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Abstract: The use of the Unmanned Aerial Vehicles (UAV) and Unmanned Aircraft System (UAS) for
civil, scientific, and military operations, is constantly increasing, particularly in environments very
dangerous or impossible for human actions. Many tasks are currently carried out in metropolitan
areas, such as urban traffic monitoring, pollution and land monitoring, security surveillance, delivery
of small packages, etc. Estimation of features around the flight path and surveillance of crowded areas,
where there is a high number of vehicles and/or obstacles, are of extreme importance for typical UAS
missions. Ensuring safety and efficiency during air traffic operations in a metropolitan area is one of
the conditions for Urban Air Mobility (UAM) operations. This paper focuses on the development of a
ground control system capable of monitoring crowded areas or impervious sites, identifying the UAV
position and a safety area for vertical landing or take-off maneuvers (VTOL), ensuring a high level
of accuracy and robustness, even without using GNSS-derived navigation information, and with
on-board terrain hazard detection and avoidance (DAA) capabilities, in particular during operations
conducted in BVLOS (Beyond Visual Line Of Sight). The system is composed by a mechanically
rotating real-time LiDAR (Light Detection and Ranging) sensor, linked to a Raspberry Pi 3 as SBC
(Session Board Controller), and interfaced to a GCS (Ground Control Station) by wireless connection
for data management and 3-D information transfer.

Keywords: UAV; UAS; LiDAR; urban air mobility; safe landing area determination; obstacle detection
and avoidance

1. Introduction

The use of autonomous, semi-autonomous or remotely controlled Unmanned Aerial
Vehicles (UAVs) has considerably increased during the last years, thanks to ease of use,
flexibility and versatility, low price, and advances in battery endurance, motor, stabilization
techniques, navigation, and onboard sensor technology [1]. UAV refers only to the vehicle,
whereas the acronym UAS (Unmanned Aircraft System) considers the whole system,
composed by the aircraft, a Ground Control Station (GCS), and a communication subsystem
(data link) to send and receive information [2–5].

Small VTOL (Vertical Takeoff and Landing) aerial platforms are being used on a daily
basis for several civil (professional, scientific, and recreational) and military applications,
such as search and rescue missions, pipeline inspection, urban traffic monitoring, aerial
mapping, surveillance of archaeological sites, control of the territory against environmental
crimes, control of public order, and others. In the next decade, a further widespread
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diffusion of UAVs is expected [6]; on the other hand, their misuse can lead to perform
anti-social, unsafe, and even criminal actions, such as privacy violation, collision hazard
(with people, other UAVs, and manned aircrafts), and even transport of illicit materials
and/or explosives or biological agents [7]. Therefore, it is mandatory to monitor these
platforms in the airspace in the best way. Table 1 shows the most widespread classification
of unmanned vehicles [8,9].

Table 1. NATO Classification of UAS (AGL = Above Ground Level; BLOS = Beyond Line Of Sight).

Class Category Normal
Employment

Normal
Operating
Altitude

Normal
Operating

Radius

Primary
Supported

Commander

Example
Platform

III (>600 kg)

Strike/combat Strategic/National up to 65,000 ft Unlimited (BLOS) Theatre Reaper
HALE (High

Altitude, Long
Endurance)

Strategic/National up to 65,000 ft Unlimited (BLOS) Theatre Global Hawk

MALE (Medium
Altitude, Long

Endurance)
Operational/Theatre up to 45,000 ft Unlimited (BLOS) JTF Heron

II (150 kg–600 kg) Tactical Tactical
Formation

up to 18,000 ft
AGL 200 km (LOS) Brigade Hermes 450

I (<150 kg)

Small (>15 kg) Tactical Unit up to 5000 ft AGL 50 km (LOS) Battalion,
Regiment Scan Eagle

Mini (<15 kg)
Tactical Subunit

(manual or
hand launch)

up to 3000 ft AGL Up to 25 km
(LOS)

Company,
Platoon, Squad Skylark

Micro 1 (<66 J)
Tactical Subunit

(manual or
hand launch)

up to 200 ft AGL Up to 5 km (LOS) Platoon, Squad Black Widow

1 UAS that have a maximum energy state less than 66 J are not likely to cause significant damage to life or property,
and do not need to be classified or regulated for airworthiness, training, etc.

