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Abstract: With the rapid development of underground infrastructure and the uncertainty of its
location, the possibility of damage due to nearby construction has increased. Thus, for the early
warning of dangerous construction behaviors around underground facilities, this paper proposes a
novel real-time distributed monitoring method with three levels, comprised of the terminal node,
relay node, and server. Corresponding to these three monitoring levels, a vibration-based intelligent
solution for recognizing the construction source is presented and compared with the traditional
method. First, the blind source separation method was used to separate collected signals into
a limited number of monitoring object sources; this helped to minimize the number of required
classification categories and reduce the recognition uncertainty caused by signal mixing. Then, the
mutual information (MI) method was used to select suitable vibration features, which were used as
the input matrix for the resulting intelligent recognition. Finally, the construction behaviors were
identified at the server based on returned features. Guided by this method, a sample dataset including
pile-driving, train-operation, and environment-vibration signals was constructed and combined with
a multi-layer perceptron (MLP) and a long short-term memory (LSTM) network. The effects of blind
source separation and the MI method are discussed in depth in this paper.

Keywords: underground infrastructure; construction monitoring; real-time; mutual information;
blind source separation

1. Introduction

As the density of subway and underground pipe networks increases with the rapid
development of urban construction, the possibility of damage to these infrastructures
owing to nearby construction also increases. Pile foundation construction is among the most
common construction behaviors that can affect underground infrastructure. In addition, the
uncertainty of the location of existing infrastructures and the randomness of construction
behavior has caused several accidents in the past. Indeed, there have been several incidents
in the Chinese cities of Chengdu, Shenzhen, and Shanghai, where subway tunnel structural
damage has occurred as a result of nearby pile construction, including a pile head hitting an
operating train, causing permanent tunnel damage. Damage to underground pipelines is
much more common and has resulted in gas pipe explosions in Qingdao, China. Therefore,
the development of a real-time monitoring system for nearby construction is of great
significance to prevent the destruction of important underground facilities.

However, this is a considerably challenging task. First, most underground facilities
have become increasingly networked. For instance, subway tunnels are extremely long linear
structures, with the length of a single line typically exceeding 10 km; these lines also pass
through different areas. Hence, given the limited monitoring points, realizing early warnings
for the damage caused by pile driving and other surrounding construction behaviors is
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remarkably difficult. In the past, underground infrastructure monitoring has been primarily
concerned with structural deformation or leakage, and related settlement monitoring systems
have been developed using the static level or optical fiber test methods [1,2]. However, these
methods can only cover significantly small areas, and it is difficult to conduct real-time
monitoring and realize early warnings for nearby constructions. As construction behaviors,
such as pile driving, result in structural soil and tunnel vibrations, a number of vibration or
sound source perception and detection methods have been widely applied with seismic [3],
noise [4], and acoustic emission (AE) [5] applications; the vibration detection approach can
provide the real-time monitoring of nearby construction over a large area.

Second, apart from the vibrations caused by nearby construction, underground spaces
comprise various other vibration sources; these mainly include train-induced vibrations and
various environmental noises. The interaction and superposition of such vibration signals
can generate new recognition categories, which, in turn, can considerably increase the diffi-
culty in recognition. Furthermore, most previously proposed sound- and vibration-based
monitoring methods are dependent on factors such as wave propagation properties [6,7]
and modal characteristics [8–10]. However, in-depth analyses of such characteristics re-
quire complex and time-consuming calculations such as waveform-based seismic location
methods [11] including full waveform inversion, which depends on complex inversion
or reverse imaging algorithms and requires powerful computing resources. Furthermore,
previous studies have shown that vibration responses and features are characterized by
strong nonlinearity and uncertainty due to the structure and soil interference, especially
when applying vibration-based methods in underground infrastructures [12,13]. The afore-
mentioned characteristics and features may change depending on the variations in train
speeds, soil properties, tunnel structures, and construction locations; hence, it is difficult to
determine specific evaluation ranges for automatic judgments without human intervention.
As a result, traditional signal processing methods are unable to directly conduct continuous
and stable information perception and online monitoring.

Recently, a number of deep learning networks have been rapidly developed and
applied in medical and mechanical fields, such as disease and human activity pattern
recognition [14–16], and optical and medical signal diagnosis [17]. Deep learning networks
have also been employed in applications closer to the focus of this study, such as bridge
monitoring data analysis [18], truck loading detection [19], indoor fall detection for the
elderly [20], and construction monitoring using sound classification [21]. However, these
methods have all encountered various challenges, including the complexities of potential
classification types and the need for large sample sets. Considering the difficulties in
sample collection and the cases involving signal mixtures, it is necessary to develop new
models or employ additional algorithms.

