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Abstract: Wine grapes need frequent monitoring to achieve high yields and quality. Non-destructive
methods, such as proximal and remote sensing, are commonly used to estimate crop yield and quality
characteristics, and spectral vegetation indices (VIs) are often used to present site-specific information.
Analysis of laboratory samples is the most popular method for determining the quality characteristics
of grapes, although it is time-consuming and expensive. In recent years, several machine learning-
based methods have been developed to predict crop quality. Although these techniques require the
extensive involvement of experts, automated machine learning (AutoML) offers the possibility to
improve this task, saving time and resources. In this paper, we propose an innovative approach for
robust prediction of grape quality attributes by combining open-source AutoML techniques and
Normalized Difference Vegetation Index (NDVI) data for vineyards obtained from four different
platforms-two proximal vehicle-mounted canopy reflectance sensors, orthomosaics from UAV images
and Sentinel-2 remote sensing imagery-during the 2019 and 2020 growing seasons. We investigated
AutoML, extending our earlier work on manually fine-tuned machine learning methods. Results of
the two approaches using Ordinary Least Square (OLS), Theil-Sen and Huber regression models and
tree-based methods were compared. Support Vector Machines (SVMs) and Automatic Relevance
Determination (ARD) were included in the analysis and different combinations of sensors and data
collected over two growing seasons were investigated. Results showed promising performance of
Unmanned Aerial Vehicle (UAV) and Spectrosense+ GPS data in predicting grape sugars, especially
in mid to late season with full canopy growth. Regression models with both manually fine-tuned ML
(R2 = 0.61) and AutoML (R2 = 0.65) provided similar results, with the latter slightly improved for
both 2019 and 2020. When combining multiple sensors and growth stages per year, the coefficient of
determination R2 improved even more averaging 0.66 for the best-fitting regressions. Also, when
considering combinations of sensors and growth stages across both cropping seasons, UAV and
Spectrosense+ GPS, as well as Véraison and Flowering, each had the highest average R2 values. These
performances are consistent with previous work on machine learning algorithms that were manually
fine-tuned. These results suggest that AutoML has greater long-term performance potential. To
increase the efficiency of crop quality prediction, a balance must be struck between manual expert
work and AutoML.

Keywords: NDVI; AutoML; Bayesian optimization; ensemble methods; correlation; quality prediction;
sugars

1. Introduction

Precision viticulture is a method of managing vineyard variability by using spatiotem-
poral data and observations to maximize a vineyard’s oenological potential. New vineyard
management technologies have made it possible to increase production efficiency and
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quality while reducing environmental impacts [1,2]. In situ estimation of productivity
variables is time-consuming and unreliable. It involves visual inspection of vines and
grapes for number, color, shape, size and other information based on the grower’s own
expertise, similar to fruit trees [3]. Grape quality, which refers to the degree of excellence
of grape composition characteristics [4], is often described in terms of sugar and titratable
acidity at harvest. Currently, laboratory tests on samples are the most common method for
determining grape quality characteristics. This involves analyzing representative samples
of berries or grapes using standard wet chemical techniques on extracts obtained at regular
intervals to determine the maturity of grapes in a vineyard block [5]. Although this method
is very accurate, its main disadvantage is that it can be time-consuming and costly [6].

The use of remote sensing has become widespread in viticulture, especially for mon-
itoring grape growth and estimating grape quality and yield. Canopy response and
Normalized Difference Vegetation Index (NDVI) are commonly used for spatial decision
making in vineyards [7]. Proximal, aerial, and satellite sensors and platforms are used in
various configurations to record canopy characteristics [8,9].

In the past, research has been conducted to evaluate the quality and yield of grapes
using vegetation indexes (VIs) derived from various sensors. A common approach is
to conduct statistical and regression analyses, including descriptive statistics, Pearson
correlation to determine the spatial relationship between canopy NDVI and crop quality
and yield [10–12], and linear and multivariate regression models to determine field-wide
production [10]. In recent years, computer power has increased significantly, allowing
more sophisticated machine learning approaches to predict crop yield and quality [13–16].
Tree-based ensemble methods, such as boosted regression trees and random forests, as well
as computer vision [17,18], have also been used to test more advanced yield estimation
methods alongside linear regression models [19,20].

Machine learning-based data analysis is actively used as a fast and one of the most
effective methods to predict yield and quality. Although the application of machine learn-
ing in agriculture is new, it is currently being used at a rapid pace [21]. However, the
widespread use of machine learning techniques remains a challenge, as their successful
application is not effortless. These techniques still rely heavily on specialized human
resources [22]. They usually require the extensive involvement of experts working itera-
tively to develop the most appropriate machine learning pipeline, as the highly complex
agricultural environment requires complex algorithms for data analysis and a thorough
understanding of mathematics, coding, and extensive experience in selecting model archi-
tecture [23,24]. Moreover, any machine learning-based solution faces the “no free lunch”
theorem [25], which means that no algorithm is going to be the best solution for every
dataset; and, thus, neither the most powerful algorithm is going to work for all yield/grape
quality prediction problems. Therefore, it would be ideal if non-experts could automatically
build a machine learning pipeline tailored to each scenario.

Automated machine learning (AutoML) offers the opportunity to improve this task
and save time and human-resources by automating the time-consuming, iterative tasks
of machine learning model development, including model selection and hyperparameter
tuning. AutoML systems are meta-level machine learning algorithms that find the optimal
machine learning pipeline topologies based on previous machine learning solutions [23,24].
These systems automatically evaluate alternative pipeline designs and attempt to iteratively
improve performance for a given task and dataset [26]. Additionally, experienced engineers
can benefit from AutoML solutions that result in better models being deployed in less time.
At the same time, they can provide new users with an understanding of how such models
work, what data they require, and how they can be applied to typical agricultural problems.
However, one of the drawbacks of AutoML systems is that they require a significant amount
of computing power.