Currently, UASs are among the most used for civil applications, in individual missions
or in swarms [10]. In the framework of a UAS autonomous flight mission in Urban Air
Mobility operations, it is important to identify a safe area for a landing maneuver, to
avoid potential conflicts with people, other vehicles, or structures [11–14]. Developing
autonomous landing systems is the greatest challenge [15]; DAA (Detect and Avoid) or
SAA (Sense and Avoid) systems, performing environment recognition during the landing
phase by means of onboard sensors or by acquiring information from a ground station
which could send safe paths to the vehicle, are of great importance and usefulness. Typi-
cally, environment perception is accomplished onboard the UAVs by means of real-time,
small-dimension sensors (cameras, stereo cameras, Infra-Red (IR) or Time-of-Flight (ToF)
cameras, ultrasound sensors, IR sensors, radar, LiDAR, etc.), easily configurable for UAV
payloads [16–19]. These sensors could also be used to build small airfields equipped with
GCA (Ground Controlled Approach)-like functionality. Nowadays, most of Safe Landing
Area Determination (SLAD) systems are composed by technologies mounted on board.
GNSS (Global Navigation Satellite System) technology is typically the primary source of
positioning for most air and ground vehicles, and for a growing number of UASs in urban
areas [20].

For optimal tracking and detection of landing areas, in urban operations, or during
particular flight conditions (i.e., emergency cases, batteries with limited endurance, system
failure), it is necessary to cover a large area in a short time. High maneuverability of
small UAVs makes the tracking problem more difficult, due to the impossibility of making
strong assumptions about the expected UAV motion trajectories and the related equations.
Moreover, being pilotless and with no relevant payload, UAVs are aerial targets with small
physical size, compared to conventional aircraft. Their identification and classification by
High Range Resolution Radar Profiles (HRRPs) is problematic, and sub-centimeter resolu-
tion is required to capture spatial structures of targets with dimensions less than 100 cm.
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In literature, a largely used approach to safe landing area identification involves
vision-based systems and image analysis, and processing techniques [21–25], with alter-
native methodologies such as multi-sensor data fusion, using images and GNSS position
data [26,27], point cloud reconstruction from LiDAR or radar sensors [28–30].

This paper exploits the ability of 2D LiDAR technology to provide three-dimensional
elevation maps of a landing area and high-precision distance measurements, in order to
design a safe landing identification strategy for UAS missions. A mechanically rotating,
wide field-of-view 2D LiDAR is used, sensing the surroundings of the surveillance volume
with high temporal resolution to detect obstacles, track objects, and support path planning.
Another important issue, goal of this paper, is related to automatic landing zone surveying
through obstacle detection around the landing area, in order to perform safe landing area
determination (SLAD). Obstacle detection and avoidance systems (DAA) can be installed
onboard the unmanned aircraft [31,32], and research on rotating LiDARs used onboard
UAVs combined with stereo cameras for onboard landing area detection are available in
literature [33,34]. In this paper, we propose a ground-controlled, rather than onboard-
controlled, approach. The safe landing functionality, in terms of assessing the UAV correct
position within a clear area, is performed by a LiDAR-equipped ground station, interfaced
to a communication link with the UAV, therefore capable of identifying and transmitting
safe landing paths to the approaching aircraft by identifying clearance areas, i.e., areas with
no obstacles which could impair descent and/or landing. By mounting the LiDAR vertically
on a servo motor, we combine the (now vertical) fast laser scanned information with the
slow, controlled horizontal rotation of the motor, obtaining a tridimensional map of the
surroundings of the landing zone. With respect to onboard SLAD systems, a ground-based
solution offers many advantages, such as payload reduction, improved aircraft endurance
due to reduced power consumption, communication of useful auxiliary information to the
aircraft, and management of more than one aircraft in the surveillance volume. The system
can identify obstacle-free areas, detect the UAS position, and indicate safe trajectories for
landing maneuvers (a conceptual architecture of the system was presented by the authors
in [35]).

This paper focuses on the system development, describing the theoretical and ex-
perimental phases towards the capability of creating a 3D point cloud and correcting for
distortion and tilt, to obtain accurate estimates of the UAV distance to the ground and to
the landing area, together with a preliminary obstacle detection strategy based on point
cloud comparison. The innovative contributions of this research are:

• Promoting a new installation method for auxiliary equipment (a 2D rotating LiDAR
with 3D capabilities, able to provide a point cloud of a volume in the vicinity of the
landing site), aimed at improving the autonomous navigation capabilities of a VTOL
small UAV (quadcopter, hexacopter, etc.), without installing additional sensors on the
aircraft: therefore saving payload mass and power consumption, and enhancing the
flight time (endurance).

