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Abstract: In recent times, many different types of systems have been based on fractional derivatives.
Thanks to this type of derivatives, it is possible to model certain phenomena in a more precise and
desirable way. This article presents a system consisting of a two-dimensional fractional differential
equation with the Riemann–Liouville derivative with a numerical algorithm for its solution. The
presented algorithm uses the alternating direction implicit method (ADIM). Further, the algorithm
for solving the inverse problem consisting of the determination of unknown parameters of the model
is also described. For this purpose, the objective function was minimized using the ant algorithm
and the Hooke–Jeeves method. Inverse problems with fractional derivatives are important in many
engineering applications, such as modeling the phenomenon of anomalous diffusion, designing
electrical circuits with a supercapacitor, and application of fractional-order control theory. This paper
presents a numerical example illustrating the effectiveness and accuracy of the described methods.
The introduction of the example made possible a comparison of the methods of searching for the
minimum of the objective function. The presented algorithms can be used as a tool for parameter
training in artificial neural networks.

Keywords: inverse problem; fractional system; fractional derivative; parameter identification;
fractional differential equation; heuristic algorithm; computational methods

1. Introduction

Fractional calculus is widely used in various fields of science and technology, e.g., in
the design of sensors, in signal processing, and network sensors [1–5]. In the paper [2],
authors describe the use of fractional calculus for artificial neural networks. Fractional
derivatives are mainly used for parameter training using optimization algorithms, system
synchronization, and system stabilization. As the authors quote, such systems have been
used in unmanned aerial vehicles (UAVs), circuit realization robotics, and many other
engineering applications. The paper [3] covers applications of fractional calculus in sensing
and filtering domains. The authors present the most important achievements in the fields
of fractional-order sensors, fractional-order analogs, and digital filters. In [5], they present
a new fractional sensor based on a classical accelerometer and the concepts of fractional
calculus. In order to achieve this, two synthesis methods were presented: the successive
stages follow an identical analytical recursive formulation, and in the second method,
a PSO algorithm determines the fractional system elements numerically.

In addition to applications in electronics, neural networks, and sensors, fractional
calculus is also used in modeling of thermal processes [6,7], in modeling of anomalous
diffusion [8,9], in medicine [10], and also in control theory [11,12]. Authors of the study
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in [6] model heat transfer in a two-dimensional plate using Caputo operator. Theoretical
results are verified by experimental data from a thermal camera. It is shown that the
fractional model is more accurate than the integer-order model in the sense of mean square
error cost function.

Often in applications of fractional calculus, differential equations with fractional
derivatives have to be solved numerically. This is the reason for the importance of devel-
oping algorithms for solving this type of problem. A lot of papers presenting numerical
solutions of fractional partial differential equations have been published in recent years. In
the paper [13], the author used the artificial neural network in the construction of a solution
method for the one-phase Stefan problem. In turn, Ref. [14] presented an algorithm for
the solution of fractional-order delay differential equations. Bu et al., in [15], presented a
space–time finite element method to solve a two-dimensional diffusion equation. The paper
describes a fully discrete scheme for the considered equation. Authors also presented a
theorem regarding existence, stability of the presented method, and error estimation with
numerical examples. Another interesting study is [16], in which the ADI method to solve
fractional reaction–diffusion equations with Dirichlet boundary conditions was described.
The authors used a new fractional version of the alternating direction implicit method.
A numerical example was also presented.

In the paper, authors present a solution to the inverse problem consisting of the
appropriate selection of the model input parameters in such a way that the system response
adjusts to the measurement data. Inverse problems are a very important part of all sorts
of engineering problems [17]. In [18], the inverse problem is considered for fractional
partial differential equation with a nonlocal condition on the integral type. The considered
equation is a generalization of the Barenblatt–Zheltov–Kochina differential equation, which
simulates the filtration of a viscoelastic fluid in fractured porous media. In [19], the authors
considered two inverse problems with a fractional derivative. The first problem is to
reconstruct the state function based on the knowledge of its value and the value of its
derivative in the final moments of time. The second problem consists of recreating the
source function in fractional diffusion and wave equations. Additional information are
the measurements in a neighborhood of final time. The authors prove the uniqueness
of the solution to these problems. Finally, the authors derive the explicit solution for
some particular cases. In the paper [20], the fractional heat conduction inverse problem is
considered, consisting of finding heat conductivity in presented model. The authors also
compare two optimization methods: iteration method and swarm algorithm.