While previous research has explored various correlation and regression models
between VIs and crop production, as well as machine learning techniques for estimating
grape yield and quality, as described above, AutoML has not been widely explored. In
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the agricultural field, the use of AutoML technique has only been recorded for time series
processing and proximal and satellite imagery analysis [27,28] and weed identification [29].
In this paper, we propose an innovative approach for robust prediction of grape quality
attributes by combining open-source AutoML techniques and NDVI data for vineyards
obtained with non-destructive methods from four different platforms-two proximal vehicle-
mounted canopy reflectance sensors, orthomosaics from UAV images and Sentinel-2 remote
sensing imagery- at different growth stages during the 2019 and 2020 growing seasons.

2. Materials and Methods
2.1. Solution Workflow

In this paper, we propose an alternative approach for robust prediction of grape
quality attributes by combining open-source AutoML techniques and NDVI data collected
at different growth stages with non-destructive methods such as remote sensing currently
used in precision viticulture (Figure 1). We investigated AutoML, extending our previous
work on manually fine-tuned machine learning methods [16]. A comparison was made
between the two methods, manually fine-tuned machine learning and AutoML. Support
Vector Machines (SVMs) and Automatic Relevance Determination (ARD) were included in
the analysis and different configurations, such as using different combinations of sensors
and data collected over two growing seasons, were explored.
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Figure 1. Workflow to test the suitability of automated machine learning for predicting grape sugars
using NDVI data from proximal and remote sensing.

The study included several sets of high-resolution multispectral data obtained from
four sources, including two vehicle-mounted sensors to detect plant reflectance, data
collected by an UAV, and archived Sentinel-2 imagery to determine the characteristics of
grapevine canopies at different growth stages. Several techniques were used to preprocess
the data, including data quality assessment, interpolation of the data onto a 100-cell grid
(10 m × 20 m), and normalization of the data. The transformed data set was then processed
and applied to statistical analysis and AutoML. These algorithms were first trained on
the available data distribution and then validated and tested with linear and non-linear
regression models, including Ordinary Least Square (OLS), Theil-Sen and Huber regression
models, ensemble methods based on decision trees, Support Vector Machines (SVMs), and
Automatic Relevance Determination (ARD).
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2.2. Study Area

A commercial vineyard on the Palivos Estate in Nemea, Greece (37.8032◦, 22.69412◦,
WGS84) served as the field site for the study. The vineyard, planted with Vitis vinifera
L. cv. ‘Agiorgitiko’ for wine production, is located on a steep slope and the experimental
area selected for data collection was approximately 2 ha. Wine grapes were trained to a
vertical shoot positioned, cane pruned double Guyot training/trellis system, with northeast-
southwest row orientation.

2.3. Canopy Reflectance Data Collection

To assess NDVI at different vine phenological growth stages, canopy reflectance was
measured six times per growing season in 2019 and 2020, beginning in late May and
ending at harvest in early September. Two vehicle-mounted proximal sensors were used
to assess plant vigor at these six berry growth stages, namely (i) shoots, (ii) flowering,
(iii) setting, (iv) pea-sized berries, (v) véraison, (vi) harvest, while a UAV and Sentinel-2
satellite imagery were used to assess plant vigor through remote sensing. A CropCircle,
active proximal canopy sensor (ACS-470, Holland Scientific Inc., Lincoln, NE, USA) and a
Spectrosense+ passive GPS sensor (Skye Instruments Ltd., Landrindod Wells, UK) were
mounted on a tractor at the correct height from the soil surface and horizontally at an
appropriate distance from the vines during each growth stage to record proximal reflectance
measurements from the side and top of the canopy, respectively (Figure 2a). A Garmin
GPS16X HVS (Garmin, Olathe, Kansas, USA) and the built-in Spectrosense + GPS were
used to georeference all recorded data. Aerial data were collected on the same dates as
the proximal measurements using a Phantom 4 Pro drone (Dà-Jing Innovations, Shenzhen,
Guangdong, China) equipped with a multispectral Parrot Sequoia+ camera (Parrot SA,
Paris, France) and GPS so that all photos could be geotagged (Figure 2b). Cloud-free and
atmospherically corrected Sentinel-2 satellite images, 2A products with a spatial resolution
of 10 m (S2 spectral bands operate at the different spatial resolution of 10 m -4 bands, B2,
B3, B4, and B8), were acquired via the ESA portal, the official Copernicus Open Access Hub
(www.scihub.copernicus.eu, accessed on 2 October 2020), providing reflectance values at
the bottom of the atmosphere in cartographic geometry for the data closest to the proximal
and UAV surveys. This generally occurred within 2 days during mid-and late-season
surveys, but was as much as 9 days after preseason ground-based observations due to
heavy cloud cover in the closest digestion dates (Table 1).
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Table 1. Grapevine seasonal EL growth stages of proximal and remote sensing data acquisition. Dates
reported in Table 1 relative to both seasons (2019 and 2020).