• Proposing the application of safe landing trajectories as a function of the dynamic
identification of obstacles in the surveillance volume (humans, hazards, etc.), both
in indoor and outdoor scenarios, which is a significant improvement with respect to
the ordinary vertical landing path, typical of other onboard autolanding systems. In
principle, the LiDAR-equipped ground station could provide safe landing information,
even for missions where the UAV is supposed to land on a moving platform. This
work presents the design aspects and a validation of the ground system, in terms
of providing a point cloud of the 3D surveillance volume (including the landing
site), detecting the UAV as it enters the landing volume, estimating its position with
respect to the landing site, identifying objects which could impair the safe landing,
and monitoring the descent of the flying robot.

• Proposing a ground system capable of providing a safe descent path even in the
presence of onboard hardware/software errors (for example, actuator failure, loss of
position estimation from a possible IMU embedded in the UAV flight control system,
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etc.), by providing timely autonomous identification of safe paths, and assisting a
controlled descent and land on the ground. Our approach is inspired by typical
landing systems for civil aviation, such as ILS (Instrument Landing System) or GCA
(Ground Controlled Approach).

• Proposing a simple and cost-effective alternative to vision-based SLAD methods.
• Developing a simple, cheap and useful obstacle detection system by analyzing the

point cloud characteristics obtained by the ground-based LiDAR, with a clustering
algorithm based on difference “images” of two corrected point cloud scenarios, with
and without the obstacle.

• Promoting a methodology of safe landing area determination in GPS-denied envi-
ronments, in failure scenarios, or when the aircraft is not equipped with a precise
localization system, therefore extending the application domain of UAVs/UASs, espe-
cially multirotor helicopters.

• Proposing a potential minimum landing time approach for small, fast-moving small/micro
UAVs in a variety of environments (typical flight speed of 10 m/s and 30 min bat-
tery life).

The architecture of the ground-based safe landing assessment methodology is shown
in Figure 1. The Ground Control Station (GCS) establishes a data link with the UAV, to
send and receive information.
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Figure 1. Architecture of the SLAD system.

The paper is organized as follows. Section 2 quickly recaps the theoretical framework
and the observation geometry. In Section 3, the hardware (electronic components) and
methods used for the preliminary setup of our LiDAR-based ground station are discussed
in detail. Section 4 presents the point correction procedure and the obstacle detection
algorithm implemented, together with experimental results from data collection campaigns
which validate the feasibility of the proposed methodologies. Further developments and
concluding remarks are outlined in Section 5.

2. Theoretical Framework

Figure 2a depicts the observation geometry. The LiDAR is in the origin of the reference
frame, the UAV position is given by (xu, yu, zu), α is the servo motor angle, β and the
slant range D are estimated by the laser sensor, rotating around an axis parallel to the
xy-plane, and the co-ordinates of the center L of the landing area are (∆x, ∆y). For the
sake of simplicity, the landing field and the LiDAR sensor are supposed coplanar, but the
generalization for ∆z 6= 0 (i.e., a difference in height between the landing field and the
sensor) is straightforward.
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Figure 2. (a) UAV position estimation by LiDAR measurements; (b) laser triangulation principle.

Denoting with UL the slant range (or LOS, Line Of Sight) of the UAV from the landing
center, and with LR the ground range, we have:

xu = D cos β sin α
yu = D cos β cos α

zu = D
sin β

UL =
√
(xu − ∆x)2 + (yu − ∆y)2 + z2

u

RL =
√
(xu − ∆x)2 + (yu − ∆y)2

(1)

Figure 2b shows the principle of laser triangulation, a typical alternative to ToF (Time-
of-Flight) measurement in low-cost laser sensors. A lens with a focal distance d’, placed
at a distance b from the laser source, focalizes the returned ray on a CCD (CMOS)-based
position-sensitive device (PSD) at distance d’ from the lens. The triangles defined by (b, d)
and (b’, d’) are similar, and the distance to the object is nonlinearly proportional to the angle
of the reflected light (i.e., the laser acceptance angle). The perpendicular distance to the
object (d) is given by:

d =
b d′

b′
(2)

if β is the angle of the laser beam, the slant range (distance along the geometric ray) is:

D =
d

sin β
(3)

From (2) and (3), the range sensitivity (or resolution) ∆d/∆b′ is equal to:

∆d
∆b′

= − d2

bd′
(4)

and grows quadratically with the distance from the object. Small values of bd′ allow
measurement of small distances, whereas the sensor resolution is enhanced by large bd′.

