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Abstract: The IETF Routing Over Low power and Lossy network (ROLL) working group defined
IPv6 Routing Protocol for Low Power and Lossy Network (RPL) to facilitate efficient routing in IPv6
over Low-Power Wireless Personal Area Networks (6LoWPAN). Limited resources of 6LoWPAN
nodes make it challenging to secure the environment, leaving it vulnerable to threats and security
attacks. Machine Learning (ML) and Deep Learning (DL) approaches have shown promise as effective
and efficient mechanisms for detecting anomalous behaviors in RPL-based 6LoWPAN. Therefore,
this paper systematically reviews and critically analyzes the research landscape on ML, DL, and
combined ML-DL approaches applied to detect attacks in RPL networks. In addition, this study
examined existing datasets designed explicitly for the RPL network. This work collects relevant
studies from five major databases: Google Scholar, Springer Link, Scopus, Science Direct, and IEEE
Xplore® digital library. Furthermore, 15,543 studies, retrieved from January 2016 to mid-2021, were
refined according to the assigned inclusion criteria and designed research questions resulting in
49 studies. Finally, a conclusive discussion highlights the issues and challenges in the existing studies
and proposes several future research directions.

Keywords: 6LoWPAN; Internet of Thing (IoT); IPv6; Low Power and Lossy Network (LLN); Machine
Learning (ML); Deep Learning (DL); RPL security and threats; Systematic Literature Review (SLR)

1. Introduction

Internet of Things (IoT) has become one of the most important elements of the Infor-
mation and Communication Technology (ICT) revolution. IoT plays a significant role in
connecting smart objects anytime, anywhere, and any service through any network. The
entire world looks forward to creating a new smart world that changes people’s lifestyles
and how things work in our world [1,2]. Consequently, the IoT affects everything from our
lifestyle to how we live in this era of technological convergence and inter-connectivity. The
IoT incorporates the linkage of human culture—our “things”—considering the interconnec-
tion of our computerized data framework—”the Internet”. The paradigm of IoT has spread
all over the world. It foresees the networking of billions to trillions of smart things around
us, specifically ordinary things that are extraordinarily traceable, addressable, and have the
ability to collect, store, analyze, and communicate data about themselves and their physical
surroundings [3,4].

In addition, IoT objects or devices may connect bidirectionally for data exchange
over the Internet. Furthermore, it is highly advantageous to people since it optimizes
their time and boosts productivity. Consequently, we can reinvent ourselves while simul-
taneously making the world and our lives smarter with the help of IoT. Moreover, the
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benefits of IoT are nearly limitless, and its applications are transforming how we work
and live by exchanging time and assets and opening up new prospects for growth and
development [5]. Moreover, a recent forecast from International Data Corporation (IDC), a
well-known provider of industry intelligence, predicts that by 2025, there will be around
41.6 billion connected IoT devices/things (a combination of sensors, machines, cameras,
etc.), generating around 79.4 zettabytes of data. The forecast was based on an analysis
spanning the years from 2018 to 2025, and during that period, they expected IoT devices to
grow at a Compound Annual Growth Rate (CAGR) of 28.7%.

The various IoT sensors deployed in different environments are responsible for col-
lecting data in the network and sending them to the backbone servers and control centers
for further analysis to assist in decision making. The number of IoT-based applications
has increased exponentially in recent years, and while many are still in the early research
stage, many economically attractive application scenarios already exist that span several
domains [6]. Some of these applications include smart firefighting for forest fire detection
and personal protective equipment monitoring; smart manufacturing for monitoring air
quality, temperature, and cyber-physical systems; and intelligent healthcare for detecting
Ultraviolet (UV) radiation, monitoring patient conditions, and controlling emergency re-
sponse vehicles. Since the IoT exchanges massive quantities of essential and sensitive data,
the lack of security of those networks, especially involving security breaches or penetration,
could lead to severe repercussions economically and endanger human lives [7,8].

In IoT, the information is exchanged and routed among the linked devices through a
specially designed network that supports IoT specifications. An example of such networks
is Low power and Lossy Networks (LLNs), comprising a wide range of embedded devices,
such as sensors and actuators. Those devices are the driving force behind the IoT, since
they enable global connections to items that are not connected to the Internet. However,
these embedded devices have a low power supply, small memory space, limited computing
capabilities, and a short radio range. Hence, to enable communication among those
appliances, the Internet Engineering Task Force (IETF) specified IPv6 over Low-Power
Wireless Personal Area Networks (6LoWPAN) to serve as an adaptation layer and effectively
encapsulate long IPv6 headers in packets of 128 bytes [9,10]. The next section provides
more details about the architecture of the RPL protocol.

1.1. Routing Protocol for Low Power and Lossy Network (RPL)

Due to the constrained environment of LLN, it is obligatory to conserve the energy
of such devices while transmitting and transferring information among networks’ nodes.
Therefore, several protocols have been devised and standardized to allow and manage the
communication amongst LLN’s resource-constrained devices. One of the most popular
proposed protocols for routing purposes in LLNs is RPL [11].

The RPL is a standard routing protocol for LLNs established by the IETF Routing
Over Low power and Lossy network (ROLL) task force in 2012 and detailed in Request for
Comment (RFC) 6550 [12]. IEEE licensed the development of RPL to overcome the current
gap in the routing of IoT networks and attain the limited capabilities of LLN’s devices. The
fundamental concept underlying RPL is the topological concept of Destination-Oriented
Directed Acyclic Graphs (DODAGs).

The DODAG is a directed graph with no loops oriented towards a root node. The
nodes that provide Internet access (gateways) are called root nodes, and the other nodes in
the network are linked with it either directly or indirectly through a sequence of parent
nodes. Furthermore, each node is responsible for selecting the desired parent, who is then
used for forwarding the application packets. The parent node selection depends on the
rank value that a device (node) can achieve. Moreover, the rank value refers to the position
of a node in the DODAG. Hence, the rank value is affected by the node’s distance from the
root and the Objective Function (OF). The OF determines numerous metrics, such as rank
of nodes, selection of the parent node, and route optimization. The versatility of RPL to
interact with many limited devices is the primary reason for its adoption in LLNs [11].
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The RPL adds five new control messages for constructing and maintaining the DODAG
and communication routes. The RPL control messages are a specific type of Internet Control
Messages Protocol version 6 (ICMPv6) control message, as follows:

• DODAG Information Solicitation (DIS). Nodes intending to join a network but have
yet to receive DODAG Information Object (DIO message advertise a DIS message to
inquire for available DODAG to create a connection).

• DODAG Information Object (DIO). Nodes use the DIO message for locating RPL in-
stances, learning about DODAG configurations, choosing a preferred parent, keeping
DODAG structure in place, and knowing the current rank of the node and the IPv6
address of the root [13].

• A Destination Advertisement Object (DAO) message is used for advertising back-
ward route information by building upward and downward routes between nodes
and then creating routing tables on receiving nodes [14].

• A Destination Advertisement Object Acknowledgement (DAO-ACK) message is a
response message to a DAO message.

• Consistency Check (CC). The RPL protocol employs CC to ensure the synchronization
of the “security counter or timestamp between each pair of nodes” [15].

The RPL supports various communication paradigms, Point-to-MultiPoint (P2MP),
Point-to-Point (P2P), and MultiPoint-to-Point (MP2P) [15]. In addition, the RPL supports
two modes of operation. First, the storing mode, where each node maintains a downward
routing table for its sub-DODAG and uses it to transmit P2P traffic. Consequently, the traffic
will go upward until it arrives at a common predecessor (of the sender and destination),
then it will be forwarded downward to the destination node. Second, the non-storing mode,
where the root node is the sole device that retains. Application packets are first sent to
the root node, then re-routed to their destination in this mode. Those looking for further
explanations of the architecture and implementation of the RPL protocol can find them
in [16].

1.2. Security Issues and Threats in the RPL Protocol

According to a recent report by Nokia [17], attacks on IoT devices are increasing at an
alarming rate. The increase is due to the proliferation of automated tools to exploit IoTs’
vulnerabilities. The report states that IoT devices now make up roughly 33% of exploited
devices, compared to only 16% in 2019. The statistics are the outcome of monitoring
aggregated network traffic data of more than 150 million devices globally. Furthermore,
researchers claim that more than half of all deployed IoT devices are vulnerable to medium
to high severity attacks [7].

The exponential increase in the demand for IoT devices has accelerated research
and development efforts in IoT-related areas, including security. It has attracted many
researchers to investigate attacks targeting IoT networks. Many IoT applications use the
RPL protocol, since it is purposely developed for constrained devices commonly used in
modern IoT applications. Nonetheless, the RPL protocol is still vulnerable to many threats
that could harm the entire network infrastructure. Consequently, researchers invest their
time and efforts investigating various threats in LLNs that use the RPL protocol [18].

Routing security is a major concern, as routing-related attacks impede sensor data
transmission and adversely affect network layer performance. It can also significantly
affect the upper layers of the IoT network, which frequently causes Denial of Service
(DoS) attacks [19]. In addition, providing a suitable security mechanism for the routing
protocol in the IoT is challenging due to the characteristics inherited from other networks.
Furthermore, the packet forwarding process in IoT-constrained devices is influenced by
potential security threats, affecting the delivered services to end-users as the performance of
the malignant nodes is rapidly increased during the data packet routing process. Eventually,
the network’s topology will be disrupted, and the resulting overhead will deplete the nodes’
power resources and eventually break down the whole network [20].
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In addition, the RPL security specification allows the protocol to operate in an open or
optionally secured mode. In open mode, any node can join the LLN without an authen-
tication key. In a secure mode, a node requires a preinstalled key to join the LLN and an
additional authentication key to join as a sensor with routing capability. RPL also provides
an optional consistency check feature for protection against replay attacks. Although RPL
provides these optional features to address the security of the routing process, most of the
security features are implemented only for external attacks owing to the constrained nature
of IoT-LLNs. When a malicious node joins the IoT-LLN, RPL has several exploitable vul-
nerabilities, allowing adversaries to instigate insider attacks that deplete network resources
and degrade performance. Thus, the security of RPL is crucial due to its significance in IoT
networks [21,22].

Figure 1 shows the taxonomy of RPL attacks, classified into three categories, and each
category has two subclasses based on the intent of threats [23]. These attacks may cause
severe network issues, such as exhausting network resources, destructing network topology,
and stealing sensitive information. Further, Figure 1 lists the recent attacks addressed by
the existing studies. Section 7.6 provides further details about those attacks.

Figure 1. Taxonomy of RPL attacks.

To this end, many researchers have suggested that addressing routing attacks in RPL-
based LLNs is still an open research issue [23]. However, due to the constrained and open
nature of RPL-supported IoT-LLNs, implementing complex security solutions is difficult,
and that leaves the network vulnerable to attacks. Therefore, there is a need for designing
an efficient approach/solution to address routing attacks in the early stage of any malicious
activity within the network [24].

1.3. Machine Learning (ML) and Deep Learning (DL) Technique for RPL Security

The existing traditional security mechanisms, such as those based on cryptography,
trust, threshold, and Intrusion Detection systems (IDS), cannot detect or prevent RPL-LLN
attacks effectively due to differences in the topology, complexity, and dissimilarity in the
traffic patterns [18,20].

In addition, these mechanisms fail to detect sophisticated and devastating huge attack
surfaces and require heavy resources, which drastically deplete the resources of constrained
devices and impact the normal operation of network nodes [25]. Furthermore, detecting
a complex and a combination of multiple attacks in the network requires an intelligent
detection mechanism. Hence, there is a need to design a detection mechanism capable
of handling the issues described above. The security mechanisms should be eligible to
identify known and unknown (zero-day) attacks with a thorough examination of their
actions. Additionally, the vast amounts of data traffic exchanged between the sensors
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(devices) of the LNN-based IoT network constitutes another challenge that should be
considered throughout the design of the detection mechanism.

The term “big data” refers to a high volume of data. Such data necessitate advanced
techniques to extract valuable information to analyze legal and harmful behavioral packet
patterns. "Big Data" is a buzzword that includes methods to extract extremely vital in-
formation from the massive amounts of data traffic exchanged in the IoT networks. In
other words, not all the data traffic is necessary for further analysis and learning. The
advancements in big data technology make it more practical to extract different legitimate
and malicious behavioral packet patterns from the immense data traffic [26].

Unfortunately, conventional intrusion detection methods cannot effectively process
large amounts of data, resulting in a lack of useful information. Thus, more intelligent
and adaptable mechanisms are needed to expand the detection capabilities of the existing
security defenses systems for the next generation of IoT networks. ML learning and DL-
based intrusion detection techniques have attracted much interest in enhancing security
in IoT networks [27]. With its ability to learn from datasets, ML is particularly suited to
complexities that are too complex to be fully explained or performed precisely. Furthermore,
ML requires a small amount of data for training and testing but has lower accuracy. On the
contrary, DL, a subset of ML, requires a vast quantity of data to train the system and takes a
long time, but it usually gives higher accuracy [28,29]. In that sense, ML and DL are the most
successful computational techniques for providing embedded intelligence in the IoT context
due to their ability to deal with a tremendous amount of data, maximize feature engineering,
learn from latent abnormal patterns, and reduce the time for detecting known and unknown
attacks [30–33]. Thus, the ML and DL approaches improve the IoT security and RPL
network in particular and overcome the weaknesses of other conventional solutions.

Due to the limitations of IoT devices in terms of computing and power resources,
designing ML and DL algorithms for the IoT network is a challenging endeavor [34]. In
this context, ML and DL techniques are applicable at RPL nodes, fog/edge nodes, and
(or) cloud nodes to extract and analyze large-scale data to detect malicious behaviors. As
a result, Artificial Intelligence (AI)-assisted security analysis approaches can transform
end-to-end IoT security into an intelligence-based monitoring system [35]. Recently, ML-
and DL-based security solutions for identifying attacks and countering threats intelligently
in the RPL network have become a promising research area and have attracted attention
from many researchers to add more to this field.

1.4. Contributions and Structure of Study

The contributions of this study are six-fold, as follows:

• Provide a Systematic Literature Review (SLR) for the state-of-the-art approaches concerning
ML, DL, and combined ML-DL approaches to detect attacks in RPL-based 6LoWPAN.

• Introduce theoretical and practical steps for conducting SLR studies that pave the way
for other researchers to conduct their SLRs in any field of academic research.

• Provide a taxonomy on contemporary research directions in RPL-based 6LoWPAN.
• Demonstrate demographic, statistical, and critical analysis on the existing studies with

the implemented attacks and used tools.
• Clear description and analysis of the benchmark datasets created and used by existing

studies in the RPL-based research field.
• Derive various security issues and challenges of previous studies and provide future

research directions.

The study is structured as follows. Section 2 summarizes relevant works and compares
them to ours, while Section 3 presents the research questions and methods. Section 4
provides an overview of the methodology and stages of this study, identifies the databases,
highlights the checking and refining criteria. In Section 5, we present the distribution of
the final selected studies. Section 6 demonstrates the theoretical and practical steps for
conducting the SLR study. In Section 7, we elucidate the result of the study according to
the designed research questions in detail. Then, the existing challenges of the presented
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studies and some possible research directions are in Section 8. Finally, the conclusion and
limitations of the study are presented in Section 9.

2. Relevant Works

This section presents the existing literature studies within the scope of attack detection
in RPL-based 6LoWPAN in IoT networks related to our study. The related works in this
section focus on existing reviews, surveys, and systematic review studies. In addition, we
identify and highlight the covered topics along with the limitations and gaps of such studies.

In the research of [16], the authors provided a survey on the existing challenges in IPv6
for LLNs. The authors presented a thorough background on the RPL architecture and its
network operation; additionally, the authors reviewed 97 papers related to the RPL research
domain. The reviewed studies were analyzed and classified into 13 categories according to
RPL specifications. In addition, this work listed statistics concerned with practical parts of
reviewed studies (e.g., simulation method, number of experiments, number of parameters,
and other hardware and software specifications). Furthermore, the authors covered several
RPL security threats, albeit partially, and offered some ideas for future research directions.

The authors in [36] provided a review of the security of RPL-based 6LoWPAN in the
IoT. First, the authors provided an overview of the IoT architecture and the RPL protocol,
then explained the existing threats in RPL with some proposed defense mechanisms. In
addition, this work presented the evaluation metrics used in those mechanisms. Finally,
based on shortcomings extracted from the existing review studies, the authors discussed
the issues and proposed some paths for future research.