Meanwhile, rapid progress in blind source separation methods [22–25] has made it
possible to develop more efficient models for use in vibration signal classification and
recognition. Among these methods, mutual information (MI) analysis can be used to
determine the degree of uncertainty associated with the assigned classification category
by using several quantified features, such as information entropy [26]. Indeed, Shannon’s
MI-based theories [27] have been widely employed in applications such as the selection of
multi-channel electroencephalogram features [28]. Furthermore, the combination of MI-
based methods and intelligent algorithms has been demonstrated to extend the depth and
breadth of feature mining; this approach has achieved continuous progress in recognition
accuracy [29,30].

Therefore, considering the challenges associated with intelligent recognition owing to vi-
bration mixing and the difficulties in signal acquisition, a novel real-time monitoring method
is proposed. The blind source separation, MI analysis, and deep learning algorithms were
combined to develop a limited-sample driven vibration perception and nearby construction
classification method. This method can achieve real-time monitoring and early warnings
for surrounding construction near underground facilities. Notably, the use of vibration
recognition differs from the use of sound recognition in that the former can also reflect the



Sensors 2022, 22, 3260 3 of 18

physical characteristics of underground media, and as such, it can be extended in the future
to monitor excavations and other construction behaviors, in addition to pile driving.

2. Proposed Vibration Recognition Method
2.1. Outline of Proposed Method

As pile foundation construction is the most common construction behavior affecting
underground infrastructure, this study investigated the vibration monitoring method for
pile foundation construction near an operating subway tunnel. As shown in Figure 1, based
on the distributed layout principle, a novel real-time monitoring method is proposed for
the perception of surrounding construction behaviors and early warnings near super-long
tunnel structures. This approach mainly consists of three levels, as follows:

• Terminal node for data acquisition and processing

To establish a sensor network covering the entire tunnel network, a super-long subway
tunnel is divided into several monitoring sections. At each section, double sensors are
symmetrically arranged along the tunnel structure; the section intervals are determined
according to the sensing range of the acceleration sensors. For pile-driving vibration
monitoring, this interval is typically 200 m; therefore, for a 1 km-long tunnel section, four
or five test sections are sufficient. Accordingly, the total number of sensors can be less than
ten by arranging two sensors at each section. If necessary, a processing module can be
installed on the terminal node for signal sampling and signal processing, in order to reduce
data transmission.

• Relay node for mutual analysis and feature screening

In each test section, a relay node is arranged as a terminal server; the connection
with the terminal node can be wired or wireless. Moreover, the MI of the sampled signals
between terminal nodes is further explored; time or frequency features will be processed
here to meet the demands of source recognition. This will also further reduce the data
transmission from the relay node to the server.

• Intelligent recognition of construction behavior at server

Finally, the processed data at the relay node are sent to the server via wireless trans-
mission or optical fibers; the intelligent algorithm is then used to identify construction
behaviors and provide warnings, if required.
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Figure 1. Vibration-based real-time monitoring system for construction behaviors surrounding
super-long tunnel structures.

Corresponding to the three levels of the monitoring system, an intelligent solution for
data processing is proposed herein, as shown in Figure 2.
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• Signal collection and sampling at terminal node

To meet the requirements of the signal acquisition for subsequent blind source sep-
aration, the number of sensors needs to be greater than the number of signal types to be
identified, i.e., more than two. Here, by taking two single-channel sensors as an example,
two channels of signals can be obtained at the terminal point, and the signals will be further
sampled by time windows of 10 s. Then, if the peak value of the sampled signal exceeds
the environment levels, the data will be transmitted to the relay point.

• Blind source separation and MI analysis at relay node

After the sampled signal enters the relay node, the blind source separation technology
is first applied to separate it into two channel signals with a limited number of monitoring
object sources, including pile-driving vibration, train-induced vibration, and others; it will
minimize the number of required classification categories. The details are introduced in
Sections 2.2 and 3.2.

Meanwhile, to improve the robustness and training efficiency of the intelligent recog-
nition algorithm, the MI is applied at the relay node to analyze the correlation between the
vibration features and the recognition objects; features with high correlation are then used
to form a feature matrix that is transmitted back to the server. This matrix is employed
by the intelligent network to reduce the input matrix dimensions and improve the system
robustness and efficiency.