3. SLAD Ground System

The SLAD ground system is composed by:

− RPLiDAR sensor, model A1M8;
− Raspberry Pi 3 (SBC);
− 5-A Power Module;
− Servo motor with standing structure;
− PC-based Ground Control Station to manage LiDAR data and send clearance data (safe
paths, safe landing zone) to the UAV;
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− Communication subsystem for real-time data transfer from the sensor to the GCS and
transmission of safety information to the UAV.

3.1. LiDAR Sensor: RPLIDAR Model A1M8

The low-cost, 360-degree FOV (Field Of View) laser range scanner RPLIDAR Model
A1M8, built by Shanghai Slamtec Co., Shanghai, China, [36], shown in Figure 3, has been
widely used in a variety of applications in robotics, in particular in the framework of
SLAM (Simultaneous Localization and Mapping) methodologies for mobile robots [37].
It measures the distance from an object emitting a laser beam which is reflected by the
object surface and measured and received by a position-sensitive detector. Built-in circuitry
calculates the distance from the object by means of triangulation, based on the position
of the detector with respect to the reflected light, obtaining range and angular data in the
sensor coordinate system.
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Figure 3. RPLIDAR A1M8 (2D rotating laser scanner).

The active ranging device uses a low power (<5 mW peak) infrared laser (785-nanometer
wavelength) as its light source, transmitting 110 µs pulses, and can perform 360-degree 2D
scan within a 5 m range with angular resolution ≤ 1◦ [36,38]. Typical distance resolution
is <0.5 mm, or less than 1% of the distance. The produced 2D point cloud data can be
used in mapping, localization, and object/environment modeling. It is fully suitable as a
fundamental part of the SLAD system developed in this paper.

RPLIDAR A1′s scan rate is 5.5 Hz (configurable up to 10 Hz) when sampling 360 points
per scan, with a typical sample frequency of 4 kHz (1 sample every 250 µs). With 5 V
supplied by the power module during our tests, the sensor rotates at 468 rpm (i.e., the
scan frequency is 7.8 Hz, or 128 ms per revolution), collecting (on average) 515 samples
per revolution (i.e., the sample frequency is approximately 4 kHz). The assembly contains
a range scanner system and a motor with speed detection and adaptive system. It can
operate excellently in both indoor and outdoor environments with no sunlight. The system
automatically adjusts the laser scan rate according to the motor speed and uses UART serial
port (115,200 bps rate) as the communication interface with host computers or controllers.
After power-on, the sensor starts rotating and scanning clockwise. The distance data
acquired can be stored on a PC or a microcontroller (e.g., Raspberry, Arduino) through the
communication interface (USB connection). Table 2 reports information of each sample
point, whereas Figure 4 visualizes the formatted dataflow.

Table 2. The RPLIDAR A1 Sample point data information.

Data Type Unit Description

Distance, d mm Current measured distance value
Heading, θ degrees Current heading angle of the measurement

Quality level Quality of the measurement
Start Flag (Boolean) Flag of a new scan
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Figure 4. Data frames from the RPLIDAR A1M8.

The RPLIDAR A1 operates by measuring the angle of the reflected light (Figure 5), us-
ing high-speed vision acquisition and processing hardware, and outputting distance value
and angle between the illuminated object and the sensor, thanks to a built-in angular en-
coding system. The whole system measures distance data more than 2000 times per second
and high-resolution distance output (<1% of the distance). A 2 min pre-heating in start scan
mode, with the sensor rotating, is recommended to obtain optimal measurement accuracy.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 4. Data frames from the RPLIDAR A1M8. 

The RPLIDAR A1 operates by measuring the angle of the reflected light (Figure 5), 

using high-speed vision acquisition and processing hardware, and outputting distance 

value and angle between the illuminated object and the sensor, thanks to a built-in angular 

encoding system. The whole system measures distance data more than 2000 times per 

second and high-resolution distance output (<1% of the distance). A 2 min pre-heating in 

start scan mode, with the sensor rotating, is recommended to obtain optimal measurement 

accuracy. 