The authors of [25] surveyed various solutions for detecting IoT attacks using ML
techniques. They presented a thorough background on the IoT layers and security issues,
including different attacks targeting IoT layers. Moreover, the authors proposed various
classifications for cyber-attacks based on behavior type, targeted layer, and type of damage.
They also presented some ML techniques used in attack detection supported by different
statistical results. However, they only briefly explained RPL attacks before discussing ML
challenges and potential solutions.

In [37], the authors propose an SLR on the security aspects of the RPL protocol.
After a detailed introduction to the RPL architecture, the authors reviewed 53 proposals
covering different aspects of RPL attack countermeasure mechanisms (e.g., mitigation,
authentication, cryptography, network monitoring, secure parent node selections, and
others). Moreover, the authors established a set of research questions as a baseline for their
work, then answered them sequentially. Moreover, the authors categorized the collected
studies into different classes and provided a comprehensive analysis from a statistical
point of view; the authors also displayed a list of tables and info-graphics that facilitate
the extracted information. Meanwhile, the authors showed some of the existing challenges
with possible solutions. However, they did not give any details or critical analysis about the
reviewed studies (e.g., proposed architecture, simulation environment, utilized parameters,
conducted results, and others).

In [15], the authors performed a survey on ML approaches for detecting IoTs attacks,
focusing on the design of IDS based on ML techniques. The authors explained the significant
aspects of IDS systems, implementation, and their taxonomy in IoT networks. Moreover,
they also discussed several recent IDS approaches for detecting IoT attacks and identified
their limitations. Finally, the authors identified some of the open issues and research
challenges with future works that could solve outstanding problems in IoT security.

The authors in [38] reviewed the implementations of several IDS strategies in IoT,
providing insights into IDS techniques, deployment strategy, validation approach, and
datasets. The authors first presented a taxonomy of IoT attacks with detection and security
mechanisms, then offered a taxonomy for anomaly-based IDS techniques involved in
IoT attack detection. Moreover, the authors presented a theoretical part of supervised
and unsupervised learning in IDS, then compared the ML and DL techniques. They
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also provided an overview of various attacks on the IoT ecosystem. Finally, the authors
discussed some challenges IDS faces in various IoT environments.

The authors in [39] presented an SLR on IDSs in RPL-based 6LoWPAN, covering a total
of 103 published studies in the domain. They provided comprehensive information about
RPL’s architecture and the negative impact of RPL attacks on the network. In addition, the
authors provided a critical review of the collected studies and suggested several potential
improvements to the existing studies. Furthermore, they also demonstrated an all-inclusive
taxonomy and analysis of IDS-based RPL techniques (e.g., monitoring data source, detection
strategy, response, monitoring techniques, validation approaches, and others), followed by
an exhaustive statistical analysis of the reviewed studies (e.g., research outcomes, adverse
effects of RPL attacks, network simulators, evaluation metrics, and others). In addition, the
authors present some of the most commonly used datasets in IoT networks, as well as a
brief review of RPLs’ datasets. Finally, the authors identified and thoroughly discussed the
gaps and suggested several future research directions.

Another SLR study [40] focuses on using ML techniques to detect IoT attacks. The
authors proposed six research questions about ML techniques and IoT security, followed
by a detailed overview of IoT attacks and their classification according to IoT layers. In
addition, the authors provided a critical review of the existing studies. Furthermore, an
analysis of the recent datasets used by researchers in the IoT domain was covered. They
also identified and discussed the primary security challenges and issues contributing to the
vulnerabilities of IoT devices. Finally, the authors epitomized the challenges and gaps in
the existing IoT security trends of the reviewed studies.

Table 1 compares our SLR study with existing literature studies to show the uniqueness
of our work compared to others in terms of various metrics, such as RPL Architecture,
RPL Security Threats, RPL-ML Technique, RPL-Technique, and RPL Datasets. The authors
developed these parameters after a thorough examination and review of the existing
literature on RPL security. Such a comparison is necessary to comprehend the issues
with RPL security to develop more efficient detection mechanisms for RPL-based attacks.
Furthermore, it could be a starting point for future researchers working on this topic. This
work is compared to eight previous relevant studies in [15,16,25,36–40].

Table 1. Comparison of our SLR With existing literature studies.

Ref. No. & Year Type of Study RPL
Architecture

RPL Security
and Threats

RPL-ML
Technique

RPL-DL
Technique

RPL
Datasets

[16], 2017 Survey 3 7 7 7 7
[36], 2019 Review 3 3 7 7 7
[25], 2020 Survey 7 7 7 7 7
[37], 2020 Systematic Review 3 7 7 7 7
[15], 2020 Survey 7 7 7 7 7
[38], 2021 Critical Review 7 7 7 7 7
[39], 2021 SLR 3 3 7 7 7
[40], 2021 SLR 7 7 7 7 7

This study, 2022 SLR 3 3 3 3 3

3: Covered, 7: Not covered, SLR: Systematic Literature Review.

Summary: From Table 1, it is clear that many approaches that focus on the IoT in
general and RPL specifically have been proposed recently. Some approaches, such as [16,37],
provided a comprehensive background on RPL architecture and shed light on the security
threats of RPL with brief information about security, threats, and ML techniques in RPL [37].
In addition, others, such as [36,39], address both the RPL architecture and security threats in
detail with a brief overview of ML techniques in RPL [36] and RPL datasets [39]. Moreover,
other researchers [15,25] partly covered RPL Security and Threats and did not cover other
topics such as ML techniques in RPL. In spite of that, the researchers [15] provided an
abstract review of the DL technique in RPL. Furthermore, one study [38] slightly covered
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the RPL architecture and its security threats without any attention to the other topics. Lastly,
one of the studies, [40], only provided a glimpse into security, threats, and ML techniques
in RPL, and it lacked details on other areas related to the RPL research domain. As a result,
some approaches cover the RPL architecture and security threats in detail and lightly cover
ML and DL techniques in RPL.

Consequently, there is still a need for a well-planned and designed SLR for aspects not
yet covered in other approaches. Therefore, to the best of our knowledge and when writing
this study, our proposed study is the first SLR on ML and DL approaches in RPL with an
extensive review of the benchmark datasets used to evaluate RPL-based IDS approaches
within IoT networks.

3. Research Questions and Method

This study aims to investigate state-of-the-art studies, gather their findings, and reca-
pitulate their empirical evidence associated with the application of ML and DL mechanisms
for identifying suspicious behaviors in RPL-based 6LoWPAN networks. Furthermore, this
study presents the existing researchers-generated datasets and benchmarked datasets. To
conduct the aspirated goals, we define sets of research questions as follows:

• RQ1: What is the distribution of the selected studies according to the year of publica-
tion, digital library, publication type and topic, and country of origin?

• RQ2: What are the existing ML-based approaches to detect attacks in RPL-
based 6LoWPAN?

• RQ3: What are the prevailing DL approaches contributed by existing studies to detect
RPL-based 6LoWPAN attacks?

• RQ4: What state-of-the-arts combined ML and DL approaches have been used to
detect attacks in RPL-based 6LoWPAN?

• RQ5: What are the recent applications based on ML and DL approaches proposed for
detecting attacks in RPL-based 6LoWPAN?

• RQ6: What are the existing threats in RPL-based 6LoWPAN that the existing studies
had addressed?

• RQ7: What tools and network simulators are used in the existing studies, and what
are the occupied evaluation metrics and parameters in the reviewed studies?

• RQ8: What are the datasets utilized to evaluate the existing studies, and are there any
available datasets designed specifically for RPL-based 6LoWPAN?

Regarding the research method used in this study, we followed the guidelines pre-
sented by PRISMA [41].

4. Research Methodology

In this section, we explain the methodology of the proposed SLR study in detail and
provide a clear description of each stage of the study. To achieve the primary goal of this
work, we designed three main stages, and each stage comprises several steps illustrated in
the following subsections.

4.1. Stage 1—Identification of Information Sources and Research Keywords

This study conducted the search and collection process for relevant studies and articles
until June 2021 on three databases and two data sources to extract and collect related studies
from the literature. The databases comprise Springer Link, IEEE Xplore® digital library,
and Science Direct, and the data sources include Scopus and Google Scholar. The electronic
link for databases and data sources searched are as follows:

• Springer Link (http://link.springer.com; accessed on: 1 April 2022).
• IEEE Xplore® Digital Library (http://ieeexplore.ieee.org; accessed on: 1 April 2022).
• Science Direct (http://www.sciencedirect.com; accessed on: 1 April 2022).
• Scopus Database (http://www.scopus.com; accessed on: 27/04/2022).
• Google Scholar (http://scholar.google.com; accessed on: 1 April 2022).

http://link.springer.com
http://ieeexplore.ieee.org
http://www.sciencedirect.com
http://www.scopus.com
http://scholar.google.com
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A set of research keywords are identified to narrow down the scope of this research.
This study used broad and specific keywords to obtain a reasonable number of studies
related to the research topic. The broad keywords represent the IoT field, and the specific
keywords refer to the RPL research domain. The research keywords of this SLR were
two-fold as follows:

• The first group of keywords includes ((rpl OR “routing protocol” OR “Routing Proto-
col” OR 6lowpan OR RPL) AND (iot OR “internet of thing” OR “Internet of Things”
OR IoT)) for retrieving the studies from (Springer Link, IEEE Xplore® digital library,
Science Direct, and Scopus).

• The second group of keywords comprises ((rpl or “routing protocol”) AND (iot OR
“Internet of Things”)) for extracting studies from the Google Scholar website, since
we observed that Google Scholar returned too many results when using the first
groups of keywords. Therefore, to solve this issue, we eliminate some of the keywords
not directly related to our study scope, resulting in a more manageable number of
gathered documents.

In addition, we considered the upper and lower case of keywords. Figure 2 shows the
stages of the SLR methodology.

Figure 2. Flowchart of the SLR methodology stages.

4.2. Stage 2—Screening and Refine Criteria

This stage explains the exclusion criteria used in this study. First, we only consider
the articles published between January 2016 to mid-2021. Second, we limit the articles in
our study to those published in the English language by using each database’s language
selection option. However, since Google Scholar, Science Direct, and IEEE Xplore® digital
library do not provide a language selection option, we collected all relevant studies from
those sources. Next, we selected English-only studies by screening the title and abstract us-
ing Mendeley Software [42]. We discovered that several studies were in multiple databases
during the screening process. Therefore, we started removing the duplicated studies us-
ing Mendeley; additionally, we performed another filter to check the type of documents.
This procedure limits the document types to journal articles, conference proceedings, and
book section articles and excludes others, such as dissertations, reports, presentations,
and magazines.

4.3. Stage 3—Inclusion Criteria

In this stage, we screened the titles and abstracts of the articles in Mendeley Software
to select the studies related to RPL research and exclude unrelated areas, such as Wireless
Sensor Network (WSN) and ad hoc networks. Then, we performed a full-text reading to
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select the studies within the scope of our study. Consequently, we included only the studies
that used ML and DL mechanisms for detecting attacks in RPL networks and studies
that utilized benchmark datasets in RPL networks. Last but not least, we have to exclude
inaccessible studies due to limited access to the databases.

5. Distribution Results of SLR Stages

The selection of studies for SLR was made in three stages, as shown in Figure 2.
Applying the research keywords on five digital libraries in the first stage returned 15,543
results, where 2608 are from Scopus, 1141 from IEEE Xplore® digital library, 2577 from
Science Direct, 6090 from Google Scholar, and 3127 from Springer. Filtering the results
between January 2016 and mid-2021 and the English language option in the second stage
reduces the returned results to 12,096 studies.

However, approximately 5084 duplicate studies were discovered, reducing the total
relevant studies to 7012. Later, in the third stage, filtering for the RPL research topic, a
further 6461 studies were excluded, resulting in 551 studies. Meanwhile, from the selected
studies, we provide a novel taxonomy of existing research literature on RPL, as shown in
Figure 3. Such a taxonomy aids researchers by providing state-of-the-art research directions
for the RPL protocol. Finally, we performed a full-text reading on RPL-based studies to
extract the studies related to the scope of this study, resulting in a final count of 49 studies.

Figure 3. Taxonomy of existing research literature in RPL.

6. Theoretical and Practical Steps for the SLR Study

This section presents and explains the steps involved to conduct the SLR study in
detail, including the tools, software, and techniques used. The process is replicable in
other SLR studies in any field of academic research. The following are the practical steps
undertaken for each database.

• Google Scholar: First, we inserted the second group of keywords (G.2) into the search
box; then, we selected the range of publication years, resulting in the required docu-
ments displayed and available to us. However, we had to exclude several duplicate
documents found in other databases when using the first group of keywords through-
out the search process. Then, we imported the residue documents into the My Library
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feature in Google Scholar before exporting them to Mendeley Software using the
Mendeley Web Importer Tool’s extension [43].

• Scopus Database: The first group of keywords (G.1) is inserted into the search box.
Then, the search results are refined using year and document type filters. Afterward,
we exported the selected studies using the Research Information System (RIS) before
importing them into Mendeley software for further analysis.

• Springer Link: We began by entering the first group of keywords (G.1) into the search
engine, then refined the returned results based on document type and year of publica-
tion. Then, we downloaded the links to the selected articles as separate CSV-formatted
files. Next, we downloaded the articles from the available links and imported them
into Mendeley software using Mendeley’s Web Importer Tool extension [43].

• IEEE Xplore® digital library: We began by inserting the research keywords (G.1) into
the search box, then applied the filter and selection criteria. Then, we export the se-
lected documents using (.bib) format, which is then imported into Mendeley Software.

• Science Direct: The search process in Science Direct is similar to that for the Scopus
database. We selected the displayed documents according to the pre-defined criteria.
Then, we exported the documents in RIS format, which can be imported into Mendeley
Software later. Figure 4 shows the whole process of conducting the SLR stages.

Figure 4. The steps and tools for conducting the SLR study.

7. Result and Discussion

In this section, we explain the results of the SLR study and provide answers to the
research questions based on the findings of the selected studies.

7.1. RQ1: What Is the Distribution of the Selected Studies According to the Year of Publication,
Digital Library, Publication Type and Topic, and Country of Origin?

We answer this question by providing a list of figures and charts that describe the
bibliographic information of the selected studies. Figure 5a depicts the distribution of
selected studies according to the year of publication, and Figure 5b shows the allocation of
selected studies in the digital libraries. We can observe from Figure 5a that the publication
related to the topic of this study is constantly increasing over the years. Looking at the
chart, we concluded that the number of published studies in 2020 almost doubled from the
year before. After conducting this study in June 2021, we predict a marked increase in the
number of studies on ML and DL on RPL published in 2022, indicating the significant role
of ML and DL mechanisms in identifying attacks in RPL-based 6LoWPAN at present and
in the future.

Figure 5b shows that most related studies were published in IEEE Xplore® digital
library (14), followed by Google Scholar (13) and Springer Link (12), while Scopus and
Science Direct returned the same number of published studies (5). Furthermore, it is worth
mentioning that there are many studies published by other publishers, such as MDPI and
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Wiley, but rather than directly extracting them from the publishers’ databases, we obtained
those studies via the Google Scholar database.

(a)
(b)

Figure 5. Distribution of selected studies according to (a) Year of Publication, (b) Digital Libraries.

Figure 6a,b show the percentage of the selected studies according to the type and
topic, respectively. As for the type of published studies, it is evident that most were journal
articles, i.e., 30 out of 49 studies (61.22%), while 11 were indexed conference proceedings
(22.45%), and only 8 (16.33%) of the studies belong to the book section. Furthermore,
regarding the topic of selected studies, it is evident that many published studies emphasize
ML mechanisms, which constitute 23/49 (46.94%) of published studies, while 6/49 (12.24%)
of studies focus on DL mechanisms, and the last portion, 6/49 studies (12.24%), focus on
combined ML and DL mechanisms. In addition, it is worth pointing out that the studies
that provide a review on the topic, 8/49 (16.34%) (see Section 2), and the studies that
proposed a mechanism without empirical results, 6/49 (12.24%), are not presented with the
distribution of studies in Figure 6b.

(a) (b)

Figure 6. Distribution of selected studies according to (a) Publication Per Type, (b) Publication
Per Topic.

Figure 7 shows the total number of selected studies based on country of origin. As
can be observed from the chart, India is the most active country in this field of research,
followed by Turkey, USA, Australia, etc.
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Figure 7. Distribution of studies according to country of origin.

7.2. RQ2: What Are the Existing ML-Based Approaches to Detect Attacks in RPL-
Based 6LoWPAN?

This section produces a classification of the reviewed studies based on the ML mecha-
nisms described in Section 7.1. Then, we illustrate the most crucial information from each
study. After that, we figure out a summarization table that highlights the crucial parameters
with the limitations of existing studies.