Dates EL No-Stage Description

15 May–30 May 12-Shoots 5 leaves separated; shoots about
10 cm long; inflorescence clear

1 June–20 June 23-Flowering 16–20 leaves separated; 50%
caps off

21 June–20 July 27-Setting Young berries enlarging, bunch
at right angles to stem

21 July–15 August 31-Berries pea-sized About 7 mm in diameter

16 August–10 September 35-Véraison Berries begin to color and
increase in size

11 September–20 September 38-Harvest Berries ready for harvest

2.4. Data Preparation

All proximal canopy reflectance data were projected (UTM Zone 34N), cleaned by
deleting data points outside field boundaries, and interpolated according to Taylor et al.
(2007) [30]. ArcMap v10.3 (ESRI, Redlands, CA, USA) was used to scale up the interpolated
data to 10 m × 20 m cells. The Zonal Statistics tool was used to display the index values
per block based on the average of the pixels located in the same area. In this way, 100 plots
were created throughout the study region, resulting in NDVI map time series with a spatial
resolution of 10 m × 20 m that were aligned parallel to the trellis lines. Similarly, Pix4D
software (Pix4D S.A., Prilly, Switzerland) was used to integrate data acquired by drone,
and the resulting NDVI orthomosaic was fitted to vineyard boundaries. The data were
then upscaled to the same 100 plots using an averaging method. Prior to upscaling the
data to the 10 m × 20 m plots, a spatial correction of the NDVI values within the plots
was applied to the Sentinel-2 imagery that followed the boundaries of the experimental
field(Figure 3). The “Shift (Data Management)” command was used, which moves the grid
to a new geographic position based on x and y offset values.
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2.5. Qualitative Characters Analysis

Grapes were harvested by hand at the end of each growing season in mid-September. A
standard grid of 100 cells (10 m × 20 m) covering the entire area was configured to facilitate
field sampling and to evaluate grape yield and quality. Total yield was calculated by
counting the total number of crates filled with grapes per cell and multiplying this number
by the average crate weight of harvested grapes [11,12]. By randomly selecting fifty berries
from each vineyard cell, the qualitative characteristics of the grapes were analyzed. Total
soluble solids (◦Brix), total titratable acidity and pH of the berries, must and wines were
determined. Qualitative analysis of the common vineyard quality indicators, total soluble
solids in must, total titratable acidity and pH, was performed according to Stavrakaki et al.
(2018) [31] at the Laboratory of Viticulture, Agricultural University of Athens.

2.6. Statistical Analysis

A preliminary descriptive statistical analysis was performed to investigate the effec-
tiveness of proximal and remote sensing in predicting grape quality. In the exploratory
correlation analysis, the Pearson correlation matrix was used to evaluate the relationships
between NDVI data from all four proximal and remote sensors and grape quality attributes.

2.7. Architecture of the Solution

Figure 4 shows how the AutoML-based solution is envisioned for the prediction of any
precision agriculture metrics, such as yield or sugar ◦Brix content. Given some measure-
ments from different sensors on different growth stages, the Bayesian optimization method
that runs under the AutoML solution will find the best combination of algorithms and
hyper-parameters. It is important to note that every machine learning algorithm has a differ-
ent set of hyper-parameters to fine-tune. This means that there is no a priori knowledge of
the best fit, and they are not optimized during the learning process. For instance, the num-
ber of trees for Random Forests and AdaBoost, the split criterion (e.g.: Gini, Entropy, etc.)
for all tree-based methods, and the sensitivity against outliers of robust linear regression
methods, such as Theil-Sen or Huber. The AutoML will find the best combination of these
hyper-parameters before deciding which is the best machine learning method to use. The
use of ensembles of fine-tuned pipelines is out of the scope of this paper. As an example,
Figure 4 depicts a combination of UAV data on Berries pea-sized and Theil-Sen regression
as the best pipeline for predicting the Sugar ◦Brix Content. This pipeline optimization is
done manually when not using AutoML.
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2.8. Regression Methods and AutoML Setup

Although AutoML could use an endless bunch of machine learning algorithms, in
this work, AutoML was investigated to extend our previous work on manually fine-tuned
machine learning methods [16]. Linear and nonlinear regression algorithms were used,
including Ordinary Least Square, Theil-Sen, and Huber regression models, as well as
decision trees, depending on which initial model was developed.

• Ordinary Least Square (OLS): The most common estimation method for computing
linear regression models, which can be found in related works such as, Prasetyo et al.
(2018) [32].

• Theil-Sen Estimator Method: It is the most popular non-parametric technique for
estimating a linear trend, and makes no assumption about the underlying distribution
of the input data [33].

• Huber Regression: It is aware of the possibility of outliers in a dataset and assigns
them less weight than other samples, unlike Theil-Sen, which ignores them [34].

• Decision Trees: This method uses a non-parametric learning approach. Its main
advantage is that it is easy to interpret. Unless the model is too complicated, it can be
visualized to better understand why the classifier made a particular decision.

To improve the predictive power of our model, this study also evaluated several
ensemble methods based on decision trees such as AdaBoosting, Random Forests, and
Extra Trees. These combine the predictions of multiple machine learning algorithms to
make more accurate predictions than the individual models. All of these ensemble methods
start with a decision tree and then use boosting or bootstrap aggregation to reduce its
variance and bias (bagging).

• AdaBoost: The AdaBoost algorithm (adaptive boosting) uses an ensemble learning
technique known as boosting, in which a decision tree is retrained several times, with
greater emphasis on data samples where regression is imprecise [35].

• Random Forest: A supervised learning approach in which the ensemble learning
method is used for regression. This combines numerous decision tree regressors into a
single model trained on many data samples collected on the input feature (in this case,
NDVI) using the bootstrap sampling method [36].

• Extremely Randomized Trees: Extra Trees is similar to Random Forest in that it
combines predictions from many decision trees, but instead of bootstrap sampling, it
uses the entire original input sample [37].

Although tree-based approaches offer a way to go beyond parametric model con-
straints, they have the disadvantage of being computationally more expensive than tradi-
tional OLS. However, they should be a good technique to address the regression modeling
problem if the performance differences are large enough.

The results of the two approaches, manually fine-tuned machine learning and AutoML,
using the above methods were compared. In addition, Support Vector Machines (SVM)
and Automatic Relevance Determination (ARD) were included in the analysis and different
combinations of sensors and data collected over two growing seasons were examined.

