 5. Resource consumption after second round (RAFT).

Type Name Memory (Max MB) Memory (Avg MB) CPU (Max) CPU (Avg) Traffic In Traffic Out Disc Write

Docker peer 0.org 1.35.102.12.31 405.7 138.0 6.47% 3.16% 6.6 3.61 34.5
Docker peer 1.org 1.35.102.12.31 405.7 125.0 6.19% 3.16% 6.8 3.62 33.5
Docker peer 0.org 2.35.102.12.34 208.6 124.0 6.29% 3.16% 6.72 3.5 34.8
Docker peer 1.org 2.35.102.12.34 207.6 124.0 6.19% 3.16% 6.5 3.53 33.5
Docker peer 0.org 3.35.102.12.33 204.6 124.0 5.19% 3.16% 6.6 3.62 32.5
Docker peer 1.org 3.35.102.12.33 66.3 61.1 4.39% 3.15% 6.6 3.59 34.15
Docker RAFTorderer.35.102.12.32 34.5 24.1 1.51% 0.26% 4.5 9.0 16.1
Docker ca.org 1.35.102.12.31 6.5 5.8 0.20% 0.00% 729 0 0
Docker ca.org 2.35.102.12.34 6.5 5.8 0.20% 0.00% 729 0 0
Docker ca.org 3.35.102.12.33 5.9 5.9 0.29% 0.00% 729 0 0

6. Conclusions

Deploying a Blockchain network in a single host with multiple organizations, peers,
and channels logically looks simple at the surface, yet such simulation attempts cannot
capture the essence of real decentralized scenarios for distributed applications such as next-
generation Blockchain-based healthcare systems. This paper presents a novel multi-host,
multi-organization, on-chain and off-chain scheme for storing patient data and multiple
peer-based frameworks for a Blockchain-enabled healthcare system that addresses the
issues of data availability, data privacy, and security using a real multi-host testbed, namely
GCP. The paper presents a detailed implementation of the healthcare system prototype with
Hyperledger Fabric 2.0, docker swarm network, and Postman API for client interaction,
Caliper for performance analysis, tcpdump for realistic network traffic generation, orderer for
RAFT and Kafka, etc. A comparison of Kafka and RAFT orderer services was also presented,
and RAFT was found to be better equipped for the open, query, and client-side transfer
operations. In the future, the authors aim to work on cross-chain code communication,
discovery services, and PBFT consensus-based healthcare systems. In addition, the authors
aim to extend the work with other Hyperledger Frameworks, i.e., Hyperledger Sawtooth,
Besu, etc., in order to deal with better performances in terms of throughput, scalability,
latency, and fault tolerance.

Sensors 2022, 22, 3449 19 of 20

Author Contributions: This research specifies below the individual contributions: Conceptualization,
N.R.P.; data curation, A.P.S.; formal analysis, S.V.; funding acquisition, M.W., M.F.I.; investigation, K.;
methodology, N.K.; project administration, D.S.R.; resources, J.S.; software, M.W.; supervision, M.F.I.;
validation, N.R.P. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge contributions to this project from the Rector of the Silesian
University of Technology under a proquality grant no. 09/010/RGJ22/0068.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Hyperledger Fabric, Caliper code for implementing and verifying
the presented Blockchain-based healthcare design and benchmarking on a multi-hosted testbed
protocol are available in a publicly accessible GitHub repository. The prototype code can be found
here: https://github.com/niharlipu13/HFEHR_source_code (accessed on: 3 March 2022).

Acknowledgments: Jana Shafi would like to thank the Deanship of Scientific Research, Prince Sattam
Bin Abdul Aziz University, for supporting this work.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Singh, A.P.; Pradhan, N.R.; Luhach, A.K.; Agnihotri, S.; Jhanjhi, N.Z.; Verma, S.; Ghosh, U.; Roy, D.S. A Novel Patient-Centric

Architectural Framework for Blockchain-Enabled Healthcare Applications. IEEE Trans. Ind. Informa. 2021, 17, 5779–5789.
[CrossRef]

2. Yazdinejad, A.; Srivastava, G.; Parizi, R.M.; Dehghantanha, A.; Choo, K.-K.R.; Aledhari, M. Decentralized Authentication of
Distributed Patients in Hospital Networks Using Blockchain. IEEE J. Biomed. Health Inform. 2020, 24, 2146–2156. [CrossRef]
[PubMed]

3. Geneiatakis, D.; Soupionis, Y.; Steri, G.; Kounelis, I.; Neisse, R.; Nai-Fovino, I. Blockchain Performance Analysis for Supporting
Cross-Border E-Government Services. IEEE Trans. Eng. Manag. 2020, 67, 1310–1322. [CrossRef]