Shukla [8] proposed an ML model with lightweight IDS to detect WormHole (WH)
attacks in IoT networks. The proposed approach contains three ML models: K-Means (KM)
clustering-based IDS (KM-IDS), Decision Tree (DT)-based IDS (DT-IDS), and a two-stage
hybrid IDS approach (KM Clustering and DT models). The first model used centralized
IDS to identify attacks by sorting network nodes into clusters. Each cluster, called “safe
zone” plays a crucial role in identifying attacks inside the network, while the second model
also used a centralized IDS; this model is used to train the data that help to specify the safe
distance between two neighboring routers, which is later used as a baseline for identifying
attacks. Then, the IDS is used to detect the attack; for example, if two routers send a request
to become neighbors, the IDS will check if the safe distance between the two routers is
within the specified safe distance. This decision is created through the learning stages to
check whether the two neighbors’ routers are normal or victims of the attack.

Eventually, the last model uses the KM clustering algorithm to set up a safe zone to
detect WH attacks. After that, the DT algorithm reduces the occurrence of false alarms
and improves the attack Detection Rate (DR). The author used two types of networks in
the experiments. The first network comprises randomly distributed network nodes, while
the second network represents standard topologies, such as mesh, ring, and star. The
simulation result shows that the KM approach obtains 70–93% DR for different sizes of
random RPL networks, while the second model, DT-IDS, achieves 71–80% DR. Additionally,
the hybrid model attains 71–75% DR for the same network size. The result clearly shows
that the hybrid model achieved the lowest result compared to the others. However, the
hybrid model has significantly reduced the False Alarm Rate (FAR), while the other two
models still suffer from high FAR.

The study [44] presented an IDS based on a Self-Organizing Map (SOM) neural net-
work that clusters the WSN routing attacks and reports them to the network administrator
if an attack is detected. This work targeted three types of attacks: HF, SH, and VN. In
addition, the authors used the Cooja simulator to create a synthetic dataset. During the
simulation, the authors compute the PRC of every node utilizing Contiki’s Power Tracker
module. Then, the data are fed to an aggregator to perform some processing and remove
unnecessary information from the packet. Finally, the processed data are inserted into
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the train to obtain the SOM map. Moreover, the authors assigned specific types of SOM
parameters, for example, the Euclidean distance for the distance function, a Gaussian
function as a neighborhood function, and a random initialization of the SOM weights.

Furthermore, the authors extracted six types of dataset features using the available
data in packet fields. The time window technique was employed as a reference to identify
suspicious behavior at a particular time slot. As for the simulation result, the authors
reported that the SOM model could accurately cluster the dataset samples into four classes:
clean data, HF, VN, and SH attacks .

Anitha and Arockiam [45] conducted an Artificial Neural Network-based IDS (AN-
NIDS) technique for detecting attacks in RPL. The proposed approach uses MLP to identify
DIS and VN attacks. The architecture of the proposed approach contains three phases; the
simulation phase for generating and collecting the real-time data packets, preprocessing
phase to extract the features from network packets, and the last phase, which is ANNIDS.
The ANNIDS phase uses the MLP classifier to identify the normal and malicious traffic.
In addition, the authors set up the simulation using a random distribution of network
nodes with two attacker nodes. The results reveal that the Mean Absolute Error (MAE) is
0.0002 and the Root Mean Square Error (RMSE) is 0.0003. Meanwhile, the other evaluation
metrics, such as TPR, Precision, Recall, and F-Measure, attained the maximum result in
this experiment.

The authors in [46] conducted an ensemble learning approach based on Network IDS
for detecting attacks in RPL-based IoT networks. The proposed approach, named ELNIDS,
is designed to detect seven types of routing attacks (SinkHole (SH), BlackHole (BH), Sybil,
Clone ID (CID), Selective Forwarding (SF), Hello Flooding (HF), and Local Repair). The
architecture of the ELNIDS approach consists of several modules: sniffer for listening to
network traffic, a repository for archiving the sensor events, a feature extraction module,
an analysis module, a database for signatures, a user interface, and a notification manager
for attack alerting. The working principle of the ELNIDS approach is based on ensemble
learning that combines different kinds of ML classifiers. In this work, the authors used
four types of ML classifiers: Boosted Trees, Subspace Discriminant, RUSBoosted Tree, and
Bagged Trees.

The authors evaluated the performance of each classifier individually using different
evaluation and validation metrics. Then, the ensemble model (voting scheme) is applied to
improve the classification results by merging multiple models. The output of this method
produces better prediction Accuracy (AC) and generates less noise than the traditional
single ML methods.

To test the performance of the proposed approach, the authors used their self-generated
dataset, RPL-NIDDS, which comprises seven types of routing attacks with twenty features.
The authors used two evaluation and validation methods, hold-out and cross-validation, to
obtain the experimental results. The simulation results show that the ensemble of Boosted
Tree obtained the best AC at 94.5%, with an Area Under Curve (AUC) of 0.98, using 30%
and 40% hold-out validations. However, the Subspace Discriminant model obtained the
worst AC (77.8%), with an AUC of 0.87, in the case of 40% hold-out. As for the cross-
validation method, the ensemble model of Boosted Trees attains the best AC. Meanwhile,
the ensemble of the RUSBoosted model produced the highest value of AUC.

Sharma et al. [47] proposed a new framework for simulating attacks in the RPL
network by generating a multi-class dataset for a supervised ML model. The proposed
dataset consists of 58 features extracted from the networks’ packets gathered throughout
the simulation. In addition, the dataset contains the traffic pattern of a regular network and
various RPL attacks, such as HF, DIS Flooding, Version Number (VN), and Decreased Rank
(DRA) attacks. The authors used pairwise correlation, a dimensionality reduction method,
that eliminates variables that have more than a specific correlation among themselves.
Moreover, the authors used a correlation ranking filter to remove irrelevant features that
might mislead the detection algorithm during the feature ranking and selection stage.
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The feature ranking technique works by measuring the Pearson’s correlation between the
dataset’s features and the class value.

Moreover, the feature ranking and selection stages’ outputs are four datasets with
various features. Then, the produced datasets are evaluated separately using three types of
classification algorithms: Random Forest (RF), Naive Bayes (NB), and J48 classifiers. After
the evaluation process, the authors observed that the dataset with 21 features obtained the
highest classification AC. Furthermore, the experimental results show that the RF classifier
obtains the best Precision (99.4%), Recall (99.3%), and AC (99.33%) than other classifiers.
In contrast, the J48 classifier attained the worst results in all evaluation metrics compared
to other classifiers. Finally, the results also show that the dimensionality reduction step
significantly reduces the processing time and energy consumption and improves the overall
performance of the proposed framework.

A study by [48] presented a centralized IDS for detecting HF and VN attacks in RPL-
based Industrial IoTs (IIoTs). The proposed framework uses Genetic Programming (GP)
with a centralized IDS to identify the attacks. The proposed mechanisms are placed in the
root node to monitor the packets of the surrounding nodes. Then, the monitored packets
are analyzed to extract the features that contribute to detecting the attacks. In addition,
implementing centralized IDS in this work reduces the computation and communication
overhead on the monitoring nodes. The authors used different time intervals (500 ms,
1000 ms, 2000 ms, 3000 ms, 4000 ms, and 5000 ms) in the feature collection step.

Furthermore, the authors examined the distributed IDS type; this type allows the
monitoring nodes to identify the attacks. The simulation results show that the proposed
framework (Centralised IDS) achieves 96.08% and 99.83% of the worst and best AC values
obtained during 500 ms and 5000 ms intervals for the HF attack scenario. For the VN attack,
the best and worst AC occurred at intervals of 4000 ms (99.42%) and 3000 ms (97.97%),
respectively. As for the distributed architecture, the authors discovered through the experi-
ments that about 51% and 71% of nodes could detect HF and VN attacks, respectively, with
an AC rate higher than 90.

An analytical study on the performance of IDS for RPL-based IoT networks is proposed
by [49]. The proposed work presents the statistical analysis of RPL-NIDDS17. The authors
study the probability distribution of the dataset features and their correlation by applying
five types of ML techniques to evaluate the dataset. The workflow of the analysis comprises
three steps. Firstly, the authors performed descriptive statistical analysis using three
methods: the Kolmogorov–Smirnov test, skewness, and kurtosis functions. Secondly, the
authors tested the feature correlation of the training and testing sets by applying Pearson’s
Correlation Coefficient (PCC) and Gain Ratio. The process of correlation analysis has two
categories. First, the authors used PCC to study the feature correlation of the Training set
and Testing set without depending on class or labels. Then, the correlation of features is
ranked using the Gain Ratio technique, considering the instance labels.

Lastly, in the third step, the authors evaluated the complexity analysis of the training
and testing sets using five ML classifiers: NB, DT, Logistic Regression (LR), Artificial Neural
Networks (ANN), and Expectation-Maximization (EM) Analysis Clustering. Afterward,
they evaluated the classifiers’ performance using AC and FAR metrics. Additionally, the
results of the RPL-NIDDS17 dataset are compared with some datasets typically used in
traditional networks, such as KDD-99, UNSW-NB15, and WSN-DS. The authors reported
that the DT achieves the best AC (93%) and a minimum of 3.57% for FAR. However, the
EM clustering has the lowest AC (89.63%), with a FAR of 5.59%. Finally, the EM and LR
classifiers achieve unacceptable results for FAR, and the authors claim this is due to some
unbalanced distribution of dataset records.

A study by Neerugatti and Reddy [50] presented an ML approach named MLTKNN
for detecting Rank attacks in RPL-based IoT networks. The proposed technique uses the
K-Nearest Neighbor (KNN) algorithm to identify the attacks. The proposed approach is
placed at the border router node to check the distance of each node physically within the
radio range from node to node. The detection process of an attacker node depends on the
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distance between nodes in the network and the border node. Then, the computed distance
is compared to the actual rank of the inspected node. If the two values are not equal, the
inspected node is verified as malicious and eliminated from DODAG. Otherwise, it will be
considered a regular node.

The authors claimed that the proposed approach achieves better results than the net-
work under rank attack only based on the experimental results. The proposed approach
reduced the End to End (E2E) delay from (2.7 to 1.9) seconds compared to the network
scenario under attacks when the number of nodes involved is five. Moreover, the Packet De-
livery Ratio (PDR) also improved from 59% to 80% after applying the proposed mechanism
in a scenario involving 15 network nodes. Furthermore, for the True Positive Rate (TPR), the
proposed approach achieved 90% and 98% TPR when the number of network nodes is 5 and
30, respectively. Finally, for the False Negative Rate (FNR), the proposed approach obtained
0.9% and 0.2% scores when there are 5 and 30 network nodes involved, respectively.

Research conducted by Műller et al. [51] presented a distributed anomaly detection
of a single mote attack in RPL networks, targeting three types of RPL attacks: HF, VN,
and BH. The proposed approach deploys a pre-trained model in the network nodes to
avoid extra steps, such as data collection and model training. Furthermore, the authors
used a distributed architecture to eliminate communication overhead. Moreover, the
proposed approach was evaluated using a semi-supervised ML algorithm suitable for a
resource-constrained environment and produces a low computational overhead.

The authors use Kernel Density Estimation (KDE) for the anomaly detection system
due to its advantages, such as its ability to provide some degree of prolific illustration and
its adaptability to work in highly resource-constrained environments. However, despite
KDE providing many benefits, it still has limitations, prompting the authors to modify
their model to overcome those limitations. The workflow of the detection phase contains
two stages performed at node-level and root-level; the former for anomaly scoring and
the latter for anomaly notification packets. Referring to the implementation part of this
work, the authors used a modified version of the RPL attacks framework. They initially
created 20 test groups containing 80 individual datasets, and each dataset comprises two
subdatasets: a normal scenario and a malicious scenario. As for the result of the proposed
approach, the authors reported that the system, on average, detects the VN, HF, and BH
attacks with (96.1%, 90.2%, and 68.52%) of TPR, respectively, and 0.5% False Positive Rate
(FPR). As for the model overhead, the result shows that the proposed approach increases
the executable size by 17%.

A Feedforward Neural Network (FNN) model for detecting suboptimal path attacks
in RPL was devised by [24] to detect Worst Parent (WP) attacks and the attack sources.
First, the authors defined a threat model to analyze the performance of the RPL network
under WP attacks. Then, they registered some routing metrics that indicate the presence of
WP attacks. In addition, the methodology of the proposed work consists of several stages:
data collection, data preprocessing, FNN model initialization, and performance evaluation.
In the data collection stage, several steps are used for transforming, encoding, splitting,
and scaling collected data. The data are then fed into the FNN model before constructing it
and setting up the required parameters.

The designed FNN model identified WP attacks with 18 nodes in the input layer and
two hidden layers with one output layer in the performance evaluation stage. Furthermore,
the authors assigned Rectified Linear Unit (ReLU) as an activation function and specified a
sigmoid activation function for the output layer. Furthermore, the authors employed an
adaptive learning rate optimization algorithm to train the FNN model. Concerning the
experimental results, the authors reported that they attained the best outcomes of 97.3%,
96.1%, 98%, and 99.1% of AC, Precision, Recall, and F-Score, respectively, with an ELLIPS
distribution of 20 nodes in the network.

Canbalaban and Sen [3] presented a cross-layer IDS for RPL-based IoTs. The proposed
approach employed a neural network for detecting VN, WP, and HF attacks conducted in
binary and multi-class classification scenarios. In this work, the author utilized two types of
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features extracted from different IoTs’ layers to identify the attacks: routing layer and link-
layer features. In addition, the authors introduced and shared their dataset publicly. Such
a dataset includes the invoked attacks with different scenarios. Additionally, the authors
also came up with a new set of features extracted from the link layer and investigated their
effect on intrusion detection. Moreover, the authors classified the extracted features into
three groups: data, topology, and link-layer features.

Data-based features include information related to the data packets received by the root
node, whereas topology-based features contain information about RPL control messages,
and lastly, the link-layer features provide information about the dropped packets in this
layer, such information including neighbor allocation, collisions, and queuing.

As for the experimental result for the binary classification model, the 10-fold cross-
validation techniques obtained 97.11% and 0.34% of DR and FPR, respectively. In contrast,
the 60% split techniques attained 96.88% and 0.13% for DR and FPR, respectively. Moreover,
for the multi-class model, the proposed approach achieved a high DR of 97.52%. Further-
more, the results showed that the implementation of link-layer features reduced the FPR
and improved the detection of VN attacks.

Qureshi et al. [52] proposed a secure framework for detecting attacks in smart city
IoT and Industrial Internet of Things (SFIIoT) in two phases: threshold modulation and
attack detection. At first, after identifying all available network traffic features, the features
are reduced using GP algorithm. After that, the features with the highest probabilities
are elected. Finally, the in-order traversal-based selected features are used to construct a
threshold statement for each type of referred attack.

Moreover, after forming the threshold statements, the latter phase identifies the attack.
Each attack’s scenario contains a set of features that reflect a specific type of attack. Thus, the
targeted attack will be detectable by comparing each scenario with the threshold statement
constructed in the previous phase. As for the simulation part of this work, the proposed
framework, called RPL-NSF-IIoT, targets specific types of attacks (HF, VN, SH, and BH
attacks). In addition, the authors tested the performance of their work using various time
intervals (500 s, 1000 s, the 1500 s, and 2000 s) with some evaluation metrics. Based on the
simulation result, the authors reported that they achieved the best detection AC of HF and
VN attacks at 2000 s, while for SH and BH attacks, the highest result was achievable at 1000
s. In terms of TPR, they achieved the best results at 2000 s for all attacks. Moreover, the
experimental results reveal that the PDR of this work is higher, with fewer data drops and
delays as well.

The authors in [10] proposed an efficient framework for detecting VN attacks in
IoTs that is deployable at the IoT-LLN edge and the cloud. Furthermore, the proposed
framework aims to detect the attacks without any miss-identification using any form of
deployment. In addition, the detection process in the cloud is performed by a cloud service,
while fog computing is responsible for detecting attacks at the IoT-LLN edge. The proposed
framework identifies attacks on the local network and cloud side through several stages:
filtration of input features, feature preprocessing, and ML classification algorithms (DT,
Support Vector Machine (SVM), and Bernoulli RBM and LR).