• Support Vector Machines: It is one of the most robust prediction methods. The (non-
linear) model produced by this algorithm depends only on a subset of the training
data because the cost function does not take into account any training data close to the
model predictions [38].

• Automatic Relevance Determination: It is the regularization of the solution space
using a parameterized, data-dependent priority distribution that effectively removes
redundant or superfluous features [39].

Moreover, since according to Gupta (2018) [40], it is possible to make better predictions
when only a few variables are considered rather than all attributes, all NDVI measure-
ments were studied individually and using combinations of two. Consequently, some
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automation is lost, but a richer analysis for research and knowledge dissemination purposes
could be done.

2.9. Evaluation Methodology

The coefficient of determination (R2) and root mean square error (RMSE) were used
to evaluate the predictive accuracy and determine the performance of the models for the
best sensor or season [12,41–43]. In addition, a 5-fold cross-validation was performed for
each regression model to check its generalization ability and ensure its robustness. The
experiments were also repeated 10 times to ensure that the final results were as accurate
as possible.

2.10. Software and Hardware

The main software package used in this study was the Auto-Sklearn machine learning
library (version 0.14.2). Auto-Sklearn is an open-source library that uses the Scikit-Learn
machine learning library (version 0.24.2) for data transformations and machine learning to
perform AutoML [23,44]. Its deployment is very similar to that of the data scientist, which
increases the reliability of the process. It finds a powerful model pipeline for a given set
of features by using a Bayesian optimization search approach. The experiments were all
performed on Ubuntu 18.04 as the operating system.

3. Results
3.1. Exploratory Correlation Analysis

In an exploratory correlation analysis, the Pearson correlation matrix was used to eval-
uate the correlations between the NDVI data of all four proximal and remote sensors and
the grape quality indices. Absolute correlations between NDVI data from all four proximal
and remote sensors and total soluble solids, sugar content measured in ◦Brix (|r| > 0.50),
were typically good for both 2019 and 2020, with the signal stabilizing in the middle and
end of the growing season. During the pea-sized berries and ripening season in 2019, the
Spectrosense + GPS data showed the highest correlation (|r| = 0.74). (i.e., mid and late
season at full canopy growth). The UAV data had the strongest correlations (|r| = 0.79)
during the same growth stages in 2020. All Sentinel-2 NDVI variables had weak associa-
tions (0.29 < |r| < 0.57) compared to total soluble solids. Total titratable acidity and pH,
the other two important grape quality criteria, were not associated with NDVI data at any
vine phenological growth stage. The full results were presented and discussed in detail in
our earlier paper [16].

3.2. Regression Analysis
3.2.1. Comparing Manually Fine-Tuned ML and AutoML

The manually fine-tuned regression models between the NDVI data of all four sensors
and the total soluble solids showed different degrees of accuracy depending on the fitted
model, the sensor used and the growth stage evaluated [16]. The best-fitting regressions,
both linear and nonlinear, were observed mainly for UAV and Spectrosense + GPS data,
in mid-late season with full canopy growth, during pea-sized berries and at the Véraison
growth stage. The best-fitting model was found to estimate total soluble solids during
Véraison, with a coefficient of determination R2 in the range of (0.38 < R2 < 0.61) for
both 2019 and 2020. The highest coefficient of determination for the regression models
(R2 = 0.61) was observed for the UAV-derived NDVI data for 2020, while for 2019 the
canopy reflectance data derived from the CropCircle and Spectrosense + GPS proximal
sensors appeared to have better performance in predicting grape quality traits. When using
AutoML, the R2 values improved slightly to (0.49 < R2 < 0.65) for both 2019 and 2020. Similar
to the manually fine-tuned ML, AutoML gave the maximum coefficient of determination
of R2 = 0.65 for the UAV-derived NDVI data for 2020 during Véraison and R2 = 0.57 for
the Spectrosense + GPS data for 2019. Finally, the RMSE is generally reduced when using
AutoML. The selected best results of the AutoML regression algorithms compared to the
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manually fine-tuned algorithms for the evaluation of grape quality attributes are shown in
Table 2.

Table 2. Comparison of selected best R2 values with (a) Manually fine-tuned ML (adapted from
Kasimati et al., 2021a) and (b) AutoML to evaluate their performance in assessing the wine grapes
quality characteristics (CC, CropCircle; SS, Spectrosense + GPS; UAV; and S2, Sentinel-2).

(a) Manually Fine-Tuned ML (b) AutoML

Sensor_Growth Stage R2 (avg) RMSE Sensor_Growth Stage R2 (avg) RMSE

2019

SS_Véraison 0.51 ± 0.09 1.45 ± 0.19 SS_Véraison 0.57 ± 0.05 1.14 ± 0.29
CC_Véraison 0.42 ± 0.10 1.67 ± 0.35 UAV_Véraison 0.52 ± 0.04 1.22 ± 0.25
SS_Berries pea-sized 0.41 ± 0.11 1.71 ± 0.24 S2_Berries pea sized 0.49 ± 0.06 1.30 ± 0.48
UAV_Véraison 0.38 ± 0.10 1.95 ± 0.55 CC_Véraison 0.49 ± 0.08 1.25 ± 0.26

2020

UAV_Véraison 0.61 ± 0.03 1.37 ± 0.19 UAV_Véraison 0.65 ± 0.04 1.22 ± 0.36
UAV_Berries pea-sized 0.57 ± 0.04 1.55 ± 0.32 UAV_Flowering 0.59 ± 0.05 1.30 ± 0.41
UAV_Flowering 0.56 ± 0.06 1.75 ± 0.19 UAV_Berries pea sized 0.59 ± 0.05 1.31 ± 0.32
SS_Setting 0.44 ± 0.0 1.73 ± 0.23 SS_Setting 0.54 ± 0.03 1.44 ± 0.53