• Vibration source classification and construction behavior intelligent recognition at server
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Finally, the separated two channels signals are transmitted back to the server, and the
intelligent algorithm is used to determine the vibration signal category. Category 1 is the
train operation case, with both channels of data determined to be train-induced signals.
The second category is the determination of whether any channel data is determined to be
pile-driving signals; in this case, the early warning is announced at once. If any channel
does not contain a train response and a pile-driving signal, this situation will be classified
as “others”.

To highlight the advantages of combining the MI algorithm, the MLP network is
used for feature and signal source recognition; this approach is here termed as the MI-
MLP method. Most traditional methods adopt similar solution methodologies, where the
separated signal is directly transmitted to the server. For a comparison of the proposed
and existing methods, the commonly used long short-term memory (LSTM) method is
employed to determine the vibration signal categories.

2.2. Vibration Signal Blind Source Separation

In the scenario investigated in this study, the main vibration types include train
operation-induced vibration and pile foundation construction-induced vibration. Therefore,
an independent component analysis (ICA) algorithm based on negative entropy is applied,
as it can effectively separate relatively independent signals according to their sources [31].
As negative entropy can provide non-Gaussian measurements of random variables, it
can realize improved computational efficiency and robustness. Therefore, the FastICA
algorithm based on negative entropy was employed in this study, as follows [32]:

J(y) = H(yGauss)− H(y) (1)

where J(y) represents the negative entropy of the random variable y, H(y) represents the
entropy value of the random variable y, and yGauss represents a random variable with
the same variance as that of y that conforms to the Gaussian distribution. According to
the definition of entropy, the solution of negative entropy must be able to calculate the
probability density of random variables. In actual use, the mean negative entropy value
can be approximately expressed as

J(y) = {E[G(y)]− E [G(yGauss)]}2 (2)

where G is a non-quadratic function, generally defined by

G1(y) =
1
k

log[cosh(ky)], 1 ≤ k ≤ 2 (3)

G2(y) = − exp(
y2

2
) (4)

The goal of the FastICA algorithm is to determine the y = Wx value that maximizes
Equation (2). This optimization employs the Newton iterative method using the following
procedure:

1. Generate a random unmixing matrix W0 that satisfies ‖W0‖ = 1;
2. Assume Wk+1 = E

[
zG
(
Wk

Tz
)]
− E

[
G′
(
Wk

Tz
)]

Wk and iterate k;
3. Standardize and make Wk+1 = Wk+1/‖Wk+1‖;
4. When the convergence condition is verified according to |Wk+1 −W| < ε, end the

cycle step, and end the algorithm after outputting the final unmixing matrix to obtain
the solution of independent component y = Wx; otherwise, return to step 2 and
continue with the iterations.

2.3. Mutual Information Analysis Method

The MI method has proven to be an effective tool to measure interdependence by
calculating the shared information between two random variables. In the proposed method,
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it is used to select independent features to form the input matrix of the MLP neural network.
According to the MI analysis theory, the MI value between two random variables X and Y
is defined as

I(X, Y) = ∑
yi∈Y

∑
xi∈Xj

p(Xj = xi, Y = yi) log2(
p(Xj = xi, Y = yi)

p(Xj = xi)p(Y = yi)
) (5)

where p
(
Xj = xi

)
denotes the probability that Xj is equal to xi, p(Y = yi) denotes the

probability that Y is equal to yi, and p
(
Xj = xi, Y = yi

)
indicates the probability of both

variables simultaneously matching their counterparts.

2.4. Intelligent Recognition Method
2.4.1. MLP Neural Network

Two intelligent signal source recognition methods were applied and compared in
this study. With regard to the first method, as shown in Figure 3, the MLP recognition
network used in this study is a fully connected MLP neural network employing error back
propagation; it was constructed based on the TensorFlow module of Python. The sigmoid
function is used as the activation function, and the cross-entropy function is used as the
loss function. The input p of the network is an m-dimensional feature vector obtained
through the MI. The weight wi in the hidden layer is an m × n matrix, while the bias bi is
an n-dimensional feature vector.
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2.4.2. LSTM Method

The LSTM [33], illustrated in Figure 4, offers the advantage of being able to solve the
gradient instability problem associated with recurrent neural networks, thus making it
superior to the conventional MLP model. This is accomplished by adding a new cell σ and
a gating system in memory module A [34]. Accordingly, the training of the LSTM employs
the back propagation through time algorithm, which propagates the error term back along
time and layers [35,36].
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3. Vibration Signal Separation and Data Preparation
3.1. Vibration Measurement and Data Preparation

For obtaining the vibration signals required for the subsequent feature analysis and
intelligent recognition, considering the difficulty in acquiring mixed vibration signals from
an operational subway tunnel, field tests were only conducted at two sites in order to
collect train-induced and pile-driving vibration signals.