Moreover, identifying VN attacks in the network relies on various parameters, such
as variance in VN and the number of VN changes. Moreover, after identifying malicious
nodes in the network, an alert will be sent to the root node to blacklist them. Based on the
simulation result, the proposed framework achieves 0.98, 1.00, and 1.00 for AC, Precision,
and Specificity, respectively. However, concerning the Recall result, the DT and Bernoulli
RBM and LR obtain 95%, while SVM obtains 94

A study by [21] devised an AI technique for detecting SF attacks in RPL. The proposed
approach employs a new scheme called the AI-based Packet Drop Ratio (AIPDR), which
uses neighborhood information to get the PDR. In addition, the border router node and
the other nodes are working mutually based on the environmental situations in the RPL
network. The working principle in this work is that all the nodes are checked for the PDR
value. Meanwhile, the border router node also inspects the PDR of the other nodes. Then,
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based on the PDR value, the malicious mode will be detected and eliminated from the RPL
network. As for the simulation results, it can be observed that after applying the proposed
scheme, the PDR increased up to 89% when the number of nodes was 25. Moreover, when
the number of nodes is 25, the E2E result declined from 14 to 4 after launching the proposed
scheme. Concerning TPR and FPR, the proposed scheme reports 72% (highest is best)
for TPR with 25 networks’ nodes, and the FPR obtained 0.3% (lowest is best) with 25 of
networks’ nodes.

In [53], the authosr proposed an ML approach for detecting Rank attacks in a smart
hospital environment using centralized anomaly-based IDS. The key specifications of the
proposed work include adaptation, lightweight, and learning from the past. For example,
the authors selected the One-class Support Vector Machine (O-SVM) for its low Power
Consumption (PRC) among ML classifiers for the classification stage. As for the simulation
environment, the authors designed four scenarios with a random distribution of malicious
nodes and tested their approach with various numbers of attackers’ nodes. The first
scenario contains only normal network traffic behavior as training data for IDS, and the
other three scenarios have different combinations of malicious nodes. The experimental
result shows that the proposed IDS’ DR increases when more malicious nodes are present
in the network.

Kumar et al. [54] proposed a DT-Based IDS for preventing intra and inter-network
from Denial-of-Service (DoS) attacks. The proposed work investigates the behavior and
impact of two types of Distributed DoS (DDoS) attacks: HF and VN attacks. In addition,
they used the Cooja simulator to generate their dataset. Moreover, the authors deployed
a distributed-IDS on some high-power sensor nodes to prevent intra- and inter-network
attacks. Furthermore, the architecture of the proposed approach encompasses several
IoT sensors, two of which are for IDS monitoring, and one is responsible for performing
actions, which is the border router node. The proposed C5 DT-based IDS model attained
99.9% and 5.2% of AC and FAR, respectively, based on the experimental result. However,
it suffered from massive Central Processing Unit (CPU) power and listening PRC under
attack simulation compared to normal behavior in terms of PRC.

Tabari and Mataji [55] proposed an anomaly-based distributed IDS for detecting SH
attacks in RPL. In this work, a hybrid placement strategy was employed for monitoring and
identifying suspicious behaviors. The monitoring nodes were deployed in the host, and
the IDS agent responsible for computations and actions runs inside the border router. The
workflow of the proposed approach has several stages. First, the data collection stage uses
a lightweight module inside the network node to send information to the border router.
After collecting the information, the preprocessing step identifies invalid and faulty data
using specific techniques. After that, an ML algorithm, GP, selects the significant features
that contribute to high classification AC. The classification stage uses three algorithms: DT,
SVM, and Bayesian Classifiers.

Furthermore, during the evaluation step, the performance of each classifier was
tested individually. Moreover, to enhance AC and reduce the computational cost of alarm
processing, the authors propose a post-processing stage that depends on a predefined
threshold. Such a threshold was used to revise and validate the generated alarms.

The authors conducted the experiments at different intervals of the network’s run-time.
The Bayesian classifier obtained the highest DR at all time intervals. As for the FPR, the
DT classifier attained the lowest results at runtimes of 2, 4, and 6 minutes. On the other
hand, at 8 and 10 minutes, the SVM classifier gained the best FPR compared to other
classifiers. After the post-processing stage, the Bayesian model’s DR improved to 99.03%
at ten intervals, and the DT’s FPR reduced to zero at 2-, 4-, and 6-minute intervals of the
runtimes, while at 8- and 10-minute intervals, the DT classifier obtained 0.19% and 0.16%
of FPR, respectively.

In [56], the authors presented an ML approach for detecting routing attacks in RPL.
The proposed approach simulates three routing attacks: HF, DRA, and VN attacks. The
authors used ANN to detect those attacks in their work. The workflow of the proposed
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ANN-based IDS involves several processes: setting up the network scenarios, inspecting
the network behavior in the presence of attacks, sniffing, collecting and processing the
gathered information, analyzing and classifying the network traffic using ANN, improving
the ANN performance via parameter tuning technique, and testing the proposed ANN via
hold-out and k-fold cross-validation methods. As for the simulation scenarios, the authors
employed four scenarios, with each scenario representing one type of attack, except for the
last scenario, which combines all attacks simultaneously.

Moreover, concerning the packet generation in the network, the malicious node pro-
duced the maximum number of packets during HF attacks. On top of that, the malicious
node also induced the adjacent nodes to generate more packets inside the network during
VN attacks. In contrast, the malicious nodes initiated the lowest number of packets during
DRA attack scenarios. Moreover, the authors also compared the performance of hold-out
and k-fold cross-validation, and they claimed that the hold-out methods required fewer
epochs to obtain 100% AC. Additionally, the authors used ten-fold cross-validation methods
to avoid the over-fitting problem. Finally, the ANN model achieves an AC of 100% with an
optimized value of its hyper parameters.

The authors in [57] proposed a Multi-Layer (MLRPL) model by employing an ANN
approach for detecting DRA attacks in RPL. The MLRPL comprises three phases: data
preprocessing, feature extraction based, and ANN-based attack detection model. The
authors utilized the IRAD dataset, which contains three types of attacks, VN, DRA, and HF,
to evaluate their work. The authors merged two datasets (VN and DRA attack datasets) into
one named RPL attack dataset during the data preprocessing phase. The produced dataset
includes 18 features. In the second phase, the authors used an entropy algorithm known as
information gain to evaluate each feature of the entire dataset and an RF classifier to train
the entire dataset. The output of this phase is the optimum set of features, which includes
eight features, and such features will be inserted into the last phase for attack detection.

Furthermore, different detection scenarios, such as binary and multi-class classification,
are employed to test the proposed model. Regarding the experimental results for the
binary class, the training and testing AC was 97.14% and 97.01%, respectively. In contrast,
for a multi-class model, the training and testing AC is 96.59% and 96.39%, respectively.
The overall results of the proposed model revealed that the proposed model obtained
significant results of (97.14%, 97.03%, 0.36%, and 98%) in AC, Precision, FPR, and AUC-
Receiver Operating Characteristic Curve (AUC-ROC) scores, respectively. Furthermore, the
proposed MLRPL model gained better results than [49,58] approaches. Finally, it is worth
mentioning that the proposed model is efficient in terms of training time and complexity of
the ANN model.

Osman et al. [31] proposed a lightweight ML approach for detecting VN attacks
in RPL-based IoT networks. The proposed approach, named ML-LGBM, used Gradient
Boosting Machine for detecting the attacks. The methodology of the proposed approach
implicates the production of an extensive dataset of VN attack, feature extraction module,
LGBM-based classification algorithm, and optimization of the model parameters. Further-
more, the author employed several stages to reach the desired result to detect the attack
mentioned above. Such stages encompass design of the RPL network, data collection, data
preprocessing, feature selection, and the ML model.

Moreover, the authors store the collected data using different readable file formats
in the data collection stage. After that, the data preprocessing stage prepares the data for
the feature selection stage, which involves a Forward Feature Selection (SFS) method to
extract the optimal subset of features. The outcome of this stage resulted in 11 features
selected from 17 features. After that, the selected features from the previous stage are
classified using ML-LGBM to detect the normal and malicious behavior. The results
show that the ML-LGBM model attained 99.6%, 99%, 99.6%, 99.3%, and 0.0093 of AC,
precision, F-Score, True Negative Rate (TNR), and FNR, respectively. Furthermore, the
author compared the performance of their approach in terms of (Training Time, Testing
Time, Model Size, AC, Precision, FPR, and F-score) with several existing studies, and the
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proposed model outperformed other approaches. Additionally, as for the consumption of
the system’s resources, the model achieved 140.217 seconds execution time and 347,530
bytes of memory size.

An ML approach for securing RPL routing (MLRP) protocol was introduced by [59].
In this work. the authors targeted several RPL-based attacks, namely VN, Rank, and DoS
attacks. The MLRP approach comprises two stages: Data Generation and Attack Detection.
The former stage focuses on generating the dataset, which involves creating normal and
attack scenarios, while the latter stage, called ML with SVM classifier, includes several
modules, namely feature extraction, feature selection, labeling, and attack detection.

In addition, during the feature extraction module, the authors extracted the features
from PCAP files and applied some preprocessing steps to the collected features. After that,
the authors used Principal Component Analysis (PCA) to reduce the number of features
and select significant features that contribute to attack detection. Finally, the classification
module used SVM to identify and classify RPL attacks based on the training step. The
experimental results show that the average AC obtained by MLPR is between 0.90 and
0.92. Moreover, the Recall metric gains between 0.96 and 0.98. Furthermore, the proposed
approach reveals 76.8% of PDR compared to other existing RPL-based approaches when
using 1474 control messages with 30 network nodes.

Abapour et al. [60] carried out a routing method for the security of RPL networks
using the Ant Colony Optimization (ACO) algorithm. The proposed method dealt with the
destination nodes as the root node and used the ACO algorithm to improve the security
and reliability of the routing process. In this work, the authors deployed the ant of the
ACO algorithm at regular intervals in each node to find the best path to the destination
node. After that, each node ant finds the next step using the probability formula. Then,
the node selects the route with the highest probability. The results show that their method
improves the throughput of the proposed protocol compared to SecTrust-RPL [61]. In
addition, when the number of nodes increases, the proposed method reduces the number
of expected transfers and enhances the network’s throughput, which is also higher than
the SecTrust-RPL protocol.

An extension of [53] is presented in this work. The authors [7] proposed an efficient
anomaly detection approach for identifying attacks in smart hospitals’ IoT systems. The
proposed approach aims to detect two categories of attacks: e-health-related data attacks
and IoT network attacks. The former includes events and health attacks, such as manipu-
lations in temperature, whereas the latter involves unusual variations in heartbeat rates.
In contrast, the targeted IoT attacks in this work include Flooding, VN, and Rank attacks.
Moreover, an SVM classifier was used for detecting the attacks. The authors used SVM with
two kinds of datasets, e-health data and network infrastructure data. Furthermore, in this
work, the proposed architecture was validated using a prototype and tested with various
scenarios regarding e-health, environment, and network intrusion. In addition, the Cooja
network simulator was used to measure the scalability of the proposed approach. As for
the experimental result, the SVM model obtained a detection AC of 93.4%, 60.8%, and 91.6%
for Rank, Flooding, and VN attacks, respectively. Moreover, for detecting event attacks,
the authors reported detection AC of 85.7% and 82% of increasing temperature levels and
heart attacks, respectively. Table 2 presents a summary of the ML based approaches with
their important parameters, advantages, and limitations.
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Table 2. Summary of machine learning-based approaches.

Ref./Year A1 A2 A3 A4 A5 A6 A7 Advantages and Limitations

[8], (2017) NA

K-Mean
Clustering,
DT, Hybrid

(K-Mean
Clustering
and DT)

NA
Real-time

Simulation
Dataset

WH C++ DR

The proposed K-Mean Clustering and DT models obtain the best result in DR, while the hybrid (K-Mean
Clustering and DT) approach gains the lowest FPR compared to the K-Mean Clustering and DT models.
However, the proposed approach targeted only one attack, and the result of the other evaluation metrics
was missing. Furthermore, no further information about the features linked to the detected attacks is
available.

[44], (2019) All features
used

Self-
Organizing
Map (SOM)

6 Synthetic
Dataset

HF, SH,
VN

Contiki
(Cooja

simulator),
Python,

Wireshark

Number of
Broadcast
Messages,

PRC, U-Matrix

The proposed SOM model classified the datasets’ samples effectively. However, the authors did not
provide information about the collected dataset. Furthermore, the critical performance metrics, such as
AC, Precision, TPR, and others, are not analyzed. Moreover, the proposed mechanism is not suitable for
constrained devices.

[45], (2019) NA MLP-based
ANN NA

Real-time
Simulation

Dataset

DIS
Flooding,

VN

Contiki
(Cooja

simulator),
Wireshark,

Weka

AC, TPR, FPR,
Precision,

Recall,
F-Measure,
MCC, ROC
Area, PRC

Area

The proposed ANNIDS approach achieved the highest TPR, Precision, Recall, and F-Measure results
and detected the DIS and VN attacks accurately. However, the authors did not mention the dataset and
selected features used. Furthermore, no explanation of the produced outcomes and deployment strategy
is available. Lastly, the proposed model is not suitable for constrained devices.

[46], (2019) All features
used

Ensemble
classifiers
(Boosted

Trees,
Bagged
Trees,

Subspace
Discrimi-

nant,
RUSBoosted

Trees)

20
RPL-

NIDDS2017
Dataset

SH, BH,
Sybil, CID,

SF, HF,
Local

Repair

MATLAB
(2017),
Python

AC, AUC

The proposed ensemble model (Boosted Tree) achieves the best result for AC in the case of hold-out
and cross-validation. In addition, the ensemble (RUS Boosted) model gains the highest result of AUC.
However, there is no evaluation result for the other metrics and no comparison with the other traditional
classifiers. The authors also do not provide information about the deployment strategy.

[47], (2019) Pairwise
Correlation

RF, NB, J48
Classifier 21 Synthetic

Dataset
HF, DIS

Flooding,
IV, DRA

Python,
Contiki
(Cooja

Simulator)

AC, Recall,
Precision

The proposed framework reported that the RF classifier achieves the highest processing time, AC, Re-
call, and Precision results. In addition, the author clarified that the dimensional reduction technique
significantly reduced energy consumption and processing time. However, the other evaluation metrics,
such as packet loss and energy consumption, are not covered. Furthermore, the authors used a small
number of network nodes and no further information about the availability of the generated multi-class
dataset.

[48], (2019) All features
used GP 50 Synthetic

Dataset HF, VN
Contiki
(Cooja

simulator)
TPR, FPR, AC

The proposed central architecture obtained the best AC result during 500 ms and 5000 ms. Moreover,
the authors reported that the distributed architecture achieves high AC results with the help of network
nodes. However, the proposed approach suffered from a single point of failure and used the network
nodes for monitoring, adding more computational overhead and consuming the power resources. Fur-
thermore, the proposed work does not provide information about the collected dataset.

[49], (2019) All features
used

NB, DT, LR,
ANNs, EM
Clustering

20, 23,
49, 41

NIDDS2017,
WSN-DS,

UNSW
NB15,

KDD99

SH, BH,
HF, CID,

Local
Repair,

Sybil, SF

MATLAB
(R2017a),

Weka
Software

(version 3.9)

AC, FPR

The proposed DT model achieved the best result of AC and FPR. In addition, EM Clustering registered
the lowest result of AC. However, the authors did not use feature selection techniques and did not
consider other vital analysis parameters like PDR, PRC, E2E Delay, etc. Furthermore, the deployment
strategy for the proposed work was missing.
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Table 2. Cont.

Ref./Year A1 A2 A3 A4 A5 A6 A7 Advantages and Limitations

[50], (2019) NA K-NN NA NA Rank
Contiki
(Cooja

simulator)

E2E Delay,
PDR, TPR, FPR

The proposed mechanism results obtained significant reports that PDR and TPR improved after deploy-
ing the proposed mechanism compared to regular networks under Rank attack. Meanwhile, the results
of the E2E delay and FPR declined after the proposed mechanism was spread throughout the network.
However, the authors considered only one type of attack and ignored others. Furthermore, the proposed
mechanism uses one metric (i.e., rank) to calculate the distance between static nodes and does not con-
sider the mobility of other nodes. Meanwhile, the nodes participate in the detection process, creating
additional overhead in the network.

[51], (2019) NA
Kernel
Density

Estimation
NA

Real-
time

Simula-
tion

Dataset

HF, VN, BH

Contiki O.S.
(Cooja

simulator),
Python

TPP, FPR, UDP
Flow

The proposed approach achieved a significant average TPR result of detecting all types of attacks with
different topologies. However, the result of the critical parameters, such as accuracy, precision, PDR,
and E2E Delay, is not analyzed. Furthermore, the authors did not give details about the availability of
the collected dataset, and the extracted features are not sufficient to detect other types of attacks.