3.2.2. Combination of Sensors and Growth Stages

Using AutoML, several combinations of sensors and growth stages per year were
investigated to evaluate their performance in assessing grape quality attributes. The
coefficient of determination R2 of 0.57 to 0.66 for the two years was significantly better than
when only one sensor/growth stage was considered. For 2019, the best fitting regressions
(R2 = 0.58) were observed for Spectrosense + GPS NDVI data in combination with the other
sensors (CropCircle, UAV and Sentinel-2) mainly during Véraison. On the other hand,
for 2020, the best fitting regressions (R2 = 0.66) for UAV NDVI data in combination with
the other sensors (CropCircle, Spectrosense + GPS and Sentinel-2) were observed mainly
during Véraison, but also during Flowering. The selected best R2 per year for combined
sensors and growth stages using AutoML to evaluate their performance in assessing grape
quality traits are shown in the following table (Table 3).

Table 3. Selected best performed R2 per year for combined sensors and growth stages using AutoML
to evaluate their performance in assessing the wine grapes quality characteristics (legend as for
Table 2).

Combined Sensor_Growth Stage R2 (avg) RMSE

2019

SS_Véraison + UAV_Véraison 0.58 ± 0.06 1.08 ± 0.33
SS_Véraison + UAV_Setting 0.57 ± 0.06 1.08 ± 0.34
SS_Véraison + CC_Véraison 0.57 ± 0.08 1.09 ± 0.3
SS_Véraison + S2_Véraison 0.57 ± 0.07 1.10 ± 0.35

2020

UAV_Véraison + SS_Véraison 0.66 ± 0.07 1.16 ± 0.36
UAV_Véraison + S2_Véraison 0.66 ± 0.07 1.17 ± 0.35

UAV_Véraison + S2_Flowering 0.66 ± 0.06 1.17 ± 0.34
CC_Flowering + UAV_Véraison 0.65 ± 0.07 1.19 ± 0.38

The best sensor-based R2 and growth stage-based R2 per year for combined sensors
and growth stages using AutoML to evaluate their performance in assessing grape quality
traits are also presented below in Tables 4 and 5. Considering the ‘sensor’ as the common
denominator, the coefficient of determination R2 between 0.44 and 0.54 for 2019 and 0.31
and 0.64 for 2020. The Spectrosense + GPS (0.52 < R2 < 0.54), followed by the CropCircle
(R2 = 0.48), appears to perform better in predicting TSS in 2019, especially at the Véraison,
Flowering and Berry pea-sized growth stages, while the UAV (0.46 < R2 < 0.47) and Sentinel-
2 (R2 = 0.44) sensors follow. Keeping the sensor as a constant, the change in prediction
performance within the growth stages is very small. For 2020, the UAV and Spectrosense +
GPS perform best in the evaluation of grape quality attributes (R2 > 0.5) among different
combinations of growth stages. The NDVI data derived from CropCircle do not seem



Sensors 2022, 22, 3249 10 of 18

to be able to provide good insight into grape sugar estimation, giving low R2 values
(0.31 < R2 < 0.34), while the Sentinel-2 images do not provide any information for assessing
grape quality in 2020.

Table 4. Selected best performed sensor-based R2 per year for combined sensors and growth stages
using AutoML to evaluate their performance in assessing the wine grapes quality characteristics
(legend as for Table 2).

Sensor-Based
Combined Sensor_Growth Stages R2 (avg) RMSE

2019

SS_Véraison +
SS_Flowering 0.54 ± 0.06 1.13 ± 0.29
SS_Véraison 0.53 ± 0.08 1.14 ± 0.32
SS_Berries pea sized 0.52 ± 0.08 1.13 ± 0.21

CC_Véraison + CC_Véraison 0.48 ± 0.15 1.20 ± 0.34

UAV_Véraison +
UAV_Flowering 0.47 ± 0.12 1.21 ± 0.29
UAV_Berries pea sized 0.46 ± 0.14 1.22 ± 0.19
UAV_Setting 0.46 ± 0.11 1.24 ± 0.33

S2_Berries pea sized + S2_Flowering 0.44 ± 0.22 1.24 ± 0.38

2020

UAV_Véraison +
UAV_Flowering 0.64 ± 0.08 1.20 ± 0.36
UAV_Berries pea sized 0.64 ± 0.07 1.20 ± 0.39
UAV_Setting 0.62 ± 0.11 1.22 ± 0.42

SS_Setting +
SS_Flowering 0.55 ± 0.07 1.35 ± 0.37
SS_Véraison 0.53 ± 0.07 1.36 ± 0.38
SS_Harvest 0.51 ± 0.06 1.39 ± 0.32

CC_Setting +
CC_Berries pea sized 0.34 ± 0.1 1.62 ± 0.58
CC_Harvest 0.32 ± 0.13 1.66 ± 0.82
CC_Véraison 0.31 ± 0.15 1.65 ± 0.66

Table 5. Selected best performed growth stage-based R2 per year for combined sensors and growth
stages using AutoML to evaluate their performance in assessing the wine grapes quality characteris-
tics (legend as for Table 2).