4. Dwivedi, A.D.; Srivastava, G.; Dhar, S.; Singh, R. A decentralized privacy-preserving healthcare blockchain for IoT. Sensors 2019,
19, 326. [CrossRef]

5. Ismail, L.; Materwala, H. Blockchain Paradigm for Healthcare: Performance Evaluation. Symmetry 2020, 12, 1200. [CrossRef]
6. Bhavin, M.; Tanwar, S.; Sharma, N.; Tyagi, S.; Kumar, N. Blockchain and quantum blind signature-based hybrid scheme for

healthcare 5.0 applications. J. Inf. Secur. Appl. 2021, 56, 102673. [CrossRef]
7. Zhuang, Y.; Sheets, L.R.; Chen, Y.-W.; Shae, Z.-Y.; Tsai, J.J.P.; Shyu, C.-R. A Patient-Centric Health Information Exchange

Framework Using Blockchain Technology. IEEE J. Biomed. Health Inform. 2020, 24, 2169–2176. [CrossRef]
8. Ismail, L.; Materwala, H.; Zeadally, S. Lightweight Blockchain for Healthcare. IEEE Access 2019, 7, 149935–149951. [CrossRef]
9. Mazumdar, S.; Ruj, S. Design of Anonymous Endorsement System in Hyperledger Fabric. IEEE Trans. Emerg. Top. Comput. 2019,

9, 1780–1791. [CrossRef]
10. Pongnumkul, S.; Siripanpornchana, C.; Thajchayapong, S. Performance Analysis of Private Blockchain Platforms in Varying

Workloads. In Proceedings of the 2017 26th International Conference on Computer Communication and Networks (ICCCN),
Vancouver, BC, Canada, 31 July–3 August 2017; pp. 1–6. [CrossRef]

11. Thakkar, P.; Nathan, S.; Viswanathan, B. Performance Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform.
In Proceedings of the 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Milwaukee, WI, USA, 25–28 September 2018; pp. 264–276. [CrossRef]

12. Androulaki, E.; Artem, B.; Vita, B.; Christian, C.; Konstantinos, C.; Angelo, C.D.; David, E.; Ferris, C.; Laventman, G.; Manevich,
Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15.

13. Stamatellis, C.; Papadopoulos, P.; Pitropakis, N.; Katsikas, S.; Buchanan, W.J. A Privacy-Preserving Healthcare Framework Using
Hyperledger Fabric. Sensors 2020, 20, 6587. [CrossRef]

14. Tanwar, S.; Karan, P.; Richard, E. Blockchain-based electronic healthcare record system for healthcare 4.0 applications. J. Inf. Secur.
Appl. 2020, 50, 102407. [CrossRef]

15. Houtan, B.; Hafid, A.S.; Makrakis, D. A Survey on Blockchain-Based Self-Sovereign Patient Identity in Healthcare. IEEE Access
2020, 8, 90478–90494. [CrossRef]

16. Lakhan, A.; Mohammed, M.A.; Kozlov, S.; Rodrigues, J.J. Mobile-fog-cloud assisted deep reinforcement learning and blockchain-
enable IoMT system for healthcare workflows. Trans. Emerg. Telecommun. Technol. 2021, e4363. [CrossRef]

17. Jabarulla, M.Y.; Lee, H.N. Blockchain-based distributed patient-centric image management system. Appl. Sci. 2020, 11, 196.
[CrossRef]

18. Garg, N.; Wazid, M.; Das, A.K.; Singh, D.P.; Rodrigues, J.J.P.C.; Park, Y. BAKMP-IoMT: Design of Blockchain Enabled Authenti-
cated Key Management Protocol for Internet of Medical Things Deployment. IEEE Access 2020, 8, 95956–95977. [CrossRef]

https://github.com/niharlipu13/HFEHR_source_code
http://doi.org/10.1109/TII.2020.3037889
http://dx.doi.org/10.1109/JBHI.2020.2969648
http://www.ncbi.nlm.nih.gov/pubmed/31995507
http://dx.doi.org/10.1109/TEM.2020.2979325
http://dx.doi.org/10.3390/s19020326
http://dx.doi.org/10.3390/sym12081200
http://dx.doi.org/10.1016/j.jisa.2020.102673
http://dx.doi.org/10.1109/JBHI.2020.2993072
http://dx.doi.org/10.1109/ACCESS.2019.2947613
http://dx.doi.org/10.1109/TETC.2019.2920719
http://dx.doi.org/10.1109/ICCCN.2017.8038517
http://dx.doi.org/10.1109/MASCOTS.2018.00034
http://dx.doi.org/10.3390/s20226587
http://dx.doi.org/10.1016/j.jisa.2019.102407
http://dx.doi.org/10.1109/ACCESS.2020.2994090
http://dx.doi.org/10.1002/ett.4363
http://dx.doi.org/10.3390/app11010196
http://dx.doi.org/10.1109/ACCESS.2020.2995917