[24], (2020) All features used FFNN 14 Synthetic
Dataset WP

Contiki
(Cooja

simulator)

AC, Precision,
Recall,

F-Measure,
PRC

The devised FNN model achieved a significant result in terms of Accuracy Precision, Recall, and F-
Score. Furthermore, the presented work identified the zone that launches the attack. However, the
authors used few nodes, and their approach is limited to detecting one type of attack. Furthermore, no
details were available about the availability of the dataset and the type of deployment strategy.

[3], (2020) NA Neural
Network 27 Synthetic

Dataset WP, HF, VN
Contiki
(Cooja

simulator)
AC, DR, FPR

The proposed approach reported high results for detecting invoking attacks for binary and multi-class
classification. In addition, the produced link-layer features decreased the FPR and slightly increased the
DR of the VN attack. However, the authors used few nodes during the simulation and no details about
the availability of the dataset. Moreover, other critical parameters, such as PDR, E2E delay, and PRC,
are not available. Additionally, the deployment strategy for this work has not been provided.

[52], (2020) GP Threshold
Statements 53 Synthetic

Dataset
HF, VN, SH,

BH

Contiki
(Cooja

simulator)

AC, TPR, FPR,
PDR

The presented framework revealed the best results from HF and VN attacks during the 2000 seconds.
Meanwhile, the highest AC result for detecting SH and BH attacks was obtained at 1000 s. Furthermore,
the results of PDR and TPR have improved. However, when the number of network nodes raised, the
PDR declined, which led to inaccurate detection of the attack. Moreover, the authors evaluated their
work with small numbers of network nodes. Additionally, no details were available on the deployment
strategy of the presented work.

[10], (2020) NA
DT, SVM,
Bernoulli
and LR

5 Synthetic
Dataset VN

Contiki
(Cooja

simulator)

AC, Precision,
Recall,

Specificity

The introduced framework reported significant AC, Precision, Recall, and Specificity outcomes. How-
ever, there is no evaluation of the other critical metrics, such as PDR, PRC, and E2E delay. Furthermore,
this work is limited to only one attack.

[21], (2020) NA

Artificial
Intelligence-

based
Packet Drop

Ratio

NA

Real-
time

Simula-
tion

Dataset

SF
Contiki
(Cooja

simulator)

PDR, E2E
Delay, DR

The proposed technique obtained significant results in terms of TPR and FPR. After implementing the
proposed approach in the network, the result of the E2E delay improved. However, the proposed mech-
anism failed to improve the PDR. Furthermore, the proposed approach addressed one type of attack
with small numbers of networks nodes.

[53], (2020) NA One-Class
SVM NA

Real-
time

Simula-
tion

Dataset

Rank
Contiki
(Cooja

simulator)

PRC, Anomaly
DR

The proposed ML approach reported good results in terms of anomaly detection rate. However, this
work deals with one type of attack, and the presented work employs a small number of nodes. Further-
more, the outcomes of the other metrics, such as PDR, E2E delay, and PLR, are not computed.

[54], (2020) NA DT 11 Synthetic
Dataset HF, VN

Contiki
(Cooja

simulator),
Python,

Wireshark

PRC, Precision,
Recall, AC,

FPR

The presented work obtained promising results for AC and FAR. However, this work targeted only one
type of attack, with no details about the other critical evaluation parameters, such as packet loss and
E2E delay. Furthermore, the presented analysis factors cannot detect other types of attacks. Moreover,
the proposed work suffers from high PRC.
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Table 2. Cont.

Ref./Year A1 A2 A3 A4 A5 A6 A7 Advantage(s) and Limitation(s)

[55], (2020) GP
DT, SVM,
Bayesian

Classifiers
5 Synthetic

Dataset SH

Contiki
(Cooja

simulator),
RapidMiner

DR, FPR

The proposed Bayesian model achieved the highest DR after applying the alarm verification method.
Meanwhile, the DT classifier reported the highest level of Precision compared to the others. However,
the proposed approach suffers from high FPR, and no further information about the deployment strat-
egy is available. Moreover, the proposed work is limited to detecting only one type of attack.

[56], (2021) NA ANN 23,22,
32,28

Synthetic
Dataset HF, DRA, IV

Contiki
(Cooja

simulator),
Python,

Wireshark

PRC, Number
of Packets, AC,

Recall,
Precision F-
Score, MCC

The introduced AIEMIA approach reached the maximum result of AC using the hold-out validation
technique. The authors reported good outcomes for the other performance measures such as PRC, Num-
ber of Packets, etc. However, no information about the collected features is available. Furthermore, the
author used a small network size for the dataset collection.

[57], (2021) Information
Gain Algorithm ANN 8 IRAD

Dataset
VN, DRA,

HF NA
AC, Loss,
Precision,
Recall, F1-

Score, Support

The proposed MLRPL model attained high AC and other evaluation metrics in binary and multi-class
results. In addition, the performance of the proposed approach exceeds other existing approaches. How-
ever, the proposed model takes a long training time to achieve the best result. Furthermore, the authors
did not provide details about the deployment strategy for the network and the software specifications.

[31], (2021) Step Forward
Feature Selection

Gradient
Boosting ML 11 Synthetic

Dataset VN

Contiki
(Cooja

simulator),
Python,

Wireshark

AC, FPR, TNR,
Precision,
Recall, F1-

Score, ROC

The devised ML-LGBM model achieved high AC, Precision, F-Score, TNR, and FNR. In addition, the
presented work exceeded the approaches in terms of training time, testing time, model size, and other
metrics. However, only one type of attack is detectable in this work, and no details are available on
the generated dataset’s availability. Additionally, the authors used small network nodes during the
dataset’s generation process.

[59], (2021)
Principle

Component
Analysis

SVM NA

Real-
time

Simula-
tion

Dataset

VN, Rank,
DoS

Contiki
(Cooja

simulator),
Python

AC, Recall,
Precision, F

Measure, PDR,
Control

Overhead,
Energy

Consumption

The proposed MLRP model achieved significant results and improved the PDR of the base-RPL. The re-
sult also reported a high detection of targeted attacks with implementing the PCA technique. However,
despite the significance of PDR, the proposed approach suffers from low PDR, which requires more
improvement. Furthermore, there is no information about the dataset’s availability and the number of
selected features regarding the generated dataset. Moreover, the authors used few nodes during the
data generation stage.

[60], (2021) NA
Ant Colony
Optimisa-

tion
NA NA RPL Attacks NA

Throughput,
Number of

Packets,
Response Time

The proposed security mechanism improved the quality of service and routing process. Furthermore,
the presented work proves its efficiency in enhancing the throughput and number of packets compared
to the SecTrust-RPL approach. However, the authors did not specify the type of targeted attacks and the
programs used. Furthermore, there are no details about the deployment strategy.

[7], (2021) NA SVM NA
IDC and

EDC
Datasets

Heart,
Temperature

Level,
Flooding ,
VN, Rank

Contiki
(Cooja

simulator),
Python

Detection AC,
PRC

The introduced anomaly detection approach obtained high detection of e-health related data and net-
work attacks. In addition, the proposed approach provided low-cost management and accurate de-
cisions by utilizing a standard management program with reliable features. However, the proposed
approach identifies other attacks, such as Flooding and event attacks, with a low DR. Furthermore, the
authors did not present details about the feature selection technique and availability of the used dataset.

A1: Feature Selection Technique, A2: Classification/ Detection Mechanism(s), A3: No. of Features, A4: Dataset, A5: Relevant Attack(s), A6: Software/Tools, A7: Evaluation Metrics, NA:
Not Available, DT: Decision Tree, RF: Random Forest, NB: Naïve Bayes, GP: Genetic Programming, LR: Logistic Regression, ANN: Artificial Neural Network, SVM: Support Vector
Machine, FFNN: Feedforward Neural Network, K-NN: K-Nearest Neighbor, MLP: Multi-Layer Perceptron, SOM: Self Organizing Map, WH: WormHole, SH: SinkHole, BH: BlackHole,
CID: Clone ID, SF: Selective Forwarding, HF: Hello Flooding, IV: Increased Version, DRA: Decreased Rank, VN: Version Number, DoS: Denial of Service, WP: Worst Parent, DR: Detection
Rate, AC: Accuracy, AUC: Area Under Curve, TPR: True Positive Rate, FPR: False Positive Rate, E2E: End to End, PDR: Packet Delivery Ratio, FNR: False Negative Rate, TNR: True
Negative Rate, PRC: Power Consumption, EM: Expectation-Maximization, ROC: Receiver Operating Characteristic, MCC: Matthew’s Correlation Coefficient.
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Summary: Table 2 shows that some ML-based approaches select the optimum subset
of features to improve the detection accuracy, classify the network traffic into normal and ab-
normal behavior, or use ML algorithms for both purposes. However, several works did not
provide details about feature selection technique used in their
approach [3,8,10,21,45,50,51,53,54,56,60]. In addition, other studies, such
as [7,8,21,45,50,51,53,59,60,62], did not mention the number of features used or selected in
their approach. Moreover, two studies [57,60] did not disclose the type of program used
in the implementation step, and did not provide information about the dataset and the
feature selection technique used.

7.3. RQ3: What Are the Prevailing DL Approaches Contributed by Existing Studies to Detect
RPL-Based 6LoWPAN Attacks?

This section presents a comprehensive review of the studies based on the DL mecha-
nisms, as described in Section 7.1. In addition, we highlighted the essential findings from
each study, followed by a summarization table that underlines the essential parameters
while addressing the shortcomings of previous works. Then, we briefly review some of the
neglected aspects of contemporary DL approaches.

Yavuz et al. [58] developed a DL approach for detecting routing attacks in IoTs.
The proposed methodology has three stages: dataset simulation, feature preprocessing,
and DL stage. The work used a self-generated dataset known as IRAD, using the Cooja
simulator, and comprising three types of RPL routing attacks: HF, VN, and DRA. The
authors implement different scenarios for each type of attack during the first stage. For
example, the authors used various regular and malicious nodes in an HF attack and
replicated the same process for other attack scenarios. Then, in the second stage, the
authors employed different tools to aggregate and handle the collected information. The
authors also performed some preprocessing on the extracted features, using the window
size to calculate the values of the extracted features. Eventually, there were 18 extracted
features, including packet features, control messages features, and new lists of features
extracted from some mathematical calculation based on a specified time frame. The authors
then used three feature selection methods, DT, Pearson coefficient, and histogram, to select
important features. Next, the selected features are fed into the final stage for attack detection
using a DL algorithm. A Multi-Layer Perceptron (MLP) classifier identifies normal and
malicious behavior using different activation functions. For building the DL model, the
authors utilized the sequential model and employed Mean Square Error (MSE) for the loss
function. Furthermore, the authors selected the AdaDelta algorithm as the optimizer. The
experimental results show that the AC of the DL model is 99.5% through the use of the
Sigmoid function in the output layer. As for the proposed approach’s overall performance,
the F1-scores for the model are 94.7%, 99%, and 95% in detecting DRA, HF, and VN attacks,
respectively. Meanwhile, as for the AUC result, the model attained 94.2%, 98.1%, and 94.7%
in detecting DRA, HF, and VN attacks, respectively.

An anomaly-based intrusion detection model using the DL approach for detecting
malicious traffic in IoT networks was designed by [63]. The proposed approach sorts
the network traffic into sessions and inspects the characteristics of network activities to
identify five types of RPL attacks: BH, Opportunistic Service, DDoS, SH, and WH attacks.
To achieve that, the authors employed three phases in the detection process: a network
connection, anomaly detection, and mitigation. The first phase initialized and deployed
the required network channel to sniff the network traffic. Next, in the second phase, the
authors applied some processes, such as features extraction and transformation, to the data
packets before injecting them into the ML module. After that, the ML module trained the
data by employing a perceptual learning model known as a supervised ML algorithm.

Finally, the mitigation phase mitigates the identified attack and provides an adequate
response by utilizing the actuator and handler module. Furthermore, this work uses the
pre-trained layered Deep Belief Network (DBN) to develop the feed-forward Deep Neural
Network (DNN) model, which is considered faster than supervised learning. Moreover, re-
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garding the experimental result, the authors reported that the proposed approach obtained
a significant result of detecting all types of attacks, for instance, in a DDoS attacks scenario,
the proposed approach attained a Precision (96%) and Recall (98.7%) rate comparable to
the result of the work [64]. Furthermore, the proposed scheme attained a higher F1-score of
0.973. Additionally, the authors implemented their approach on the IoT testbed, and the
results revealed the Precision value (98.47%) and Recall value (97%) using actual sensors.

Kamel and Elhamayed [1] proposed a mitigation approach for minimizing the effect
of IoT routing attacks on PRC in the healthcare environment. The proposed work uses
a Convolution Neural Network (CNN) to discover five routing attacks: HF, SF, SH, WH,
and VN. The architecture of the proposed approach comprises three layers, the medical
data collection layer, the routing and network layer, and the medical application layer.
In addition, the authors utilized a real-time dataset generated using the Cooja simulator.
Finally, the Synthetic Minority Over-sampling TEchnique (SMOTE) was applied to deal
with unbalanced samples in the generated dataset.

The authors employed three feature selection methods during the preprocessing step:
weight by One Rule (One-R), chi-square, and weighted random Forest. Such methods are
also used to solve other issues, such as noise and over-fitting. Then, they implemented the
CNN model to identify suspicious behavior in network traffic. As for the experimental
result, the results show that the proposed approach attained 96.87%, 94.85%, 3.13%, 99.65%,
93.8%, 97.19%, and 0.325 for AC, Precision, Error Rate, Recall, Correlation, F-measure,
and Logistic Loss, respectively, for HF attacks. Overall, the proposed approach shows
significant outcomes in terms of AC, Precision, Correlation, Recall, Error Rate, and Logistic
Loss, leading to a reduction in PRC.

A DL approach for detecting Rank attack in RPL was introduced by [62]. The proposed
approach employs MLP for verifying and classifying the normal and suspicious behavior
of network traffic. In their work, the authors self-generated their dataset using the Cooja
simulator. Moreover, during the implementation of the RPL attack in the data collection
stage, the authors modified a set of parameters in the simulator’s configuration, such as
icmpv6 and dag rpl files. Such modifications are necessary to initialize the RPL attack. In
addition, the authors applied some preprocessing techniques, such as feature extraction,
binarization, normalization, and sampling, to obtain a readable data format that are useable
for training the MLP algorithm and testing the produced model.

Furthermore, throughout the creation of the MLP model, the authors used various
inputs and outputs from the dataset. Moreover, various functions and parameters were
used during the MLP implementations stage, such as ReLU being assigned as an activation
function. To evaluate the proposed approach, the authors split the dataset into 80% and
20% for the training and testing phases, respectively. Regarding the experimental result,
the proposed approach obtained 100% TPR and 24% FPR. Additionally, the model achieved
98%, 88%, and 92% for Precision, Recall, and F1-score, respectively, on the outcome of
macro-Avg and weighted-Avg. Similarly, in terms of AC, the proposed approach attained a
high performance of up to 96%.

Sahay et al. [65] developed a holistic framework to predict routing attacks in IoT-LLNs.
They used several DL tools, such as the Graph Convolution Neural Network (GCNN) and
Long Short-Term Memory (LSTM) model, to capture the spatial and temporal features
of the IoT-LNNs. Furthermore, the authors used the smart contract-fortified blockchain
technique to preserve the collected data from network nodes. Meanwhile, in the event of any
suspicious behavior identified, such as the change of node’s rank exceeding the assigned
threshold, the VN created by a non-sink node, and the number of DIS messages exceeding
the pre-defined threshold, the smart contract generates a warning impulse. Another role of
the smart contract is to obtain the required feature extraction and initialize the dataset and
data visualization tool. Finally, the FNN model utilized the output from LSTM, GCN, and
warning impulse from the blockchain-based smart contract for attack predictions.

The experimental results showed that the proposed framework achieved an AC of
94.50%, 86.13%, 82.46%, and 91.88% in predicting the normal scenarios, topological attacks,
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resource attacks, and traffic attacks, respectively. In addition, the authors claimed that their
framework could detect and identify various routing attacks.

Molina et al. [5] introduced a DNN approach for detecting CID attacks in RPL net-
works. They used the Cooja simulator to implement CID attacks and three types of
topological structures with a different number of normal and malicious nodes to build
a dataset. The workflow of the proposed approach has three stages: data preprocessing,
unsupervised pre-training, and supervised classification. The first stage comprises dataset
balancing, value transformation, and scaling steps.