3.1.1. Pile-Driving-Induced Signals

One of the field tests was conducted in a power tunnel to collect the vibration signals
induced by a nearby pile foundation construction. This tunnel was a pipe jacking tunnel
with an outer diameter of 3.2 m and an inner diameter of 2.7 m. In the nearby construction,
a steel pipe pile was being driven using the resonance hammer method. Six accelerometers
were installed on the interior wall of three tunnel sections in order to collect the tunnel
vibration responses in the radial direction at a sampling frequency of 1000 Hz. Overall,
after being sampled with a time window of 10 s, 14,404 groups of pile-driving vibration
signals with different distances from the power tunnel were obtained via this field test.

3.1.2. Train-Operation-Induced Signals

Another field test was used to collect train-operation-induced vibrations; this test was
conducted in Shanghai metro line 12, which is a shield tunnel with an outer diameter of
6.2 m and an inner diameter of 5.7 m. Eight accelerometers were arranged on the track bed
and side walls of four different tunnel sections at intervals of 12 m. The accelerometers
collected data at 1000 Hz for three months. Finally, the collected data were sampled using a
time window of 10 s, and a total of 29,592 groups of signals were prepared for the following
intelligent recognition.

3.1.3. Others

For training and testing the classification of data other than pile-driving and train-
vibration signals, the environment vibration data collected at the above two sites and other
power and metro line tunnels were used, including the vibration response caused by ground
traffic and human activities in the tunnel. Finally, 10,286 groups of signals were prepared.

3.2. Signal Separation Using FastICA and Comparison

As described in Section 2, the FastICA method was employed in this study to separate
the mixed signals and thus minimize the number of classification categories. In this section,
to verify the effect of separation, the mixed and single-type signals were prepared for
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separation. The mixed signals were obtained by combining the two types of signals with
different weights.

3.2.1. The Separation of Train Operation and Pile-Driving Mixed Signals

Since it is difficult to obtain the measured mixed signal, the pile-driving- and train-
operation-induced signals were therefore combined with different weights to form two-
channel mixed signals; the mixture and separation results are shown in Figure 5.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 5. Example of mixed signals and separation using the FastICA method. 

3.2.2. The Separation of Single-Type Signals 
More commonly, the input two-channel signals are of a single type, either the train-

operation-induced or the pile-driving-induced signals. Because the time and frequency 
characteristics of train-operation-induced signals are more sophisticate than those of pile-
driving signals, for illustrating the separation of a single-type signal, two channels of 
train-operation-induced signals will be used as an example. The results are shown in Fig-
ure 6. It was also found that the waveform and frequency components are well preserved 
before and after separation. This means that, for a single signal, blind source separation 
can retain the characteristics of the original signal. 

For further comparison of the advantages of the blind source separation method, the 
HHT method was used [37]. The results in terms of performing empirical mode decom-
position (EMD) on the mixed signal are presented in Figure 7; ten IMFs can be identified 
using EMD. Additionally, the time-domain characteristics are significantly different from 
those of the original signal prior to synthesis. 

Figure 5. Example of mixed signals and separation using the FastICA method.

From Figure 5, two signals of train-operation-induced and pile-driving signals were
combined by two random weights between 0.35 and 0.5, forming two signal mixtures,
mixture channel 1 and mixture channel 2. Then, by using the FastICA-based separation
algorithm, it found that only two separated signals can be obtained from the mixed signals.

As shown in Figure 5, before and after signal separation, the time domain waveform
and frequency components are well preserved. It shows that the mixed signal will be well
restored to the source signal, so as to reduce the number of classifications.