 

Figure 5. Laser triangulation principle. 

3.2. Raspberry PI 3 

The Raspberry Pi 3 microcomputer hosts a 64-bit quad-core processor running at 1.4 

GHz, dual-band 2.4 GHz, and 5 GHz wireless LAN, Bluetooth 4.2/BLE, faster Ethernet, 

and PoE (Power over Ethernet) capability via a separate PoE “hat”. The dual-band wire-

less LAN comes with modular compliance certification, allowing the board to be designed 

into end products with significantly reduced wireless LAN compliance testing, improving 

both cost and time to market [39]. The Raspberry Pi 3 is used in this paper as the main 

controller and transmitter of the data acquired by the RPLIDAR, and sent via its Wi-Fi 

module to a PC-based GCS for storage and processing. Raspberry and RPLIDAR are pow-

ered by a 5 VDC source through an embedded power module. The whole system is au-

tonomous and portable without the constraint of a fixed power supply. 

3.3. Power Module 

The DFR0205 Power Module (Figure 6), built by DFRobot, is based on a small size 

350 kHz switching frequency PWM buck DC-to-DC Converter (GS2678 [40]). It can con-

vert any DC voltage between 3.6 V and 25 V to a selectable voltage from 3.3 V to 25 V. 

x-axis

z-axis

RPlidar

Obstacle/Target

y-axis

Figure 5. Laser triangulation principle.

3.2. Raspberry PI 3

The Raspberry Pi 3 microcomputer hosts a 64-bit quad-core processor running at
1.4 GHz, dual-band 2.4 GHz, and 5 GHz wireless LAN, Bluetooth 4.2/BLE, faster Ethernet,
and PoE (Power over Ethernet) capability via a separate PoE “hat”. The dual-band wireless
LAN comes with modular compliance certification, allowing the board to be designed into
end products with significantly reduced wireless LAN compliance testing, improving both
cost and time to market [39]. The Raspberry Pi 3 is used in this paper as the main controller
and transmitter of the data acquired by the RPLIDAR, and sent via its Wi-Fi module to
a PC-based GCS for storage and processing. Raspberry and RPLIDAR are powered by a
5 VDC source through an embedded power module. The whole system is autonomous and
portable without the constraint of a fixed power supply.

3.3. Power Module

The DFR0205 Power Module (Figure 6), built by DFRobot, is based on a small size
350 kHz switching frequency PWM buck DC-to-DC Converter (GS2678 [40]). It can convert
any DC voltage between 3.6 V and 25 V to a selectable voltage from 3.3 V to 25 V.
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It is possible to choose 5 V direct output voltage with a switch or adjust the output
voltage by means of a control resistor. The OVout (Original Voltage output) interface
can output the original voltage of input, so that it can be used as a power source for
other modules. In our research, the DRF0205 was used to convert the 7.4 V input from a
2600-mAh Li-ion 18,650 battery (each battery is 3.7 V) to the 5 V output which supplies
energy to the Raspberry Pi 3 and the servo motor. Laboratory tests showed that the system
can work continuously for about 6 h.

3.4. Standing SLAD Structure

The electric scheme of the SLAD system (Raspberry, RPLIDAR, battery, servo motor
and Power Module) is shown in Figure 7. The components were mounted on a rotating
structure (a disc with a series of self-lubricating bearings to reduce friction and vibrations
during rotation) locked to a servo motor. The whole system is mounted on a standing
structure made in ABS (Figure 8).
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Figure 8. (a) Servo motor with rotating disc, to allow LiDAR rotation in the plane orthogonal to the
laser rotation axis; (b) The prototype with a graduated disc allowing to take readings of the servo
motor angular position α.

Figure 9 shows the capability of acquiring tridimensional information by combining
the rotation of the LiDAR and the servo motor, and the inspection volume of the system.
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Figure 9. (a) Functionality of the system; (b) Survey volume.