Sensors 2022, 22, 3449 20 of 20

19. Pradhan, N.R.; Singh, A.P.; Kumar, V. Blockchain-Enabled Traceable, Transparent Transportation System for Blood Bank. In
Advances in VLSI, Communication, and Signal Processing; Harvey D., Kar H., Verma S., Bhadauria V., Eds.; Lecture Notes in Electrical
Engineering; Springer: Singapore, 2021; Volume 683.

20. Pradhan, N.R.; Rout, S.S.; Singh, A.P. Blockchain Based Smart Healthcare System for Chronic—Illness Patient Monitoring. In
Proceedings of the 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies,
Shillong, India, 5–7 March 2021; pp. 1–6.

21. Wu, H.; Dwivedi, A.D.; Srivastava, G. Security and privacy of patient information in medical systems based on blockchain
technology. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2021, 17, 1–17. [CrossRef]

22. Kaushik, K.; Dahiya, S.; Singh, R.; Dwivedi, A.D. Role of Blockchain in Forestalling Pandemics. In Proceedings of the 2020 IEEE
17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Delhi, India, 10–13 December 2020; pp. 32–37.
[CrossRef]

23. Singh, R.; Dwivedi, A.D.; Srivastava, G. Internet of things based blockchain for temperature monitoring and counterfeit
pharmaceutical prevention. Sensors 2020, 20, 3951. [CrossRef]

24. Dwivedi, A.D.; Singh, R.; Kaushik, K.; Mukkamala, R.R.; Alnumay, W.S. Blockchain and artificial intelligence for 5G-enabled
Internet of Things: Challenges, opportunities, and solutions. Trans. Emerg. Telecommun. Technol. 2021, e4329. [CrossRef]

25. Meng, T.; Zhao, Y.; Wolter, K.; Xu, C.-Z. On Consortium Blockchain Consistency: A Queueing Network Model Approach. IEEE
Trans. Parallel Distrib. Syst. 2021, 32, 1369–1382. [CrossRef]

26. Azaria, A.; Ekblaw, A.; Vieira, T.; Lippman, A. Medrec: Using blockchain for medical data access and permission management.
In Proceedings of the 2016 2nd International Conference on Open and Big Data (OBD), Vienna, Austria, 22–24 August 2016;
pp. 25–30.

27. Shen, B.; Guo, J.; Yang, Y. MedChain: Efficient healthcare data sharing via blockchain. Appl. Sci. 2019, 9, 1207. [CrossRef]
28. Gorenflo, C.; Lee, S.; Golab, L.; Keshav, S. FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second. Int. J. Netw.

Manag. 2020, 30, e2099. [CrossRef]
29. Sun, Y.; Zhang, R.; Wang, X.; Gao, K.; Liu, L. A decentralizing attribute-based signature for healthcare blockchain. In Pro-

ceedings of the 2018 27th International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China,
30 July–2 August 2018; pp. 1–9.

30. Chen, L.; Lee, W.K.; Chang, C.H.; Choo, K.K.R.; Zhang, N. Blockchain based searchable encryption for electronic health record
sharing. Fut. Gener. Comput. Syst. 2019, 95, 420–429. [CrossRef]

http://dx.doi.org/10.1145/3408321
http://dx.doi.org/10.1109/MASS50613.2020.00014
http://dx.doi.org/10.3390/s20143951
http://dx.doi.org/10.1002/ett.4329
http://dx.doi.org/10.1109/TPDS.2021.3049915
http://dx.doi.org/10.3390/app9061207
http://dx.doi.org/10.1002/nem.2099
http://dx.doi.org/10.1016/j.future.2019.01.018

	Introduction
	Related Work
	System Architecture for the Proposed Framework
	Proposed Network Model
	Proposed Transactions
	Proposed Participants, and Assets

	Implementation
	Experimental Setup
	Deployment of Virtual Machines and Other Prerequisites
	Crypto Materials for Org 1, Org 2, Org 3 and RAFT Orderer
	Creating Docker Swarm Network
	Creating Channel Artifacts
	Creating and Joining Channel
	EHR Chaincode Deployment
	Install, Approve, Commit, and Invoke EHR Chain Code
	Commit Chain Code and Invoke Transaction

	Performance Analysis and Discussion
	Measurement of GOSSIP Traffic
	Performance Measurement Using Caliper

	Conclusions
	References