Growth Stage-Based
Combined Sensors_Growth Stage R2 (avg) RMSE

2019

SS_Véraison +
UAV_Véraison 0.58 ± 0.06 1.08 ± 0.33
CC_Véraison 0.57 ± 0.08 1.09 ± 0.3
S2_Véraison 0.57 ± 0.07 1.10 ± 0.35

S2_Berries pea sized +
UAV_Berries pea sized 0.47 ± 0.01 1.22 ± 0.31
SS_Berries pea sized 0.42 ± 0.24 1.25 ± 0.29
CC_Berries pea sized 0.39 ± 0.18 1.31 ± 0.43

UAV_Flowering + SS_Flowering 0.38 ± 0.17 1.32 ± 0.48
CC_Flowering 0.38 ± 0.11 1.33 ± 0.48

2020

UAV_Véraison +
SS_Véraison 0.66 ± 0.07 1.16 ± 0.36
S2_Véraison 0.66 ± 0.07 1.17 ± 0.35
CC_Véraison 0.64 ± 0.07 1.20 ± 0.37

UAV_Flowering +
S2_Flowering 0.58 ± 0.08 1.29 ± 0.37
UAV_Flowering 0.58 ± 0.07 1.29 ± 0.35
CC_Flowering 0.58 ± 0.07 1.29 ± 0.34

UAV_Berries pea sized + CC_Berries pea sized 0.55 ± 0.08 1.33 ± 0.44
SS_Berries pea sized 0.55 ± 0.08 1.34 ± 0.43

SS_Setting + UAV_Setting 0.52 ± 0.09 1.38 ± 0.39
S2_Setting 0.52 ± 0.07 1.39 ± 0.35

Taking ‘growth stage’ as the common denominator, the coefficient of determination
R2 varies between 0.38 and 0.58 for 2019 and between 0.52 and 0.66 for 2020. Véraison
(R2 < 0.57) is the growth stage that gives the best prediction for TSS in both years followed
by the Berries pea-sized (0.39 < R2 < 0.47) and Flowering (R2 = 0.58) in 2019 and 2020,
respectively, regardless of the sensing system used. Holding the growth stage constant, the
change in predictive performance between the different sensors is very small or even zero.
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3.2.3. Combinations over the Two Growing Seasons, 2019 and 2020

The next step was to investigate the predictive power of different combinations of
sensors and growth stages over the two growing seasons 2019 and 2020. Considering
both years and different growth stages, the UAV and Spectrosense + GPS have the highest
average R2 values of 0.55 and 0.53, respectively (Table 6). The sensor systems CropCicle and
Sentinel-2 seem to perform weaker in the evaluation of the grape quality attributes with R2

values between 0.24 and 0.36. Figure 5 shows the best R2 value for combined sensors and
growth stages over the two growing seasons for a given sensor, which also demonstrates
the superiority of UAV and Spectrosense + GPS in predicting grape quality.

Table 6. Given a specific sensor, the best combination of growth stages and the corresponding best
R2 over the two growing seasons (2019 and 2020), using AutoML to assess their performance in
evaluating grape quality attributes (legend as for Table 2).

Sensor Combined Growth Stages R2 (avg) RMSE

CropCircle Setting + Véraison 0.36 ± 0.18 1.47 ± 0.5
Spectrosense + GPS Véraison + Flowering 0.53 ± 0.1 1.26 ± 0.3

UAV Véraison + Flowering 0.55 ± 0.06 1.20 ± 0.31
Sentinel-2 Flowering + Berries pea sized 0.24 ± 0.16 1.63 ± 0.55
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Figure 5. Given a specific sensor (CropCircle, Spectrosense + GPS, UAV, Sentinel-2), selected best
performed R2 for the combination of sensors and growth stages over the two growing seasons (2019
and 2020), using AutoML to assess their performance in evaluating grape quality attributes (legend
as for Table 2).

Looking at both years and sensors, the Véraison and Flowering growth stages appear
to have the highest average R2 values of 0.62 and 0.48, respectively (Table 7). The Setting
and Berry pea-sized growth stages seem to perform worse in the evaluation of the grape
quality attributes with R2 values between 0.30 and 0.36. Figure 6 shows the best R2 values
for combined sensors and growth stages across the two growing seasons when considering
a specific growth stage. This also shows that collecting NDVI data during Véraison and
Flowering is useful for better prediction of grape quality.



Sensors 2022, 22, 3249 12 of 18

Table 7. Given a specific growth stage, the best combination of sensors and the corresponding best
R2 over the two growing seasons (2019 and 2020), using AutoML to assess their performance in
evaluating grape quality attributes (legend as for Table 2).

Sensor Combined Growth
Stages R2 (avg) RMSE

Flowering CC + UAV 0.48 ± 0.04 1.31 ± 0.41
Setting CC + UAV 0.36 ± 0.14 1.46 ± 0.48

Berries pea-sized SS + S2 0.30 ± 0.19 1.55 ± 0.47
Véraison UAV + SS 0.62 ± 0.05 1.13 ± 0.34

Sensors 2022, 22, 3249 13 of 19 
 

 

 
Figure 6. Given a growth stage (Flowering, Setting, Berries pea-sized, Véraison) selected best per-
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Figure 6. Given a growth stage (Flowering, Setting, Berries pea-sized, Véraison) selected best
performed R2 for the combination of sensors and growth stages over the two growing seasons (2019
and 2020), using AutoML to assess their performance in evaluating grape quality attributes (legend
as for Table 2).

Using AutoML, a number of regression algorithms, namely OLS, Theil-Sen and Huber
regression models, tree-based methods SVMs and ARD, were explored in the analysis.
Table 8 shows them in alphabetical order along with the corresponding R2 values and
ranking of the best solutions. ARD, Huber regression and SVM have the highest R2 values
and at the same time the highest positions in the ranking, while Random Forest had the
lowest R2 values and yet was ranked as the second best solution. This is due to the fact that
Random Forest acts as an “all-rounder” algorithm that gives decent results for all sensors
and growth stages. In general, the tree ensembles performed poorly overall, which may
well be related to the low predictive power of decision trees in this problem (R2 = 0.45).

Table 8. List of the algorithms used in AutoML to assess their performance in evaluating grape
quality attributes, the corresponding R2 values and the ranking of each algorithm.