Regarding the implementation flow of the proposed approach, Firstly, the authors
applied a Random Over-Sampling (ROS) technique to handle the dataset balancing, then
implemented the One-Hot Encoding technique through the value transformation step to
convert the feature format into a proper shape. After that, the standard scaling method was
used during the scaling step. Later on, the authors implemented an autoencoder-based
unsupervised algorithm to pre-train the second-stage model. Then, the DNN was used
in the last stage to classify and identify normal and suspicious behaviors. Table 3 shows
the summary of the existing DL approaches with their critical parameters, features, and
advantages and limitations.

Summary: Table 3 clearly shows that most researchers employed synthetic datasets to
evaluate their approaches and used Contiki (Cooja simulator) to simulate their experiments.
Furthermore, it could be observed that there is a lack in the information provided in the
reviewed studies, such as [65], where the authors did not disclose the feature selection
techniques used in their works. In addition, [62] did not clarify the number of features used
in their solution. Meanwhile, [58] generated a new dataset and publicly published it for the
other researchers. Finally, [63] did not disclose the used dataset in their work.

7.4. RQ4: What State-of-the-Arts Combined ML and DL Approaches Have Been Used to Detect
Attacks in RPL-Based 6LoWPAN?

This section thoroughly discusses the literature based on the combined ML and DL
studies, as described in Section 7.1. Additionally, we highlight the essential findings from
each study. After that, we provide a summary table that highlights the critical points while
resolving the inadequacies of prior works. Finally, we provide a brief overview of some
neglected characteristics of the presented combined approaches.

Cakir et al. [30] proposed a DL approach for detecting and preventing HF attacks
in RPL. In this work, the authors implemented a Gated Recurrent Unit (GRU) network
with Recurrent Neural Network (RNN) to identify legitimate and malicious nodes. The
methodology of the proposed model comprises three steps: network simulation, data
preprocessing, and attack detection. In the network simulation step, the authors carried out
three scenarios with different legitimate and malicious node combinations. The authors
also computed each node’s PRC parameters for later use as features to detect the attacks in
the detection step.

For preventing HF attacks, the authors designed a set of rules that depends on the Rx
power value of the network nodes. In particular, the maximum and minimum Rx values of
legitimate node(s) are used to identify malicious nodes. As a result, the proposed model
achieved the highest AC values of 99.96% and 99.90% in the third scenario, using five and
four features set, respectively. Furthermore, the authors attained the best outcomes (lowest
value is best) for ACC, MSE, and MAC at 0.01, 0.05, and 0.05, respectively, in the third
scenario with four sets of dataset features.
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Table 3. Summary of deep learning-based approaches.

Ref./Year A1 A2 A3 A4 A5 A6 A7 Advantages and Limitations

[58], (2018)
DT, Pearson
Coefficient,
Histogram

MLP-based
ANN 17 IRAD

Dataset
HF, VN,

DRA

Contiki
(Cooja

simulator),
Python,

Wireshark

Precision,
Recall, F1 Score,
AUC, Loss, AC

The proposed DL model obtained the highest results in identifying HF attacks. The presented approach
detects the other attacks significantly. In addition, this work provides a comprehensive analysis of the pro-
posed dataset and different scenarios for each type of attack with diverse sizes of networks. However, the
analysis of other critical parameters, such as PDR, E2E delay, and PRC, has not been provided. Further-
more, no information about the deployment strategy is available. Additionally, the proposed approach is
not suitable for dynamic network traffic.

[63], (2017) Perceptual
Learning Model DNN, DBN 8 NA

BH, Oppor-
tunistic
Service,

DDoS, SH,
WH

Contiki
(Cooja

simulator),
Python

Precision, TPR,
F1-Score, P-R

Curves

The presented mechanism achieved a significant attack detection result and a good Precision outcome. How-
ever, they did not cover other critical parameters, such as PDR, E2E delay, and PRC. Furthermore, the authors
did not provide details about the used dataset and selected features.

[1], (2020)
One-R,

Chi-Square,
Weighted RF

CNN 15
IoT

Routing
Dataset

HF, SF, SH,
WH, VN

Contiki
(Cooja

simulator),
RapidMiner

Model
Accuracy, Loss
Function, AC,

Error, Precision,
Recall,

F-measure,
Correlation,

Logistic Loss

The proposed model achieved a significant result for detecting attacks with low error and loss rates. Further-
more, the proposed CNN model reduced the PRC and maintained the stability of the IoT network. However,
it required an extended processing time to reach its best result and failed to explain the deployment strategy.
Furthermore, the authors did not disclose the dataset and selected features used. Moreover, there are no
critical parameters, such as PDR, PRC, and E2E delay details.

[62], (2020) All features used MLP NA Synthetic
Dataset Rank

Contiki
(Cooja

simulator),
Wireshark

TPR, FPR,
macro AVG,

Weighted Avg,
AC, Precision,

Recall, F-scores

The presented MLP algorithm achieved a high AC result for different scenarios of attacks. Furthermore, the
result reported that this approach is capable of sorting and distinguishing various kinds of attacks. How-
ever, despite all these benefits, no details about the used features or availability of the generated dataset are
available.

[65], (2021) NA LSTM,
Graph CNN 7 Synthetic

Dataset DRA, IR, WP

Contiki
(Cooja

simulator),
Ethereum

Client (Geth)

Time of Arrival,
AC, Precision,

Recall, F1-Score,
Model

Probabilities

The designed DL framework achieved a high result of accuracy for different scenarios. Furthermore, the
result reported that this approach is capable of sorting and distinguishing between various kinds of attacks.
However, the proposed framework is not suitable for low-power devices and creates additional overhead
on the network. Additionally, the authors did not provide details about the deployment strategy, and no
information is available on other critical parameters, such as PDR, E2E delay, and PRC.

[5], (2021) All features used
Auto

Encoder and
DNN

19 Synthetic
Dataset CID

Contiki
(Cooja

simulator),
Wireshark

AC, F-Score,
Total time

The introduced (SAE + DNN) framework provided high detection accuracy in detecting CID attacks. In
addition, the authors compared their work with other existing approaches and exceeded them in terms of
effectiveness. However, the proposed work is limited to detecting only one type of attack, and there was no
information about the availability of the dataset. Moreover, the author used a small number of nodes during
the data collection step. Finally, no analysis of the other critical parameters, such as PDR, E2E delay, and
PRC, are available.

A1: Feature Selection Technique, A2: Classification/ Detection Mechanism(s), A3: No. of Features, A4: Dataset, A5: Relevant Attack(s), A6: Software/Tools, A7: Evaluation Metrics,
NA: Not Available, HF: Hello Flooding, VN: Version Number, CID: Clone ID, DRA: Decreased Rank, SH: SinkHole, BH: BlackHole, DDoS: Distributed Denial of Service, WH: WormHole,
WP: Worst Parent, IR: Increased Rank, SF: Selective Forwarding, DT: Decision Tree, MLP: Multi-Layer Perceptron, DL: Deep Learning, DBN: Deep Belief Network, SAE: Sparse Auto
Encoding, DNN: Deep Neural Network, ANN: Artificial Neural Network, CNN: Convolutional Neural Network, One-R: One Rule, RF: Random Forest, LSTM: Long Short-Term
Memory, AUC: Area Under Curve, AC: Accuracy, DR: Detection Rate, PRC: Power Consumption, TPR: True Positive Rate, FPR: False Positive Rate, E2E: End to End.
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In [66], the authors presented an ML approach for detecting attacks in RPL-based IoTs.
The proposed approach is designed to detect a combination of various RPL attacks, such
as Rank and VN attack, Rank and Sybil attack, Rank and BH attack, and Decreased Path
Metric attack. The authors evaluated the vulnerability of the most popular RPL’s Objective
functions (MRHOF and OF0) against invoked attacks in their work. In addition, the authors
performed data preprocessing, feature selection and reduction, sampling technique, and
normalization, which are essential to getting the best attack detection result. Moreover,
the authors initialized their proposed dataset based on IoTs features and network metrics
to test the performance of the proposed approach. The generated dataset comprises 24
features collected based on network and power metrics. Furthermore, the authors used
several classification algorithms, such as NB, SVMs, MLP, RF, and ZeroR classifiers.

Regarding the simulation scenarios, the authors ran seven experiments. Some experi-
ments were performed using a complete set of features, while the rest used an optimal set
of features.

As for the results, the SMOTE-MLP and Subsample-NB obtained the best results
compared to other classifiers in the first experiment. Moreover, from the second to the
fifth experiment, the SMOTE-MLP reported superior results compared to the others. Ad-
ditionally, in the sixth experiment, the ensemble model (Voting-MLP and RF) acquired
the top results in RSME, Mean Absolute Percentage Error (MAPE), ROC average, and
correctly classified instances compared to the other models. Moreover, the seventh and
eighth experiments, the MLP network and MLP network metrics produced the best results
when using the OF0 type. Finally, the overall performance of the ML algorithms shows
that the voting (MLP and RF) classifiers gained excellent outcomes compared to other
ML algorithms.

The authors in [67] introduced ML and DL techniques to identify an optimal subset
of features for identifying routing attacks in RPL based IoT networks. The architecture of
the proposed approach encompasses several stages. First, the authors generated an IoT
routing dataset using the Cooja IoT simulator. Then, in the second stage, the preprocessing
technique was applied to prepare the collected data; additionally, in this stage, the SMOTE
was employed to solve the balancing issues of abnormal samples. Furthermore, the authors
divided the dataset into four blocks randomly. In addition, for the feature selection stage,
the Cuckoo Search (CS) meta-heuristic algorithm is employed to select the optimal features.
Moreover, in this work, the Dagging meta classifier is applied to enhance the performance
rate of the base learner Bayesian Logistic Regression (BLR) by minimizing the over-fitting
problem. Additionally, the modified version of the CS algorithm was carried out using
BLR-based Dagging, which is better than the original CS algorithm in terms of speed,
convergence rate, and iteration number. Lastly, the authors utilized SVM, CNN, and Fuzzy
Unordered Rule Induction Algorithm (FURIA) in the classification stage.

Regarding the implementation of the presented work, the authors conducted two
experiments. The first experiment examined the impact of Dagging on the original CS
algorithm and BLR, and the second experiment inspected the performance of the standard
CS algorithm with BLR only. Meanwhile, after implementing the designed scenarios, the
authors obtained 12 features from the first experiment and 15 from the second. Additionally,
the outcomes revealed that employing BLR-based Dagging improves the original CS
algorithm’s speed and enhances the performance of BLR.

As for the result, the first experiment showed that the CNN model attained the best
results of 98.57%, 1.43%, and 98.32% for AC, Error, and F-measure, respectively. Moreover,
the results of the second experiment exhibited that the CNN also obtained the highest
values, 92.57%, 7.43%, and 90.4% for AC, Error, and F-measure, respectively. The results
showed that the first experiments’ outcomes were better in AC, Error, and F-measure than
the second.

Bokka and Sadasivam [32] proposed ML techniques for detecting routing attacks
in RPL-based IoT networks. The authors utilized a synthetic dataset generated using
the NetSim simulator in their work. The collected network’s traffic includes normal and
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malicious behaviors. In addition, the authors implemented seven types of RPL attacks, SH,
DIO Suppression, BH, SF, Sybil, and DIS Flooding attacks. Moreover, the gathered datasets
contain 21 attributes and two labels reserved for normal and attack classes. The architecture
of this work comprises several modules, such as data collection, feature selection, data
preprocessing, data splitting, and ML classification algorithms.

The implementation flow of the proposed approach starts by collecting network traffic
and then employing the feature extraction step. After that, the authors employ a random
forest algorithm to reduce the datasets’ features and select the most powerful ones. Later,
the preprocessing techniques, such as cleaning, encoding, and scaling, are applied to the
selected features. Finally, the selected features are evaluated using seven kinds of ML
classifiers, such as MLP, KNN, AdaBoost (AdB), RF, Gaussian Naive Bayes (GNB), DT,
and LR.

As for the experimental results, the authors reported that the DT classifier obtained
the best AC, Precision, and F1-score, i.e., 92.6%, 0.946, and 0.955, respectively, for 10% test
data hold-out. On the other hand, the LR, GNB, and MLP achieve the best result of 1.00 for
all cases regarding the Recall value. Moreover, the RF classifier gains the best AUC of 0.946
in the case of 20% hold-out data. In contrast, the GNB classifier attains a low AUC value of
0.623 during the 10% hold-out dataset among other classifiers.

Medjek et al. [35] developed a fault-tolerant AI-based IDS for detecting routing attacks
in RPL-based IoT networks. The authors targeted six different types of RPL attacks: DRA,
BH, SH, HF, SF, and VN attacks. In addition, the authors used the Cooja simulator to
generate two types of datasets, two-class (normal with attack) and multi-class (normal with
six attacks). Moreover, the authors obtained the configuration settings used in [58] to set
up their simulation environment for the data collection process. The architecture of the
proposed approach consists of several modules, such as data collection, feature engineering,
selection, and classification.

As for the feature selection process, the authors combined two types of embedded
methods: RF and a filter method, Pearson Correlation (PC). Then, they selected the top
10 most essential features produced by RF. On the other hand, the authors applied the
correlation matrix using the PC method, and the authors defined a threshold value of
0.3 for the correlation. Consequently, the features that achieve the defined value will be
selected. Afterward, the authors employed an intersection step to produce a new subset of
features. Concerning the classification stage, the authors used six types of ML classifiers:
DT, RF, KNN, NB, MLP, and LR. Moreover, the authors also used the Sequential DL model
to evaluate their approach.

As for the experimental result of the proposed approach, the KNN, RF, and DT
classifiers performed the best for all metrics compared to the other classifiers. Furthermore,
the DT, RF, and KNN gained more than 99% classification AC for both class types (binary
and multi-class). Moreover, in multi-class classification, the results reveal that KNN obtains
an AC and DR of 99% and 98%, respectively. Furthermore, the RF and DT gained 98%
of AC and DR. Consequently, based on the attained result, the authors conclude that the
RF model is best in performance and fitting time, making it the most suited for intrusion
detection in RPL-based networks. Finally, the authors produced an RF-based IDS approach,
introducing fault tolerance and intrusion tolerance for detecting attacks in RPL-based
Industry 4.0 networks using an RF classifier.

Lastly, a study by [68] introduced an ML approach based-IDS for detecting RPL attacks.
The architecture of the proposed work is based on hybrid IDS, which combines anomaly-
based and signature-based IDS. In addition, the 6LoWPAN compression header is used
in this work to study and observe the form used during routing attacks. Furthermore,
the obtained rule or signature from the ML algorithm will be injected into the border
router. Moreover, this work implemented different types of RPL routing attacks, such as HF,
WH, and SH attacks. The methodology of the proposed approach comprises three stages:
6LoWPAN network traffic, data preprocessing, and data classification. First, the authors
generate a dataset using the simulation environment for different scenarios of RPL routing
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attacks. Then, the authors applied some preprocessing and analysis on the collected data to
extract the features from network traffic.

Such features include 24 features representing regular and attack node traffic charac-
teristics. After that, the authors applied some techniques to extract the relevant features
that contribute to the detection of RPL attacks. Moreover, the authors use a Particle Swarm
Optimization (PSO) algorithm, a type of bio-inspired optimization algorithm. Such an
algorithm is used to optimize the optimum parameter of classification algorithms that are
used in stage 3. The optimization step plays a vital role in obtaining the best performance
of ML classifiers, which enhances their efficiency in differentiating between normal and
suspicious samples of the proposed dataset features.

As for stage 3, the authors use several classification algorithms, such as NB, SVM, RF,
KNN, and a False MLP, to classify the normal and malicious behavior. The experimental
results show that the RF attained the best result in detecting all kinds of attacks compared
to the other algorithms. Table 4 summarizes the existing combined ML and DL approaches
with their significant parameters along with advantages and limitations.

Summary: Based on our analysis of the studies presented in this section, we discovered
that two studies, [30,66], did not provide details about the feature selection technique used.
Furthermore, it is evident that all studies used synthetic datasets to test their experiments,
except for one [67], which used the IoT Routing Dataset.

7.5. RQ5: What Are the Recent Applications Based on ML and DL Approaches Proposed for
Detecting Attacks in RPL-Based 6LoWPAN?

This section presents the most recent applications based on ML and DL approaches
proposed for detecting attacks in RPL networks.

Using ML methods, Zahra et al. [69] proposed a framework for detecting routing
attacks in the RPL network—specifically Rank and WH attacks—using three modules:
profiling, model building, and model testing. The first module investigates the factors and
parameters of Rank and WH attacks and identifies the differences between those factors to
detect each type of attack. Furthermore, the parameters of Rank and WH are assigned to
be used later in building an effective and high-performance detection model. At the same
time, the second module selects an appropriate set of ML algorithms to detect the attacks
accurately. Then, various ML algorithms are evaluated using the predefined parameters of
Rank and WH attacks, and the best ones are selected to be a part of the detection model.
After that, the selected algorithm is used to build and train the detection model. The last
module tests the performance of the proposed model in detecting Rank and WH attacks,
then finally analyzes the results.