The learning algorithm constitutes the main part of deep learning. The number of
layers differentiates the deep neural network from shallow ones. The higher the number
of layers, the deeper it becomes. Each layer can be specialized to detect a specific aspect
or feature. The goal of the learning algorithm is to find the optimal values for the weight
vectors to solve a class of problem in a domain. Training algorithms aim to achieve the end
goal by reducing the cost function. While weights are learned by training on the dataset,
there are additional crucial parameters, referred to as hyperparameters, that are not directly
learned from the training dataset. These hyperparameters can take a range of values and
add complexity of finding the optimal architecturenand model [21]. Deep learning can be
optimized in different areas. The training algorithms can be fine-tuned at different levels
by incorporating heuristics, e.g., for hyperparameter optimization. The time to train a
deep learning network model is a major factor to gauge the performance of an algorithm
or network, so the problem of the training optimization in a deep learning application
can be seen as the solution of an inverse problem. In fact, the inverse problem consists
of selecting the appropriate model input parameters in order to obtain the desired data
on the output. To solve the problem, we create an objective function that compares the
desired values (target) with the network outputs calculated for the determined values of
the searched parameters (weights). Finding the minimum of the objective function, we find
the sought weights.
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In this paper, in Section 2, a system consisting of a 2D fractional partial differential
diffusion equation with Riemann–Liouville derivative is presented. Dirichlet boundary
conditions were added to the equation. This type of model can be used for the design-
ing process of heat conduction in porous media. In Section 2.2, a numerical scheme of
the considered equation is presented based on the alternating direction implicit method
(ADIM). In Section 3, the inverse problem is formulated. It consists of identification of two
parameters of the presented model based on measurements of state function in selected
points of the domain. The inverse problem has been reduced to solving the optimiza-
tion problem. For this purpose, two algorithms were used and compared: probabilistic
ant colony optimization (ACO) algorithm and deterministic Hooke–Jeeves (HJ) method.
Section 4 presents a numerical example illustrating the operation of the described methods.
Section 5 provides the conclusions.

2. Fractional Model

This section consists of a description of the considered anomalous diffusion model
which is considered with a fractional derivative, and then we present a numerical algorithm
solving the presented differential equation.

2.1. Model Description

Models using fractional derivatives have recently been widely used in various en-
gineering problems, e.g., in electronics for modeling a supercapacitor, in mechanics for
modeling heat flow in porous materials, in automation for describing problems in control
theory, or in biology for modeling drug transport. In this study, we consider the following
model of anomalous diffusion:

c$
∂u(x, y, t)

∂t
=

∂

∂x

(
λ(x, y)

∂αu(x, y, t)
∂xα

− λ(x, y)
∂αu(x, y, t)

∂(−x)α

)
+

∂

∂y

(
λ(x, y)

∂βu(x, y, t)
∂yβ

− λ(x, y)
∂βu(x, y, t)

∂(−y)β

)
+ f (x, y, t),

(1)

u(x, y, t)|∂Ω = 0, t ∈ (0, T],

u(x, y, t)|t=0 = ϕ(x, y), (x, y) ∈ Ω.
(2)

The differential Equation (1) describes the anomalous diffusion phenomenon (e.g.,
heat conduction in porous materials [22–24]), and is defined in the area Ω × T, where
(x, y) ∈ Ω, c, $, λ > 0 are parameters defining material properties, u is a state function,
and f is an additional component in the model. Using the terminology taken from the
theory of heat conduction, we can write that c is the specific heat, $ is the density, λ is the
heat conduction coefficient, and the function f describes the additional heat source. All
parameters are multiplied by the constants by the value of one and the units that ensure
the compatibility of the units of the entire equation. The state function u describes the
temperature distribution in time and space. The Equation (2) define the initial boundary
conditions necessary to uniquely solve the differential equation. It is assumed that at the
boundary the u state function has the value 0, and at the initial moment the value of the u
function is determined by the well-known ϕ function. In the Equation (1), there also occurs
fractional derivative of α and β order. In the model under consideration, these derivatives
are defined as Riemann–Liouville [25] derivatives:

∂αu(x, y, t)
∂xα

=
1

Γ(1− α)

∂

∂x

x∫
0

(x− ξ)−αu(ξ, y, t) dξ, (3)

∂αu(x, y, t)
∂(−x)α

=
−1

Γ(1− α)

∂

∂x

Lx∫
x

(ξ − x)−αu(ξ, y, t) dξ. (4)
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The Formula (3) defines the left derivative, and the Formula (4) defines the right
derivative. In both cases, they assume that α ∈ (0, 1). In addition, the derivative of y of β
order in the Equation (1) is defined as the Riemann–Liouville derivative.