3.2.2. The Separation of Single-Type Signals

More commonly, the input two-channel signals are of a single type, either the train-
operation-induced or the pile-driving-induced signals. Because the time and frequency
characteristics of train-operation-induced signals are more sophisticate than those of pile-
driving signals, for illustrating the separation of a single-type signal, two channels of train-
operation-induced signals will be used as an example. The results are shown in Figure 6. It
was also found that the waveform and frequency components are well preserved before
and after separation. This means that, for a single signal, blind source separation can retain
the characteristics of the original signal.
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For further comparison of the advantages of the blind source separation method, the
HHT method was used [37]. The results in terms of performing empirical mode decom-
position (EMD) on the mixed signal are presented in Figure 7; ten IMFs can be identified
using EMD. Additionally, the time-domain characteristics are significantly different from
those of the original signal prior to synthesis.
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As shown above, the aim of signal separation is to limit the types of typical signals in
order to reduce the number of intelligent recognition categories. Additionally, the blind
source separation discussed above can separate signal sources from different collecting
channels, not only for the mixed signals, but also for the single type signals, without
creating any new signals.

3.3. Dataset Preparation and Features Analysis
3.3.1. Sample Preparation and Dataset Construction

Based on the original signals collected at the field sites, three parts of the data were
prepared for the construction of training and testing datasets, including the pile-driving
signals, train operational signals, and others.

As shown in Table 1, 13,184 groups of pile-driving signals, 23,832 groups of train
operational signals, and 8229 groups of environment signals collected from the field sites
were used for the training dataset.

Table 1. Division of sample sets for intelligent model.

Training Set (Group) Test Set (Group)

Pile-driving signals 13,184 (original signal) 1220 (separation signal)
Train operational signals 23,832 (original signal) 5760 (separation signal)

Others (noise, etc.) 8229 (original signal) 2057 (original signal)

In total, 1220 groups of pile-driving signals and 5760 groups of train operational data
were used to conduct the signal separation, and the re-separated data were used for the
test set. Among them, 1220 groups of pile-driving data and train operational data were
used to form the mixed signals, and 4540 groups of train operational data were employed
as two-channel data to achieve single-type signal separation.

3.3.2. Typical Time and Frequency Domain Features

In order to explore the time and frequency domain characteristic distribution of the
above dataset, and as a basis of the following MI analysis, sixteen time and frequency
domain features were selected and are listed in Table 2, where xp is the peak value of the
vibration, N is the length of the signal sampling window, and S and E are the beginning
and end of the sampling signal, respectively.

Table 2. Selected features for MI analysis and feature compression.

Feature Equation Feature Equation

Mean value µx(t) = 1
N

E
∑

i=S
xi = E(X) Kurtosis factor KF = ∑E

i=S x4
i√

∑E
i=S x2

i

Standard deviation
σx =

√
1
N

E
∑

i=s
(xi − µx)

2 Pulse factor Cpul =
xp
µx

Kurtosis K = 1
N

E
∑

i=S

(
xi−µx

σx

)4 Clearance factor Cclea =
xp(

1
N

√
|xi |
)2

Root mean square xrms =
√

xS
2+xS+1

2+...+xE2

E−S+1
Waveform center 〈t〉 = 1

N

E
∑

i=S
(i·|xi|2)

Wave form factor CWs =
xrms
µx

Time width σt =

√
E
∑

i=S
(i− 〈t〉)2|xi|2

Peak factor C f =
xp

xrms
Mean square frequency MSF =

∫ ∞
0 f 2 FFT(x,t)d f∫ ∞

0 FFT(x,t)d f

Center frequency FC =
∫ ∞

0 f FFT(x,t)d f∫ ∞
0 FFT(x,t)d f

Root mean square frequency RMSF =
√

MSF

Frequency variance VF =
∫ ∞

0 ( f−FC)2 FFT(x,t)d f∫ ∞
0 FFT(x,t)d f

Frequency standard deviation RVF =
√

VF
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Additionally, the box chart of the statistical distribution of each feature on three types
of target signal data is shown in Figure 8.
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As can be seen from Figure 8, for the pile-driving signals collected from sites at
different distances from the sensor, and the train-induced vibration signals obtained at
different times, the features show obvious discreteness, and have overlapping distribution
areas, representing a challenge for the MLP network. Meanwhile, it was also found that the
discreteness of the frequency-domain features is less than that of the time-domain features.
Especially for the train operation signals, the feature distribution in the frequency domain
is more stable than that in the time domain, and the increased use of the frequency features
will increase the recognition accuracy.
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4. Application of Combined MI-MLP Neural Network Method

In this section, the intelligent recognition of vibration signal sources using the combined
MI-MLP neural network is discussed based on the data prepared, as described in Section 3.
This process mainly consists of the MI analysis of vibration features, the feature selection
and input matrix formation, and the training and testing of the MLP neural network.