Another work by Zahra et al. [70] extended their previous work [69] by introducing
a mitigating approach. The authors used a similar methodology to their previous work
to design the attack detection model. In addition, the obtained results from the detection
model were stored in an index for further analysis and used to initialize the mitigation
scheme. Unfortunately, the authors failed to provide more detailed information about the
mitigation scheme. Finally, the authors proposed SVM, an ML model for attack prediction.

An ML approach based on the SVM classifier to detect DoS attacks in IoT was proposed
in [71]. The proposed architecture designed a real-time data collection tool to monitor
the network behavior and collect IoT network datasets. The workflow of the proposed
architecture contains three models: Data Collection Model (DCM), Detection Model (DM),
and Classification Model (CM). The DCM is designed to work with any IoT protocol type
and collects IoT communication data from three layers—physical, network, and application
layer features.
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Table 4. Summary of combined ML- and DL-based approaches.

Ref./Year A1 A2 A3 A4 A5 A6 A7 Advantages and Limitations

[30], (2020) NA RNN, SVM,
LR 5 Synthetic

Dataset HF

Contiki
(Cooja

simulator),
Python

PDR, ERC,
Average Delay,

AC, MSE, MAE,
RMSE

The proposed hybrid model achieved significant PDR and average delay for attack identification with a
different set of features. In addition, the best result for RMSE, MSE, MAE, and AC is obtained in the third
scenario. Furthermore, the GRU attains the best result for AC compared to SVM and LR in most cases.
However, the presented work targeted only one type of attack. Furthermore, the presented work was tested
with a few nodes during data collection steps and suffered from scalability issues when the number of nodes
was raised. Moreover, this work lacked information about the availability of the used dataset and the used
feature selection technique.

[66], (2020) NA
NB, SVM,
MLP, RF,

ZeroR
24 Synthetic

Dataset

Rank, VN,
Rank + Sybil,
Rank + BH,
Decreased

Path Metric

Contiki
(Cooja

simulator),
Weka

RMSE, MAPE,
ROC Average,

Correctly
Classified
Instances,
Balancing
Technique
Average

The presented approach significantly detected the invoked attacks in both objective functions (OF0 and
MRHOF). In addition, the overall performance of the presented approach reported that the voting (MLP
and RF) achieved excellent results compared to other approaches. Furthermore, the SMOTE-MLP model
achieved good results in some experiments. However, the devised work could not analyze other critical
parameters, such as AC, Precision, Recall, PDR, E2E delay, and PRC. Furthermore, there was no information
about the deployment strategy of the presented work and the availability of the generated dataset.

[67], (2020) CS + Dagging +
base learner BLR

SVM, DL,
Fuzzy

Unordered
Rule

Induction
Algorithm

12, 15
IoT

Routing
Dataset

IoT Routing

Contiki
(Cooja

simulator),
Weka

AC, Error,
F-Measure

This study reported that the AC, Error, and f-Measure of (CS algorithm using Dagging with BLR) model is
better than the CS algorithm with BLR model. In addition, the CNN model achieved better results in all
metrics measured than other classification algorithms. However, the presented approach did not provide
information about the availability of the dataset and the deployment strategy. Furthermore, the study did
not analyze other critical metrics, such as PDR and E2E delay. Furthermore, the authors did not identify the
type of targeted attack in this work.

[32], (2021) RF
MLP, KNN,
AdaBoost,

RF, GNB, LR,
DT

21 Synthetic
Dataset

SH, DIO
Suppression,
BH, SF, Sybil,
DIS Flooding

NetSim,
Python

AC, Precision,
Recall, AUC,

ROC, F1-Score

The proposed DT achieved the best AC, Precision, and F-Score results. In addition, the LR, GNB, and MLP
achieved the highest results in Recall value, and the RF model achieved the best result in AUC. However,
the authors did not introduce analysis in terms of PDR, E2E delay, and PRC. Furthermore, there was no
information about the availability of the dataset nor details about the deployment strategy. Moreover, the
proposed ML algorithms create additional overhead, and then they are not suitable for constrained devices.

[35], (2021) RF, PC

DT, RF,
K-NN, NB,
MLP, LR,

Sequential
DL model

7, 10, 7,
10, 6, 7,

13
Synthetic
Dataset

DRA, BH,
SH, HF, SF,

VN

Contiki
(Cooja

simulator),
Python,

Wireshark

AC, Precision,
Recall, F1-Score,

Fitting Time

The proposed model achieved significant results in all the used metrics for detecting the attack in both two-
class and multi-class classifications. In addition, the RF classifier achieved the lowest fitting time. Further-
more, the presented work introduced the RF-IDSR approach, which provides fault tolerance and intrusion
tolerance in Industry 4.0 networks. However, no information about the availability of the dataset and the
deployment strategy is available. Furthermore, there was no analysis of the other critical metrics, such as
PDR, PRC, and E2E delay.

[68], (2021) PSO
NB, SVM, RF,
K-NN, False

MLP
15 Synthetic

Dataset HF, WH, SH

Contiki
(Cooja

simulator),
Python,

Wireshark

AC, Precision,
Recall, TPR,

FPR

The RF algorithm achieved the best result in detecting the invoked attacks. However, the proposed approach
did not provide information about the deployment strategy or details about the generated dataset’s avail-
ability. Moreover, the proposed technique added more computational overhead to the network, consuming
power resources. Furthermore, there was no analysis of the other crucial parameters, such as PDR, E2E delay,
and PRC.

A1: Feature Selection Technique, A2: Classification/ Detection Mechanism(s), A3: No. of Features, A4: Dataset, A5: Relevant Attack(s), A6: Software/Tools, A7: Evaluation Metrics,
NA: Not Available, CS: Cuckoo Search, DT: Decision Tree, BLR: Bayesian Logistic Regression, RF: Random Forest, CNN: Convolutional Neural Network, RNN: Recurrent Neural
Network, LR: Logistic Regression, SVM: Support Vector Machine, DL: Deep Learning, MLP: Multi-Layer Perceptron, NB: Naïve Bayes, K-NN: K-Nearest Neighbor, PSO: Particle Swarm
Optimization, PC: Pearson Correlation, SMOTE: Synthetic Minority Oversampling Technique, PDR: Packet Delivery Ratio, AC: Accuracy, MSE: Mean Square Error, MAE: Mean Absolute
Error, RMSE: Root Mean Square Error, TPR: True Positive Rate, FPR: False Positive Rate, GNB: Gaussian Naïve Bayes, AUC: Area Under Curve, ROC: Receiver Operating Characteristic,
MAPE: Mean Absolute Percentage Error, E2E: End to End, ERC: Energy Consumption, PRC: Power Consumption, HF: Hello Flooding, VN: Version Number, BH: BlackHole, SH: SinkHole,
SF: Selective Forwarding, DRA: Decreased Rank, WH: WormHole.
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The physical layer contains features related to detecting jamming attacks that target
this layer. Next, the features at the network layer are crucial for detecting many prevalent
attacks, for instance, BH and DRA attacks. Finally, the application layer’s features are
related to some applications, such as humidity, temperature, and node power level.

The detection process of the attacks begins with DCM. Then, the generated dataset
from the DCM will be utilized for training and testing the proposed ML algorithm. Fur-
thermore, the DCM includes a two-stage scenario. The first stage constructs the ML model
according to the collected dataset, and the second stage embeds the predicted model. As for
the deployment of the proposed approach, the authors implemented a scenario in the Cooja
simulator, where the system comprises two types of IDS nodes: IDS agent and backbone
(6BR router) IDS. First, they deployed the IDS agent to sniff and monitor network traffic. At
the same time, they installed other IDS nodes in the 6BR router to make the final decision
and send orders to the network nodes if any suspicious behavior is detected.

Al-Hadhrami and Hussain [72] introduced a framework to build a real-time dataset
comprising three known RPL attacks: Flooding, SH, and BH attacks. The authors proposed
a queuing method for collecting the network traffic using several sniffing nodes deployed
in the network. In addition, the authors extracted the features from three different layers:
physical, network, and application layers.

The framework comprises four scenarios with the same topology. The first scenario
represents the normal network behavior without any attack. In contrast, the other three
scenarios contain normal and attack behavior. The dataset generation procedure com-
prises seven modules and units. The first unit focused on initializing the network and
setting up the attack scenarios. Throughout this module, the authors utilized industrial
IoT sensors that have constrained resources and communicate using IEEE802.15.4 and
6LoWPAN protocols.

Next, the traffic generation module used the simulation program, Cooja, to generate
the traffic. The sensor nodes are programmed to run humidity and temperature applica-
tions, enabling the capturing algorithm to collect application-layer features. Capturing data
from the network requires the authors to use props packets that are distributed equally
in the network. Such packets continuously monitor the network and send the gathered
data to the aggregation module. The data aggregation module accumulates the collected
data and checks for duplication in the information by inspecting each packet’s node ID
and timestamp. The aggregated data are forwarded to the queue system to check the time
window. The packets located in the same time window are sent to the feature extraction
unit. The feature extraction unit is also designed to take the packets from the queueing
system and extract the features. The authors extracted the features from three different IoT
layers in this work. The first vector of features includes physical layer features, such as
signal strength and transmission range. In comparison, the second feature’s vector involves
the network layer features, most of which are linked to network attacks. The last feature’s
vector contains application layer features related to humidity, temperature readings, and
node power level.

Another work proposed by Al-Hadhrami et al. [73] focused on building a Data
Exportation Framework (DEF) for IoT devices. The proposed approach aims to extend the
existing features of the Cooja simulator program by adding an extension to the current
Collect View plugin. The proposed DEF tool enables the simulation program to export the
data into different formats, such as CSV files or MySQL databases. The authors reverse-
engineered and modified the existing code of the Collect View plugin model to run the
DEF tool during the runtime.

The DEF framework comprises four modules: Data Handler Module (DHM), Data
Visualization Module (DVM), Database Management Module (DMM), and API Module
(APIM). The DHM is responsible for extracting collected data from each node and archiving
it as an ArrayList for presentation later in the table. The DVM operates as a database
interface for reading and writing into a database. Next, the APIM provides developers
with a simple API that includes database connection and data retrieval.
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As for the evaluation of the DEF framework, the authors implemented six scenarios,
three with the DEF tool and three without it. The result illustrated a slight increase in CPU
and memory utilization during the implementation of DEF scenarios, which caused a little
overhead on the resources.

Finally, Essop et al. [74] provided a dataset generation approach for anomaly-based
IDS in IoT and IIoT networks, using the Cooja simulator to generate comprehensive
IoT/IIoT datasets. The generated dataset from the simulated scenario captures information
from Contiki plugins, such as "powertrace", which contains features related to the energy
consumption of IIoT devices, such as CPU consumption and Low Power Mode (LPM). The
Contiki tool, known as "Radio messages", contains network traffic features employed in the
generation process of the IoT/IIoT dataset. In addition, the authors generated four datasets
in this work; two of them contain benign traffic, and the other two comprise malicious
traffic. In both benign and malicious scenarios, the authors generated the datasets from
"powertrace" and "Radio messages" separately. Moreover, in the malicious scenario, the
authors implemented UDP Flooding attacks. Furthermore, during the generation process,
the authors computed the total energy consumption of the nodes.

7.6. RQ6: What Are the Existing Threats in RPL-Based 6LoWPAN That the Existing Studies
Had Addressed?

To answer this question, we first classify the attacks using the same taxonomy as
shown in Figure 1; we provide a brief description of each type of attack. Then, we present a
visualization of the attack’s statistics in the existing studies, as discussed in Sections 7.2–7.4.
The following subsections illustrate the attacks according to their target.

7.6.1. Resource-Based Attacks

• Hello Flooding (HF) Attack: This attack aims to make the network services or re-
sources unavailable. The HF attack is carried out by constantly flooding the network
with many "Hello" packets to notify their one-hop neighbors of their presence. The
high transmission power of the malicious nodes will persuade all other nodes in the
network that it is their neighbor [49,54]. Meanwhile, the adjacent nodes will respond
to those messages. As a result, massive network traffic will be generated, resulting in
control overhead, service unavailability, instability, and node resource depletion [56].

• Increased Rank (IR) Attack: In the IR Attack scenario, a malicious node increases
its rank illegitimacy. Meanwhile, the malicious node announces itself near the root
node, but with a higher rank and worse path. Therefore, nodes in the malicious node’s
subtree and those in its proximity must choose other nodes as parents, leading to more
delay and disruption of the routing topology [14,65].

• Rank Attack: In a Rank attack, the attacker distributes the minimum rank r-value,
intending to become a parent node. In the RPL network, the parent node is chosen
based on the rank metric. Regularly, the nodes closest to the root node have the lowest
rank. Therefore, using a low-rank value, the rank attacker is chosen as a parent, and
the other nodes forwarded routing messages along the network’s attacking path. Thus,
it loads extra overhead and excessive energy dissipation at the nodes, resulting in
lower routing performance [59,75].

• Version Number (VN) Attack: In a VN attack scenario, the attackers target the global
repair feature of RPL by modifying the version number of the existing DODAG.
The root node is responsible for changing the version number in normal operation.
However, suppose the malicious node transmits a DIO message with a higher version
number. In that case, it forces the global repair mechanism to start and reconstruct
the DODAG, which will result in additional overhead and drain the nodes’ power
resources [14,51].

• Local Repair Attack: The rogue node increases its rank to infinity during the execution
process. It transmits this message to the entire network, compelling other legitimate
nodes to look for a new parent to reach the root (gateway) node. When this occurs
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frequently, network performance suffers, as the topology must be modified every time
the node changes [63].

• Increased Version (IV) Attack: In this attack, the fraudulent nodes purposefully
change the version number of the DIO control packet and send the altered DIO mes-
sage to their neighbors. When the neighbors receive the altered DIO message, they
demonstrate their exclusion from the new DODAG, resulting in the unnecessary re-
construction of already-available DODAG. Consequently, the frequent reconstruction
increases network traffic and causes an impact on critical network factors, such as
lifetime, availability, and energy efficiency [56,76].

• DIS Flooding Attack: This attack occurs when one or more malicious nodes periodi-
cally send DIS messages to neighboring nodes within their transmission range, and
upon receiving of DIS message, the trickle timers of the victim node(s) would reset,
and this process continues until the power resources of the victim node(s) depleted,
crashing the network [62].

• DDoS Flooding Attack: In a DDoS flooding attack, various malicious nodes target
the network nodes with vast amounts of traffic to interrupt the normal operation of the
network services. This attack also increases communication overhead and overwhelms
the power resources of the sensor nodes [63,76,77].

7.6.2. Topology-Based Attacks

• Selective Forwarding (SF) Attack: This attack happens when the malicious node
dislocates the network routing path by selectively forwarding some of the packets
in the network while leaving the rest forwarded to the original destination [21]. In
addition, this attack can involve one or more malicious nodes and could either be
consecutive or non-consecutive [23].

• DIO Suppression Attack: The purpose of the DIO suppression attack is to disrupt or
slow down the network’s transmission of DIO messages. For this purpose, Trickle’s
DIO suppression method is used. During this attack, the adversary continuously
sends a DIO message that the receiving nodes regard as consistent. Suppose the nodes
get a sufficient number of consistent DIOs. In that case, they disable their own DIO
transmission, resulting in a general decrease in the quality of the routes or, in the
worst-case scenario, a network breakdown [62,78].

• Worst Parent (WP) Attack: In the WP attack scenario, the attacker fabricates routing
information and broadcasts DIO messages to neighboring nodes with different rank
values than genuine ones. Later, the child node assigns the malicious node (with
the highest rank value) as their parent instead of the best ones specified in the usual
RPL scenario. As a result of this attack, the network nodes suffer from non-optimal
routing paths, degrading their performance and leading to high consumption of power
resources [3,24].

• Opportunistic Service Attack: In this attack, the malicious node gains its trust value
by initially offering highly dependable services and then later resorts to providing
inferior services for its own sake [63].

• Temperature Level Attack: The attacker manipulates the reading of the temperature
and humidity level sensors in patients’ rooms. Consequently, the air-conditioning
system stabilizes the temperature level based on erroneous data, which could cause
deterioration of the patient’s health [7].

• Heart Attack: This is an e-health related data attack that manipulates the patient’s
heartbeat level information. Such modifications might cause bad decisions being made
or ignored by emergency personnel, such as when a patient’s heart rate is extremely
low/high and quick medical attention is required [7].