2.2. Numerical Solution of Direct Problem

Now, let us present the numerical solution of the model defined by Equations (1) and (2).
If we have all the data about the model, such as parameters c, $, λ, α, β, initial boundary
conditions, and geometry of the area, by solving the Equation (1), we solve the direct
problem. In order to solve the problem under consideration, we write the Equation (1)
as follows:

c$
∂u(x, y, t)

∂t
=

(
λx1(x, y)

∂α+1u(x, y, t)
∂xα+1 + λx2(x, y)

∂α+1u(x, y, t)
∂(−x)α+1

)
+

(
∂λx1(x, y)

∂x
∂αu(x, y, t)

∂xα
− ∂λx2(x, y)

∂x
∂αu(x, y, t)

∂(−x)α

)
+

(
λy1(x, y)

∂β+1u(x, y, t)
∂yβ+1 + λy2(x, y)

∂β+1u(x, y, t)
∂(−y)β+1

)
+

(
∂λy1(x, y)

∂y
∂βu(x, y, t)

∂yβ
−

∂λy2(x, y)
∂y

∂βu(x, y, t)
∂(−y)β

)
+ f (x, y, t).

(5)

Then, we discretize the area Ω× [0, T] = [0, Lx]× [0, Ly]× [0, T] by creating an uniform
mesh in each of the dimensions. Let us assume the following symbols: ∆t = T

N , tk = k∆t,

k = 0.1, . . . N, ∆x = Lx
Mx

, xi = i∆x, i = 0.1, . . . , Mx, ∆y =
Ly
My

, yj = j∆y, j = 0.1, . . . , My,
where N, Mx, My ∈ N are mesh sizes, and (tk, xi, yj) are points of mesh. The values of
the u, f , λ functions in the grid points are labeled as uk

i,j, f k
i,j, λi,j. We approximate the

Riemann–Liouville derivative using the shifted Grünwald formula [26]:

∂αu(x, y, t)
∂xα

∣∣∣∣
(xi ,yj ,tk)

≈ 1
(∆x)α

i+1

∑
l=0

ωα
l u(xi−l+1, yj, tk), (6)

∂αu(x, y, t)
∂(−x)α

∣∣∣∣
(xi ,yj ,tk)

≈ 1
(∆x)α

Mx−i+1

∑
l=0

ωα
l u(xi+l−1, yj, tk), (7)

where
ωα

0 =
α

2
gα

0 , ωα
l =

α

2
gα

l +
2− α

2
gα

l−1, l = 1, 2, . . . ,

gα
0 = 1, gα

l =

(
1− α + 1

l

)
gα

l−1 l = 1, 2, . . .

Similarly, we can approximate the fractional derivative to the spatial variable y. In the case
of the derivative over time, we use the difference quotient:

∂u(x, y, t)
∂t

∣∣∣∣
(xi ,yj ,t

k+ 1
2 )
≈

u(xi, yj, tk+1)− u(xi, yj, tk)

∆t
. (8)

Let us use the following notation:

δα
x uk

i,j =
1

2(∆x)α

[
λ
′
x
i,j

i+1

∑
l=0

ωα
l uk

i−l+1,j − λ
′
x
i,j

Mx−i+1

∑
l=0

ωα
l uk

i+l−1,j

]
(9)

δ
α+1
x uk

i,j =
1

2(∆x)α+1

[
λi,j

i+1

∑
l=0

ωα+1
l uk

i−l+1,j + λi,j

Mx−i+1

∑
l=0

ωα+1
l uk

i+l−1,j

]
, (10)
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where λ
′
x
i,j denotes the first-order derivative (at (xi, yj)) over the λ function with respect

to the x variable. We assume analogous symbols for the y variable. After using the
Formulas (6)–(10) and some transformations, the difference scheme for the Equation (5)
can be written in the following form:

(1− ∆t
c$

δ
α+1
x − ∆t

c$
δα

x −
∆t
c$

δ
β+1
y − ∆t

c$
δ

β
y )uk+1

i,j

= (1 +
∆t
c$

δ
α+1
x +

∆t
c$

δα
x +

∆t
c$

δ
β+1
y +

∆t
c$

δ
β
y )uk

i,j +
∆t
c$

f k+ 1
2

i,j ,
(11)

where i = 1, 2, . . . , Mx − 1, j = 1, 2, . . . , My − 1 and k = 0, 1, . . . , N − 1.
In order to simplify the description of the numerical algorithm to be implemented, we

present the difference schema (11) in matrix form, so we introduce the following matrices:

Rx(l) = (rx
i,j(l))(Mx−1)×(Mx−1), l = 1, 2, . . . , My − 1,

Ry(l) = (ry
i,j(l))(My−1)×(My−1), l = 1, 2, . . . , Mx − 1.

where

rx
i,j(l) =



−∆t
2c$(∆x)α+1 λi,lω

α+1
i−j+1 +

−∆t
2c$(∆x)α λ

′
x
i,lω

α
i−j+l , j < i− 1,

−∆t
2c$(∆x)α+1

(
λi,lω

α+1
2 + λi,lω

α+1
0

)
+ −∆t

2c$(∆x)α

(
λ
′
x
i,lω

α
2 − λ

′
x
i,lω

α
0

)
, j = i− 1,

−∆t
2c$(∆x)α+1

(
λi,lω

α+1
1 + λi,lω

α+1
1

)
+ −∆t

2c$(∆x)α

(
λ
′
x
i,lω

α
1 − λ

′
x
i,lω

α
1

)
, j = i,

−∆t
2c$(∆x)α+1

(
λi,lω

α+1
0 + λi,lω

α+1
2

)
+ −∆t

2c$(∆x)α

(
λ
′
x
i,lω

α
0 − λ

′
x
i,lω

α
2

)
, j = i + 1,

−∆t
2c$(∆x)α+1 λi,lω

α+1
j−i+1 −

−∆t
2c$(∆x)α λ

′
x
i,lω

α
j−i+l , j > i + 1.

(12)

ry
i,j(l) =



−∆t
2c$(∆y)β+1 λl,iω

β+1
i−j+1 +

−∆t
2c$(∆y)α λ

′
y
i,lω

β
i−j+l , j < i− 1,

−∆t
2c$(∆y)β+1

(
λl,iω

β+1
2 + λl,iω

β+1
0

)
+ −∆t

2c$(∆y)β

(
λ
′
y
l,iω

β
2 − λ

′
y
l,iω

β
0

)
, j = i− 1,

−∆t
2c$(∆y)β+1

(
λl,iω

β+1
1 + λl,iω

β+1
1

)
+ −∆t

2c$(∆y)β

(
λ
′
y
l,iω

β
1 − λ

′
y
l,iω

β
1

)
, j = i,

−∆t
2c$(∆y)β+1

(
λl,iω

β+1
0 + λl,iω

β+1
2

)
+ −∆t

2c$(∆y)β

(
λ
′
y
l,iω

β
0 − λ

′
y
l,iω

β
2

)
, j = i + 1,

−∆t
2c$(∆y)β+1 λl,iω

β+1
j−i+1 −

−∆t
2c$(∆y)β λ

′
y
i,lω

β
j−i+l , j > i + 1.

(13)

Now we define two block matrices, S and H. First, we create the matrix S of dimension[
(My − 1) · (Mx − 1)

]
×
[
(My − 1) · (Mx − 1)

]
, which is a diagonal block matrix contain-

ing matrices Rx(l), l = 1, 2, . . . , My − 1 on the main diagonal, and zeros in other places.
Rx(1) 0 . . . 0

0 Rx(2) . . . 0
...

...
. . .

...
0 0 . . . Rx(My − 1)

 (14)

Second, we create matrix H, which has the same dimension as matrix S, in the follow-
ing form:
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ry
1,1(1) . . . 0 ry

1,My−1(1) . . . 0
...

. . .
... . . .

...
. . .

...
0 . . . ry

1,1(Mx − 1) 0 . . . ry
1,My−1(Mx − 1)

...
. . . . . .

ry
My−1,1(1) . . . 0 ry

My−1,My−1(1) . . . 0
...

. . .
... . . .

...
. . .

...
0 . . . ry

My−1,1(Mx − 1) 0 . . . ry
My−1,My−1(Mx − 1)


(15)

Now it is possible to write the difference scheme (11) in matrix form:

(I + S + H)uk+1 = (I − S− H)uk +
∆t
c$

f k+ 1
2 , k = 0, 1, . . . (16)

where
uk = [uk

1,1, uk
2,1, . . . , uk

Mx−1,1, . . . , uk
1,My−1, uk

2,My−1, . . . uMx−1,My−1]
T ,

f k+ 1
2 = [ f k+ 1

2
1,1 , f k+ 1

2
2,1 , . . . , f k+ 1

2
Mx−1,1, . . . , f k+ 1

2
1,My−1, f k+ 1

2
2,My−1, . . . , f k+ 1

2
Mx−1,My−1]

T .