3.5. Communication Subsystem

The communication subsystem, depicted in Figure 10, is based on a common Wi-Fi
network, which interconnects the SLAD system (managed by the Raspberry Pi 3) to a
remote terminal (a PC-based GCS). After configuring Raspbian (the Raspberry operating
system, stored in a SD card) with the SSID and password details of the local Wi-Fi and
enabling SSH (the Secure Shell protocol, providing a secure channel with a cryptographic
network protocol [41]), Raspberry Pi 3 will connect automatically to the Wi-Fi network after
booting. With a simple Python interface, developed by the authors, Raspberry acquires
real-time data from the RPLiDAR and sends them to the remote terminal, connected to the
common Wi-Fi. Data acquisition is performed at 8 kHz sampling rate. Figure 10 shows a
conceptual architecture of the communication subsystem.
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4. Experimental Tests and Results

Simulation tests of the SLAD ground system have been performed at the Flight
Dynamics Laboratory of the University of Naples “Parthenope”, Italy.

4.1. Validation of Laboratory Tests

By using laboratory open spaces, a simulated airfield has been built up (Figure 11) to
test the LiDAR scanning capability in an area surrounding an assigned landing field. Every
data acquisition campaign had a duration of 1 min, and data were sampled at 4 kHz. The
control volume was mapped by the system, and some obstacles with known dimensions
were placed to verify the obstacle detection capability of the ground station. Reference
distance measurement were collected with a laser distance meter (Bosch PLR 40C [42]).
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Post-processed data allowed us to reconstruct the 3D flight volume and evaluate possible
nonlinear distortion effects, imprecise pointing accuracies, and distance measurement errors.
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From data acquired in the yz- and xz-planes (Figure 12), tilt errors, and distortion
effects were noted, pushing towards finding a calibration strategy, described in the next
section.
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4.2. SLAD System Extrinsic Calibration: Removal of Disalignment and Nonlinear Distortions

To compensate for tilt problems, related to suboptimal level of the mechanical structure,
and to sensor position and installation issues, we devised a simple extrinsic calibration
procedure, determining the transformation from the sensor measurements, i.e., the 3D
coordinates of a point in the “image” derived from the laser data, to the 3D coordinates of
the point in the sensor coordinate system. The calibration algorithm applies a translation t
and a rotation R:

[xSLAD ySLAD zSLAD]
T = tLDR

SLAD + R[xLDR yLDR zLDR]
T (5)

The rotation angles (Φ, Θ, Ψ) to be estimated are derived from a linear regression
analysis in the three orthogonal planes. The angular coefficients of the regression lines are
evaluated with respect to the three axes (xLDR, yLDR, zLDR). As far as the translation is
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concerned, indicating with r the distance between the origin of the SLAD reference and the
LiDAR reference (equal to 85 mm), we have (Figure 13):

xSLAD = xLDR + r ∗ cos(α) (6)

ySLAD = yLDR + r ∗ sin(α) (7)
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To evaluate the regression line, we chose, as a reference measurement, data represent-
ing distance from horizontal and vertical objects in the “real” world, i.e., walls and ceiling,
as in Figure 14a (red dotted box).
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The angular coefficient m and the constant term q of a generic straight line y = mx + q
are found by minimizing the function:

F (m, q) =
n

∑
i=0

(m ∗ xi + q− yi)
2 (8)

and are given by:

m =
(n + 1)∑n

i=0 xiyi −∑n
i=0 xi ∑n

i=0 yi

(n + 1)∑n
i=0 x2

i − (∑n
i=0 xi)

2 (9)

q =
∑n

i=0 yi ∑n
i=0 x2

i −∑n
i=0 xi ∑n

i=0 xiyi

(n + 1)∑n
i=0 x2

i − (∑n
i=0 xi)

2 (10)
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where (xi,yi) are the coordinates of a point in the “image” and n+1 is the number of
measurements. Figure 15 shows the regression lines for xy- and yz-planes, Table 3 gives
the numerical values of m and p, and Table 4 shows the corresponding angles of the
regression lines.
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Table 3. Parameters of the regression lines in the xz- and yz-planes.

Axis m q

Y-Z −0.021 2796
X-Z 0.020 2799

Table 4. Tilt angles of the regression lines.

Angle Value (deg)

Φ −1.23
Θ 1.15

The rotation matrices:

Rx =

 1 0 0
0 cos Φ − sin Φ
0 sin Φ cos Φ

 (11)

Ry =

 cos Θ 0 sin Θ
0 1 0

− sin Θ 0 cos Θ

 (12)

are applied to every point in the data measurement space. Figure 16 depicts a flowchart
of the calibration procedure, whereas Figures 17 and 18 show the results of the point
correction procedure.