4.1. MI Analysis and Feature Selection

To measure the correlation between the feature and the corresponding vibration
category, the variable X can be treated as the feature vector and Y can be considered as the
corresponding vibration-type label. When using Xn groups of training and validation set
samples, as listed in Table 1, there exists a feature vector Xj with the dimensions Xn × 1.
A corresponding label vector representing the vibration types is assembled by assigning
a category label to each row of the feature vector, namely Y = {y1, y2, y3, . . . yi, . . . , yXn},
where yi is 0 when xi is the pile-construction-induced response and 1 when xi is the train-
operation-induced response.

The MI values of the sixteen feature vectors and the corresponding label vector are
shown in Figure 9; from the figure, it is evident that the frequency domain features are
most relevant to the vibration signal classification. Finally, the MI values of ten features
were found to be greater than 0.4 and were accordingly selected to form the input matrix of
the MLP neural network.
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4.2. Training and Testing of the MLP Neural Network

Based on the method described in Section 5.1, 600 feature vectors were used as the
input for the MLP network, instead of the 600 groups of vibration signals. The training set
and test set were then constructed by randomly selecting values from these vectors at a
ratio of 8:2.

Hyperparameter searching was performed when preparing the data set, as the selec-
tion of appropriate hyperparameters can ensure a smooth training process and improve
the final model training quality. The most widely used hyperparameter automatic search-
ing algorithms include the grid search method and the random search method. In the
grid search algorithm, the specified parameter array grows from different sequences and
then enters the training model to finally select the optimal set of parameters according
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to their accuracies. This approach is more suitable for cases involving fewer parameters;
as the number of hyperparameters increases, the computational complexity of the grid
search method increases exponentially. In contrast to the grid search method, the random
search method does not need to go through all possible combinations of hyperparameters;
instead, this approach defines their distributions. As a result, it has a lower calculation
complexity and, consequently, a greater efficiency when searching for a large number of
hyperparameters. Accordingly, this approach was employed in this study.

When using the random search method, the search routes begin from a random
starting parameter combination and converge to a final parameter value according to the
probability distribution of each parameter. For this purpose, in this study, a function was
coded in Python that considered the hyperparameter distributions to be uniform, and the
ratio of model accuracy to training time was used as the evaluation index. The search
parameters and results are shown in Table 3.

Table 3. Setting and results of hyperparameter searching for the MLP neural network.

Search Parameters

Search range of learning rate [0, 1) Iteration step for learning rate 0.01
Search range of calculation layers [1, 3) Number of calculation layers in each search step 1

Search range of hidden layer nodes [1, 100) Number of hidden layer nodes in each search step 10

Search results

Optimal learning rate 0.1 Optimal number of hidden layer nodes 10
Optimal number of computing layers 2 Optimal accuracy 94.68%

The MLP neural network shown in Figure 3 was trained and tested using the ten
feature vectors selected using MI analysis, as discussed in Section 4.1. Additionally, because
of the time and frequency domain features used, there is a large gap between the two types
of features in terms of values. Therefore, normalization was employed to the feature matrix
before inputting it into the training and testing network.

The changes in the loss function with the number of MLP network iterations using the
hyperparameter search results (Table 3) are shown in Figure 10a. Clearly, the loss function
decreased rapidly over the first fifty epochs before converging to 0.39 in the training set and
0.23 in the test set. Additionally, from Figure 10b, it can be observed that the final accuracy
of the network structure when using the training set was near 87.17%, and near 94.68%
when using the test set.
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4.3. The Effect of MI Analysis and Feature Selection

The feature matrix after MI analysis and the original signal samples were separately
used as the input of the MLP model to evaluate the effects of feature selection on the loss
and accuracy of the training and validation sets (Figure 11).
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The change in the loss function and recognition accuracy during model training,
obtained when using the MI analysis and feature selection, are shown in Figure 9. Ad-
ditionally, the training results without feature selection are shown in Figure 12 (all the
16 features were used). The training loss converged slowly, only reaching convergence
after 1000 epochs; the resulting accuracy was only 86.05%. Similarly, the loss of the test set
converged after nearly 1000 epochs, and the accuracy only reached 94.03%, decreasing by
0.65% before feature selection. Thus, the use of feature selection can improve the training
speed and recognition accuracy of the vibration signal source recognition method.
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Additionally, as shown in Figure 12, the confusion matrix also shows that the recogni-
tion accuracy of all the categories will decrease if the MI and feature selection are not used,
and the total accuracy decreases by 0.65%. Therefore, feature selection by the MI method
can improve the recognition accuracy.