Algorithm R2 (avg) Best Solution (Rank)

Adaboost 0.44 ± 0.09 7
ARD 0.53 ± 0.09 3

Decision Tree 0.45 ± 0.11 8
Extra Trees 0.43 ± 0.08 9

Huber Regression 0.52 ± 0.12 4
SVM 0.52 ± 0.12 1

Random Forest 0.41 ± 0.09 2
OLS 0.51 ± 0.09 6

Theil-Sen Regression 0.51 ± 0.12 5



Sensors 2022, 22, 3249 13 of 18

4. Discussion

This work extended and enriched our earlier research on manually fine-tuned machine
learning methods [16]. An innovative approach for robust prediction of grape quality
attributes was proposed by combining open-source AutoML techniques and vineyard
NDVI data collected at different growth stages with non-destructive methods such as
remote sensing. While previous research has explored various correlation and regression
models between VIs and crop production, as well as machine learning techniques for
estimating grape yield and quality, AutoML has not been extensively explored, as described
above. In the agricultural field, the use of AutoML technique has only been recorded for
time series processing and analysis of proximal and satellite imagery [27,28] and weed
identification [29]. The results of the manually fine-tuned ML and AutoML using OLS,
Theil-Sen and Huber regression models and tree-based methods were compared. SVMs
and ARD were included in the analysis and different combinations of sensors and data
collected over two growing seasons were investigated. In addition, a 5-fold cross-validation
was performed for each regression model to check its generalization ability and ensure its
robustness. The experiments were also repeated 10 times to ensure that the final results
were as accurate as possible.

Several research studies have been conducted, especially in the last few decades,
looking at the use of proximal and remote sensors in viticulture. Bramley et al. [45],
Primicerio et al. [46], Taskos et al. [47], Reynolds et al. [48], and Darra et al. [12] used VIs
from proximal and remote sensing imagery to assess vineyard condition and its relationship
with yield variability, while Sozzi et al. [49] and Matese et al. [50] used VIs from S2 and UAV
sensors to monitor vineyards. Arnó et al. [51] and Henry et al. [52] used different proximal
sensors to assess vineyard characteristics, while other researchers, such as Xue and Su [53],
used different remote sensors (hyperspectral or thermal) for the same reason. Multi-annual
measurements during different growth stages, as selected in the present study, seem to be a
reliable source of information to draw reliable conclusions about plant development, as
investigated and highlighted in several other previous studies, e.g., by Lamb et al. [54],
Kazmierski et al. [55], Anastasiou et al. [42]. The correlation analysis for each development
stage separately aimed to distinguish the most important period for plant development
and its correlation with production.

The canopy reflectance data recorded by all four sensors, i.e., the pure NDVI of the
vines extracted from two proximal sensors, a CropCirle and a Spectrosense + GPS, as well
as the ‘mixed pixel’ of the UAV and Sentinel-2 images, showed an increasing correlation
with the total soluble solids as the season, according to the exploratory correlation analysis.
NDVI data collected with the UAV, Spectrosense + GPS, and the CropCircle during the
Berries pea-sized and Véraison stages, in the middle-late season with full canopy growth,
showed the highest correlations with sugar content in both years. Similar results, showing
that NDVI at late developmental stages has good correlations with crop yield and attributes
of TSS, were also found by other researchers in Greek viticultural systems [11,56,57]. Rela-
tionships between mid- to late-season NDVI and yield were also found by Garcia-Estevez
et al. (2017) in Spain [58] (Véraison NDVI) and Sun et al. (2017) (pre-harvest NDVI) in
California [10]. The lower correlation coefficients collected with Sentinel-2 and analyzed
with an overhead ‘mixed pixel’ technique showed that the predictions for grape quality
were less reliable. The difference between the strong correlations of the Sentinel NDVI
layers with the other sensors in 2019 and the weaker correlations of these satellite layers
with all other sensors in 2020 was a troubling result of the analysis. It also indicated a
divergence between the satellite platform and the terrestrial and UAV observations in close
proximity, even when these higher resolution data were upscaled and correlations were per-
formed at a similar scale to the satellite imagery. The reason for the lower satellite imagery
performance in 2020 is unknown, and there was no clear evidence of system failure. In
contrast, the two other primary quality parameters for wine grapes, total titratable acidity
and pH, showed no correlation with the NDVI data at any crop stage.
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The regression models between NDVI data from all four proximal and remote sensors
and total soluble solids gave similar results with both manually fine-tuned ML and AutoML,
with the latter slightly improved for both 2019 and 2020. These results are in line with
Bhatnagar and Gohain (2020), who used decision tree and random forest-based machine
learning algorithms to estimate crop yields by comparing their values with NDVI data,
resulting to an R2 = 0.67 [59]. More accurate predictions of grape quality were obtained
when NDVI data were collected close to harvest date, although promising results were
also obtained for early season, as also noted in the study by Ballesteros et al. (2020) [14].
Different degrees of accuracy were observed depending on the sensor used and the growth
stage assessed. The UAV and Spectrosense + GPS data were found to be more accurate in
predicting sugar content from all grape quality attributes, especially in mid-late season at
full canopy growth, Berries pea-sized and Véraison growth stages, achieving a coefficient
of determination of R2 = 0.65 for the UAV-derived NDVI data for 2020 during Véraison and
R2 = 0.57 for the Spectrosense + GPS data for 2019. This is due to the fact that NDVI data
from both proximal and remote sensing show strong similarities between NDVI values
obtained from similar sensors in both statistical and production contexts, but diverge with
increasing distance between platforms, resulting in NDVI maps that are not the same when
converted to production decisions [60].