• WormHole (WH) Attack: In a WH attack, two or more attackers collaborated to
establish a virtual tunnel between them to pass the traffic, entirely or selectively,
through it instead of its original route. Therefore, such an attack disrupts the network
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topology, exhausts network resources, and provides the attackers with access to
sensitive information [69,79].

• SinkHole (SH) Attack: A malicious node broadcasts itself as the best convenient
route (optimal path) to be a preferred parent for the surrounding nodes. Then, the
network traffic of the child nodes will be forwarded to the SH node. Therefore, this
attack disrupts the communication and leads to other kinds of attacks [32,49,80].

• BlackHole (BH) Attack: In a BH attack, the pernicious node announces itself as the
shortest route to the destination. All the packets arriving at this node will be dropped
and, thus, prevented from reaching their destinations. Therefore, this attack will create
a ‘hole’ in the network without the senders being aware of their packets’ delivery
status [49,63].

7.6.3. Traffic-Based Attacks

• Decreased Rank (DRA) Attack: In this attack, a rogue node broadcasts its fabricated
rank to its neighbors, resulting in neighboring nodes choosing the fraudulent node as
their parent. Consequently, this causes other nodes to route their messages through a
fake node. In addition, the fraudulent node broadcasts its predecessor’s rank as its
own to deceive other nodes. The main effect of this attack is to increase the network’s
traffic, and it can also be used to eavesdrop on DODAG’s downward nodes [56,81].

• Sybil Attack: In the Sybil attack scenario, the attacker masquerades the identities
of multiple legitimate nodes to access network data. This attack deteriorates the
network’s performance and increases the control communication overhead, resulting
in delegated power resources. In addition, this attack could serve as a jumping-off
point for other types of RPL attacks [49,82].

• Clone ID (CID) Attack: In this attack, the attacker takes the ID of one existing legiti-
mate node and transfers it to the malicious node, resulting in the data being routed
to the malicious node instead of legitimate nodes. Therefore, the attacker will sniff a
large size of the network information [49,83].

Figure 8 shows the distribution of attacks in the reviewed studies, as discussed in
Sections 7.2–7.4. It is evident from Figure 8 that the VN and HF attacks are the most
frequently studied, followed by SH and BH attacks. In addition, the DR, Rank, and SF
attacks can be found in six studies. However, the rest of the attacks received very little
attention from researchers. Therefore, it could be concluded that those attacks received
less attention because they are fairly easy to detect or too challenging to implement in RPL
networks. To sum up, the analysis of implemented attacks in the existing studies would
help future researchers detect such attacks and focus their attention to new kinds of attacks.

7.7. RQ7: What Tools and Network Simulators Are Used in the Existing Studies, and What Are the
Occupied Evaluation Metrics and Parameters in the Reviewed Studies?

To answer this research question, we extracted the available information from the
reviewed studies in Sections 7.2–7.4. We then present the analysis of the tools used and the
evaluation metrics utilized in Figures 9 and 10, respectively.

As for the used tools, it is evident from Figure 9 that nine different tools and network
simulators are used in the reviewed studies. However, two studies did not disclose the
tools used in their work. Most studies used the Contiki O.S (Cooja simulator) (85.71%),
followed by Python programming (45.71%), and Wireshark (31.42%). Meanwhile, 11.42%
of the studies used Weka tools in their work. It seems that researchers working in this field
rarely utilized other tools and platforms in their studies.

Our analysis shows that the Cooja simulator is the most popular program among
researchers for simulating network traffic (normal and malicious traffic) and data collection
processes. Meanwhile, Python programming is the programming language of choice for
most researchers for data preparation, feature selection, and classification stages. Moreover,
the role of the Wireshark program in the reviewed studies is to collect the information from
the simulation environment and export the collected data into readable forms.
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Figure 8. Distribution of the attacks in the existing studies.

Figure 9. Distribution percentages of the used tools and network simulators in the existing studies.

Figure 10. Distribution of the used metrics and parameters in the existing studies.

From Figure 10, it is evident that the most used metric is Accuracy, which was found
in 25 studies, followed by Precision and Recall, used in 17 and 16 studies, respectively. The
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F-score and False Positive Rate also obtain significant consideration in 12 and 10 studies,
respectively. However, few researchers evaluated their approaches using rarely known met-
rics such as Fitting Time, Balancing Technique Average, and MSE. On the other hand, some
researchers evaluated the performance of their mechanism using well-known data mining
metrics, such as AC, Precision and Recall, extracted from confusion metrics’ parameters.
Moreover, other researchers are also evaluating and validating the proposed approach for
detecting the attacks using a set of network parameters to measure the effectiveness of the
proposed defense mechanisms under RPL attacks, such as PDR, E2E Delay, and PRC.

7.8. RQ8: What Are the Datasets Utilized to Evaluate the Existing Studies, and Are There Any
Available Datasets Designed Specifically for RPL-Based 6LoWPAN?

Responding to this question, we extracted the dataset types used based on information
provided in the reviewed studies presented in Sections 7.2–7.4. The result is shown in
Figure 11, in which 19 studies used synthetic datasets, 6 used real-time datasets, and 3
studies did not state the dataset type used in their experiments. In addition, two studies
used the IRAD and RPL-NIDDS2014 datasets. Finally, other types of datasets, such as IDC,
EDC, WSN-DS, UNSW-NB15, and KDD99, were only used in one study, respectively.

Figure 11. Occurrence of the datasets in the existing studies.

It is apparent from Figure 11 above that most researchers use synthetic datasets to eval-
uate their mechanisms. However, such datasets are typically generated to cater to specific
tasks or configurations that might not apply to real-world environments. Furthermore, due
to privacy and security concerns, most researchers prefer to generate and use their own
private datasets to evaluate their works. However, since there is no standard configuration
for setting up the network and simulation scenarios, it is challenging for researchers to
compare their approach with others fairly. The following list provides more details about
the existing datasets that are made explicitly for RPL-based 6LoWPAN IoT networks:

• RPL-NIDDS2017 Dataset is a synthetic dataset created by Ranga and Verma [46]
in 2018 using the NetSim program to simulate various network scenarios. They
simulated an IoT network scenario comprising sensor nodes, a gateway, routers, and
wired nodes to generate the dataset, containing 20 attributes and two additional
attributes for labeling. In addition, the dataset included seven attack traces: Local
Repair attacks, CID, BH, SF, Sybil, HF, and SH attacks. Moreover, the dataset’s features
were divided into three types: flow, basic, and time. They also proposed an approach
to detect the attacks, as mentioned in Section 7.2.
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• IoT DDoS Dataset: Yahya Al-Hadhrami and Hussain [72] proposed a real-time
dataset explicitly designed for the 6LoWPAN/RPL network. The dataset contained
three DoS-based RPL attacks: DIS flooding, SF, and BH attacks. Twelve features were
extracted from the physical, network, and application layers. In addition, the authors
devised queueing methods for collecting network traffic from a set of sniffing nodes.
The dataset simulation was executed for 24 h, resulting in more than 4,195,537 packets
of RPL-based 6LowPAN network traffic. The simulation process involved 29 nodes,
where the Zolertia (z1) nodes are mimicked in the Cooja environment. Moreover, to
reflect the environment of real-world networks, the authors included two distribu-
tor nodes that generate a noisy signal at predetermined intervals. Furthermore, the
proposed system that generates the IoT DDoS dataset consists of four components:
the capturing medium, data aggregation, queuing unit, and the feature extraction
unit. The authors conducted four scenarios. The first scenario represents the normal
network behavior without any attack, while the rest represent the three DoS-based
RPL attacks.

• IDC and EDC Dataset: The researchers [7] at the SERCOM Lab of the University of
Carthage have created two datasets, IDC and EDC, reflecting a smart hospital infras-
tructure. The generated IDC dataset comprises the normal and malicious behavior
of network traffic. The malicious behavior includes the traces of three attacks: Rank,
Flooding, and VN Modification attacks. Meanwhile, the dataset is split into training
and testing sets, with 1000 instances utilized for the training set and 200 for the test-
ing set. The EDC dataset generation used two types of data, environmental and body
sensor data, where the environmental data include environmental information, such
as temperature, light, and humidity. The training and testing set of environmental data
contained 100 and 200 instances, respectively. The body sensor data comprise body
temperature information and heart rate information. Similar to the environmental
data, 1000 instances were utilized as a training set, and 200 for the testing set.

• IRAD Dataset: Osman et al. [31] developed a VN attack-based dataset. The authors
developed a Python model to extract the dataset features. The total number of ex-
tracted features was 113. They proposed a dataset comprising 1,050,861 records, out
of which 884,861 were assigned as benign and the rest as malicious traffic. In addition,
the authors developed a lightweight mechanism to identify the attack, as stated in
Section 7.2.

8. Open Issues, Challenges, and Future Research Directions

This section presents the research issues and challenges faced by ML, DL, and com-
bined ML and DL approaches to provide future research directions in developing new
defense mechanisms for RPL attacks. Figure 12 illustrates the issues and challenges.

The following points provide more details about those challenges:

• Challenge 1—Datasets Availability: This study discovered that most researchers
use self-generated datasets from various simulation programs, either synthetic or
real-time, to evaluate their approaches [7,47,48]. However, some researchers do use
existing publicly available datasets [31,49], even though many of those datasets were
based on traditional networks’ traffic, which is different from the traffic of RPL-based
6LoWPAN networks [49]. Unfortunately, only a handful of researchers constructed
datasets for RPL networks and made them available publicly [46,58,72]. Consequently,
it is difficult for researchers to compare their work with others due to the variations in
the datasets used.
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Figure 12. Issues and challenges.

• Challenge 2—Evaluation Metrics: We found that most studies used well-known
evaluation metrics and parameters to validate the effectiveness of their work. Unfor-
tunately, those parameters are commonly used in devising mechanisms for detecting
attacks in traditional networks. In addition, due to the constrained environment of
IoT networks, there is a need to also evaluate the proposed mechanism in terms of
network and nodes metrics, such as PRC, PDR, and E2E delay. However, only a few
researchers utilized these metrics in their studies [35,66,67]. Consequently, that might
lead to bias in the results.

• Challenge 3—Implementation of Security Mechanisms: We can infer from our ob-
servation that the majority of researchers applied traditional security solutions to
detect attacks in RPL-based 6LoWPAN networks [30,32,66]. Due to limited device
capabilities in RPL-based 6LoWPAN networks (e.g., processing, memory, and power),
there is a need for lightweight security and robust mechanisms with low complexity
to avoid depletion of network resources and minimize the response time to defend
against possible attacks.

• Challenge 4—Network Configuration: We noted many variations in the network
configuration parameters used by researchers, such as the number of normal and ma-
licious nodes, network topology, and network size. Without a standard configuration,
researchers will face challenges when comparing their work to others. Furthermore,
the evaluation scenarios used by the majority of existing approaches were using a
small network [47,52,53]. However, in reality, IoT deployment is typically a vast
network comprising various resource-limited nodes. Consequently, in such a network,
the actual performance of the existing solutions may degrade and decline, making it
less effective and vulnerable to attacks.

• Challenge 5—Diversity of Devices: This study discovered that the majority of ap-
proaches were designed and tested with only one or two types of sensor nodes (see
Sections 7.2–7.4), i.e., the interoperability of non-homogeneous devices is one of the
first assumptions of IoT applications. However, different hardware configurations can
impact the performance of routing protocols and message processing rates. There-
fore, researchers creating IoT routing solutions must consider the heterogeneity of
hardware components.

• Challenge 6—Contemporary Attacks: We inferred those new attacks are technically
and behaviorally different from the earlier ones. ML and DL models are usually
trained with more outdated datasets’ features. However, new attacks might require a



Sensors 2022, 22, 3400 40 of 44

different set of features to identify. Consequently, the new attacks may either evade
classifiers, generate false alarms, or reduce detection rates.

In addition, most studies superficially describe the pseudo-codes of the attacks, making
reproducing them difficult. Furthermore, the persistent change in attack variations and the
considerable increase in attack volume add to the challenge of identifying and responding
to those incidents and threats. Moreover, several RPL-specific attacks are yet to be identified,
thus requiring substantial defense mechanisms. Unfortunately, there are very few attempts
to develop defense mechanisms against sophisticated attacks [14,16].

Based on the outcomes of this SLR and our standpoint, we provide the following
future research directions for ML- and DL-based approaches in detecting RPL attacks:

• There is an urgent need for a standard comprehensive benchmark dataset that is
publicly available to enable researchers to test the performance of their proposed
works and compare them with others fairly. The proposed solution will address
Challenge 1.

• Since RPL networks comprise low-powered nodes, there is a need to evaluate the
performance and impact of the existing solution using additional network parameters,
such as PRC, computational cost, deployment strategy, and coverage area of the
defense mechanism. Furthermore, there is a need to develop lightweight ML and
DL approaches that operate in a constrained environment and are adaptable for
deployment in tiny devices. The proposed solutions will tackle Challenge 2.

• Researchers need to develop efficient mechanisms in dynamic network topology and
support mobility options. In addition, the deployment of the detection mechanism
in the network plays a crucial role in detecting the attacks successfully. Hence, there
is a need to identify the optimum location in the network that contributes to a high
detection rate with less energy and result in the lowest computational overhead for
network nodes. The suggested solution will address Challenge 3.

• Researchers need to develop highly scalable and fast response solutions that provide
a minimal delay in information transmission, especially for crucial IoT applications.
This suggested solution will address Challenge 4.

• There is a lack of solutions that work with heterogeneous network devices. The
expected future of IoT networks is towards technological convergence with different
technologies, such as cloud computing, software-defined networking, blockchain, and
5G. The offered solution will solve Challenge 5.

• There is a need for multiple defense approaches for guarding against newly discovered
RPL attacks. Furthermore, there is also a need to incubate combined/hybrid ML and
DL approaches to exploit their powerful features to identify known and zero-day
threats. The proposed approaches must be highly robust, scalable, and support Quality
of Service (QoS). The offered solutions will address Challenge 6.

9. Conclusions and Limitations

This study conducted a comprehensive systematic literature review on existing ML,
DL, and combined approaches proposed to detect attacks in RPL-based 6LoWPAN net-
works. The reviewed studies were from five databases published from January 2016 to
mid-2021. After several filtering stages, the final count of articles selected for the review
process was 49. Then, we analyzed the existing studies from the 49 articles to answer our
defined research questions related to bibliographical info, techniques, programs, tools,
performance evaluation metrics, datasets, and limitations. The findings reveal that the
number of publications within the RPL domain has increased rapidly in recent years. Most
researchers have published their work in the IEEE Xplore® database in the form of jour-
naled articles. Afterward, we discovered that most studies focused on ML mechanism
implementation with promising results, followed by DL and combined approaches. Fur-
thermore, we noted that the VN and HF attacks are the most prevalent in the existing
studies. In contrast, some attacks received less attention from researchers, which might
threaten the RPL networks.
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On the other hand, we realized that most researchers used Contiki OS (Cooja Simula-
tor) to implement their proposed approaches. As for the metrics used, most researchers
computed accuracy metrics in their work, which signifies its importance in the performance
evaluation stage. However, we also noticed that most studies ignored some crucial param-
eters, such as models, approaches, and systems, in evaluating their proposed solutions.
As for the datasets, many researchers did not disclose the dataset used in their works, but
those that do mostly use synthetic datasets.

Additionally, some researchers use public datasets created using traditional network
traffic, which is unsuitable for RPL-based 6LoWPAN. In this regard, we gave some insights
into the used and available datasets in the RPL security research domain. Additionally, we
illustrated the current challenges of reviewed studies and some security issues related to
the RPL network.

As for this study’s limitations, first, this study is limited to a few selected databases,
although they are considered the most reliable sample of sources related to the research topic
of this study. Nevertheless, other indexed databases might also contain studies relevant to
this topic. However, we omitted those resources due to subscription requirements, limiting
our access to their databases.

Second, this SLR study is limited to ML, DL, and combined approaches that detect RPL-
based attacks, as presented in Figure 3. In addition, this study provides a comprehensive
review and critical analysis focusing only on the recent ML, DL, and combined ML- and
DL-based approaches for detecting RPL-based attacks, along with existing benchmark
datasets used to evaluate their effectiveness.

Third, there are many SLR studies related to this topic using different sets of research
keywords (see Section 4.1). However, to the best of our knowledge, there are no standard
keywords related to RPL and 6LoWPAN networks exist. Moreover, our search is limited
to English-language studies with a restricted range of publication years (January 2016 to
mid-2021).

Finally, we suggested some potential research directions that will serve as a solid
foundation for future researchers in the RPL domain.
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