5. Comparison with LSTM Network-Based Recognition Method
5.1. Hyperparameter Searching

Hyperparameter searching was then performed using the random search method,
similar to that performed for the MI-MLP method, as described in Section 4; the results are
shown in Table 4.

Table 4. Setting and results of LSTM network hyperparameter searching.

Search Parameters

Search range of learning rate [0, 1) Iteration step for learning rate 0.01
Search range of calculation layers [1, 3) Number of calculation layers in each search step 1

Search range of hidden layer nodes [1, 100) Number of hidden layer nodes in each search step 10

Search results

Optimal number of computing layers 2 Optimal accuracy 91.25%
Optimal number of hidden layer nodes 50

5.2. Training and Testing of LSTM Network

The LSTM network was applied to identify the vibration signals, as described in
Section 2.4 and shown in Figure 3. It should be noted that because the LSTM network offers
advantages in identifying discrete time series, the training and validation signal samples
were divided into ten time steps and directly used as the network input (Figure 13).
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Based on the hyperparameter search results, as listed in Table 4, the changes in the
loss function with the number of iteration epochs were determined, as shown in Figure 14a.
It can be observed that the loss function decreases rapidly over the first twenty epochs,
before finally converging to 0.08 for the training set and approximately 0.28 for the test set.
From Figure 7, it can be observed that the final accuracy of the network structure over the
training set was 97.7% and 91.25% over the test set.
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5.3. Method Comparison

Meanwhile, the details of the recognition results are shown in the confusion matrix in
Figure 14. The object category (1, 0, 0) (pile-driving-induced vibration recognition) achieved
an accuracy of 94.51%, correctly identifying 54 of the 75 signals, higher than that achieved
by the MLP + MI method; object category (0, 1, 0) (train operation-induced vibration
recognition) achieved an accuracy of 91.88%, correctly identifying 5293 of the 5760 signals;
and the total accuracy of the LSTM-based vibration signal recognition was 91.25%, which is
lower than the recognition accuracy obtained when using the MI-MLP method.

The LSTM has been proven to be a particularly efficient network and good at time
series prediction; therefore, the recognition accuracy for pile-driving and environment
vibration is higher than that of the MLP network. However, for the train operational signals,
as shown in Figure 8, the frequency-domain feature distribution concentration is much
better than that of the time-domain feature, and future compression and selection by the
MI method greatly improve the recognition accuracy. Meanwhile, the training of the LSTM
network took 525.35 s, much longer than that of the MLP network, which was 20.02 s. This
indicates that the use of suitable feature selection can considerably improve the training
efficiency of vibration source recognition.

6. Conclusions

This paper proposed a method for the real-time monitoring and early warning of sur-
rounding construction behaviors near underground facilities. Considering the challenges
associated with intelligent recognition owing to vibration mixing and signal acquisition
difficulties, the MI analysis and blind source separation methods were employed. The
conclusions of this work can be detailed as follows:

• The recognition accuracies obtained by the LSTM and MI-MLP methods when using
the test set were both greater than 90%, which can meet the needs of practical appli-
cations. This demonstrates the feasibility of real-time construction monitoring with
suitable recognition robustness.
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• Blind source separation can decompose mixed signals into a limited number of identi-
fiable samples, which can help minimize the number of classification categories caused
by signal mixing and improve recognition accuracy.

• Feature compression and selection after MI analysis can increase the training efficiency
and recognition accuracy. Especially for signals with a centralized distribution of
frequency domain features, the recognition accuracy of the MLP network will have a
better performance than that of a well-known time series prediction LSTM model.

The results of this study can be used to develop a real-time vibration monitoring
system for underground infrastructure that is capable of identifying the construction
activity source of a particular vibration. This will help ensure the safety of underground
infrastructure, such as transit and pipeline networks, near construction sites. Although the
proposed method was evaluated in this study using pile-driving vibrations, it should be
capable of identifying a wide range of construction activities. Therefore, future research
should focus on applying the proposed method to identify various construction activities
based on measured vibrations.
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