When combining multiple sensors and growth stages per year, the coefficient of
determination R2 improved. For 2019, the best-fitting regressions for Spectrosense + GPS
NDVI data in combination with the other sensors (CropCircle, UAV and Sentinel-2) were
mainly observed during Véraison. On the other hand, for 2020, the best fitting regressions
for UAV NDVI data in combination with the other sensors (CropCircle, Spectrosense +
GPS and Sentinel-2) were observed mainly during Véraison, but also during Flowering.
The situation is similar when looking at the combinations of sensors and growth stages
across the two growing seasons 2019 and 2020: the sensors UAV and Spectrosense + GPS
as well as Véraison and Flowering each have the highest average R2 values. The sensor
systems CropCicle and Sentinel-2 seem to be weaker in the evaluation of grape quality traits
together with the Setting and Berry pea-sized growth stages. This means that if one has to
choose a sensor to invest in to collect NDVI data to predict grape quality traits, the best
options are a UAV or a Spectrosense + GPS. Similarly, if someone is able to collect NDVI
data only twice during the growing season, the best times during the growing season are
the Véraison and Flowering growth stages. Finally, a number of regression algorithms were
tested using AutoML. ARD, Huber Regression and SVM had the highest R2 values and at
the same time the highest positions in the ranking, while Random Forest had the lowest R2

values and yet was ranked as the second best solution. This is due to the fact that Random
Forest acts as an “all-rounder” algorithm that gives decent results for all sensors and growth
stages. It is important to note, however, that deciding which specific regressors to use is
not a critical issue when using AutoML. On the other hand, since resources are always
scarce, knowing which algorithms are the most promising and focusing on them could save
computational and thus economic resources. From a viticultural perspective, the improved
predictive power of AutoML offers the opportunity to reduce the cost of data collection,
either by making the most appropriate investment in sensor systems and/or by identifying
the best combination of sensors and vine growth stage to perform measurements. In the
long term, it is proposed to use two sensors for more robust prediction of grape quality
characteristics, as not all combinations work.

Therefore, better performance has been achieved by using AutoML, which frees the
machine learning user from selecting algorithms and tuning hyperparameters, and takes
advantage of Bayesian optimisation and meta-learning. The AutoML system of choice
was Auto-sklearn because of its excellent results and deployment capabilities. It showed
improved performance over the state of the art for various combinations within the dataset.
Since Auto-sklearn is based on the algorithms of ML implemented in the Scikit-learn library,
its application would be very similar to that of the data scientist, increasing the reliability
of the process. One of the implementations that have made a great advance in automating
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modeling is the use of meta-learning techniques as implemented in Auto-sklearn. This
replaces the “intuition at first sight” of the experts with learning from the obvious features
of the input data. On the other hand, it is important to note that the performances came
from different machine learning algorithms/pipelines. For example, in the ten experiments
where UAV_Véraison was used as NDVI input, five used SVM, three used Huber regression
and two used OLS. Unlike our previous research where both NDVI input and regression
methods were discussed equally, in this research the regression methods are secondary
and subordinate to AutoML consistency to achieve the best performance. According to the
results presented and considering the No Free Lunch theorem, it can be discussed that it
would be more informative to discuss methods that automatically fine-tune different ML
pipelines where the specific regressor (e.g., SVM, Adaboost, etc.) is only a hyperparameter,
rather than emphasizing the superiority of a specific machine learning method.

For some specific sensors and growth stages, the performances achieved were high.
For example, UAV_Véraison + SS _Véraison with an R2 between 0.58 for 2019 and 0.66 for
2020 with an RMSE of 1.08–1.16. One could debate whether this is the minimum error that
can be achieved. As the use of ensemble construction is outside the scope of the AutoML
pipeline studied in this paper, it cannot be claimed that the reported results are the best
that can be achieved with AutoML technology. For example, using bagging, boosting or
stacking as ensemble frameworks that reuse the best performing pipelines could improve
performance and should be explored in future work. Finally, it could be discussed that
even the most sophisticated AutoML method could fail in finding a predictive relationship
if some specific NDVI measurements are used that are obviously unrelated and could be
used as part of an over-fitted model.

5. Conclusions

This paper investigates the application of open-source AutoML and multi-platform
multi-temporal NDVI data for the evaluation of quality attributes of grapes. This extends
and strengthens the results of our previous research on manually fine-tuned machine
learning methods [16]. Descriptive statistical analysis showed that the NDVI data from
overhead systems (UAV and Spectrosense + GPS) and CropCircle, during the Berries
pea-sized and Véraison stage, in the middle-late season with full canopy growth, had the
strongest correlations with sugar content for both years, while the Sentinel-2 images were
less reliable for predicting grape quality attributes. The Sentinel-2 data showed significantly
weaker correlations with TSS, indicating a problem with their quality, especially for 2020.
This is an indication that the use of proximal sensing can provide earlier and more accurate
estimates of important quality attributes without being compromised by soil background
effects and lower resolution, as is the case with satellite-based NDVI data. Regression
models gave similar results with both manually fine-tuned ML and AutoML, with the
latter slightly improved for both 2019 and 2020. When combining multiple sensors and
growth stages per year, the coefficient of determination R2 improved even more. Similarly,
when looking at the combinations of sensors and growth stages across both 2019 and 2020
cropping seasons, the overhead sensors, as well as Véraison and Flowering, each have
the highest average R2 values. A number of regression algorithms have been tested with
AutoML and produced better results than manually fine-tuned ML. These performances
come from different machine learning algorithms/pipelines, thus increasing predictive
power and providing a more reliable and sustainable solution that can be used in the
long term. This research will be extended by evaluating bagging, boosting or stacking as
ensemble frameworks that reuse the best performing pipelines and investigating whether
they could lead to better performance. Finally, given the perennial nature of grapevines
and the various environmental and endogenous factors that determine quality, seasonal
calibration for quality prediction should be considered in future research.
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