4.3. Obstacle Detection Methodology

We devised a simple and utilizable obstacle detection procedure that provides effec-
tive obstacle information for the approaching UAV, based on the difference between two
scenarios scanned by the LiDAR and stored in point clouds (without obstacles and with
obstacles in the landing area). With respect to other techniques (for example, IMU/INS
data associated with the laser scanning [43], multi-point cloud fusion [44], clustering algo-
rithms [45], and convolutional networks [46]), which are CPU-time consuming and unfit to
UASs with low computing capabilities, we followed an approach based on a simple range
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difference between neighboring point in scan angle [47]. The technique, developed in the
MATLAB environment, is based on a co-registration between the two point clouds by using
linear interpolation of the single LiDAR scan for each angle value of the servo motor.
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We placed two obstacles in the landing scenario, with dimensions 900 × 600 mm
at a distance of 2250 mm from the SLAD system, and 550 × 550 mm at a distance of
1300 mm. Figure 19 (red boxes) shows the obstacle positions in the corrected point clouds,
and Figure 20 shows the result of the “difference image” between the clean landing field
and the same field with the obstacles.
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4.4. Outdoor Validation Test

In order to identify landing vehicles and map their descent trajectory, we set up a
simple outdoor test by mapping a surveillance volume with the system, with the UAV
approaching the landing field and executing a vertical landing. A preliminary calibration
of the LiDAR was performed to verify the correctness of the alignment and the absence
of geometric distortions. A sample object was used to test the calibration procedure
(Figure 21). The calibration procedure described in the previous section gave the values
shown in Table 5 or the inclination angles.
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Table 5. Inclination angles of the regression line in the outdoor calibration test.

Angle Value (deg)

Φ 1.02
Θ 1.08

After extrinsic calibration, a UAV entered the scenario (highlighted in the red box in
Figure 22a), and data were acquired from the ground system when the aircraft reached a
distance from the ground of 7000 mm. Post-processed data are shown in Figure 22b.
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5. Conclusions and Further Work

This work presents the design and validation of a simple and cost-effective 2D LiDAR-
based ground system for Safe Landing Area Determination for small UAVs, capable of
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providing a point cloud of the 3D surveillance volume reconstructed from 2D laser dis-
tance measurements by triangulation, using a servo motor to rotate the sensor (a low-cost
RPLIDAR A1M8, developed by Slamtec Co., Shanghai, China) along the vertical axis. The
system can detect the UAV as it enters the landing volume, to estimate its position with
respect to the landing site, and to monitor the descent of the flying robot. Data collection
was managed by a Raspberry Pi 3 microcomputer. A point cloud calibration procedure
allowed correct reconstruction of the 3D scenario, by reducing tilt errors of the mechanical
structure and geometric distortions. An obstacle detection strategy based on simple cluster-
ing by means of differences between homologous points in a reference point cloud, and a
scenario with obstacles, demonstrates the capability of the system in terms of detecting and
signaling obstacles to the approaching aircraft. The application of safe landing trajectories
as a function of the dynamic identification of obstacles (humans, hazards, etc.) in a surveil-
lance volume surrounding the landing site, both in indoor and outdoor scenarios, is a
significant improvement from the ordinary vertical landing path, typical of other autoland-
ing systems onboard the aircraft. In principle, the LiDAR-equipped ground station could
provide safe landing information, even for missions where the UAV is supposed to land on
a moving platform. Sending corrections to the landing trajectory to the approaching UAV
via a communication link is the main aspect to be implemented in the successive stages of
the research.

Ground-based safe landing area determination has the advantage of reducing the
payload onboard the aircraft, which only needs a communication link to exchange informa-
tion with the station located in the vicinity of the landing field. Outdoor tests verified the
capability of the system to track the approaching vehicle, and derive information on the
landing path and the distance from the landing field.

The detection of obstacles on the ground and/or in the surveillance volume is only
a preliminary test to evaluate the system capability to de-risk the potential challenges
involved in the UAV approach and landing procedure. The main objective remains to assist
and give guidance to a flying robot in the terminal flight phase. Obstacle detection plays
a fundamental role in the conception of the ground system, which will provide clearance
signals to the approaching vehicle and transmit information about a possible safe descent.

Further developments will involve refinements of the mechanical structure (with a
precision encoder for better knowledge of the angular position of the servo motor, for
example) and enhancement of the calibration/reconstruction strategy, by means of filtering
techniques to reduce measurement noise and possible effects of radial distortions in the
LiDAR lens.
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