The matrices from the difference scheme (16) are large, so the obtainedsystem of equations
is time-consuming to solve. Hence, we applied the alternating direction implicit method
(ADIM) to the difference scheme (11), which significantly reduces the computation time
(details can be found in [27]). This is an important issue in the case of inverse problems,
where a direct problem should be solved many times. Let us write the scheme (11) in the
form of the directional separation product:

(1− ∆
c$

δ
α+1
x − ∆

c$
δα

x)(1−
∆
c$

δ
β+1
y − ∆

c$
δ

β
y )uk+1

i,j

= (1 +
∆
c$

δ
α+1
x +

∆
c$

δα
x)(1 +

∆
c$

δ
β+1
y +

∆
c$

δ
β
y )uk

i,j +
∆t
c$

f k+ 1
2

i,j ,

i = 1, 2, . . . , Mx − 1, j = 1, 2, . . . , My − 1, k = 0, 1, . . . .

(17)

Numerical scheme (17) is split into two parts and solved, respectively, first in the
direction x, and afterwards in the direction y. With this approach, the resulting matrices
for the systems of equations have significantly lower dimensions than in the case of the
scheme (11). The numerical algorithm has two main steps:

• For each fixed yj, solve the numerical scheme in the direction x. As a consequence, we
will obtain a temporary solution: ũk+1

i,j :

(1− ∆
c$

δ
α+1
x − ∆

c$
δα

x)ũ
k+1
i,j = (1 +

∆
c$

δ
α+1
x +

∆
c$

δα
x)(1 +

∆
c$

δ
β+1
y +

∆
c$

δ
β
y )uk

i,j +
∆t
c$

f k+ 1
2

i,j , (18)

• Then, for each fixed xi, solve the numerical scheme in the direction y:

(1− ∆
c$

δ
β+1
y − ∆

c$
δ

β
y )uk+1

i,j = ũk+1
i,j . (19)

This process can be symbolically depicted as in Figure 1. For the boundary nodes and
the initial condition, we applied:

uk+1
0,j = uk+1

Mx ,j = uk+1
i,0 = uk+1

i,My
= 0,

u0
i,j = ϕ(i∆x, j∆y) = ϕi,j.
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a)

y0

y1

yMy-1

yMy

x0 x1 x2 x3 x4 ... xMx-4 xMx-3 xMx-2 xMx-1 xMx

⋮

⋮
yj

b)

⋮

y0

y1

y2

yMy-1

yMy

x0 x1 xi xMx-1 xMx⋯ ⋯

Figure 1. Numerical solution in horizontal direction (for a fixed node yj) (a) and vertical direction
(for a fixed node xi) (b).

In the case of the ADIM method, it is also possible to present the equations in a
matrix form, which has been executed below. First, for each l = 1, 2, . . . , Mx − 1, we define
auxiliary vectors u∗l :

(I − Ry(l))uk
l = u∗l , (20)

where uk
l = [uk

l,1, uk
l,2, . . . , uk

l,My−1]
T , u∗l = [u∗kl,1, u∗kl,2, . . . u∗kl,My−1]

T . Hence, we obtain an aux-

iliary matrix U∗k = (u∗ki,j ) dimension (Mx− 1)× (My− 1). Then, the numerical scheme (18)
can be written in the following matrix form (for p = 1, 2, . . . , My − 1):

(I + Rx(p))ũk
p = (I − Rx(p))u∗∗p +

∆t
c$

f k+1
p , (21)

where the temporary solution has the form ũk
p = [ũk

1,p, ũk
2,p, . . . , ũk

Mx−1,p]
T , and u∗∗p =

[u∗k1,p, u∗k2,p, . . . , u∗kMx−1,p]
T , f k+ 1

2
p = [ f k+ 1

2
1,p , f k+ 1

2
2,p , . . . f k+ 1

2
Mx−1,p]

T . We obtain My − 1 systems of
equations, each of (Mx − 1)× (Mx − 1) dimension. Next, we present the scheme (19) in
the direction y in matrix form (for l = 1, 2, . . . , Mx − 1):

(I + Ry(l))uk+1
l = (I − Ry(l))ũ∗kl , (22)

where uk+1
l = [uk+1

l,1 , uk+1
l,2 , . . . , uk+1

l,My−1]
T and ũ∗kl = [ũk

l,1, ũk
l,2, . . . , ũk

l,My−1]
T . At this stage

of the algorithm, we can solve Mx − 1 systems of equations with dimensions (My − 1)×
(My− 1) each. The Bi-CGSTAB [28,29] method is used to solve the equation systems, which
has significance influences on the computation time. More implementation details and a
comparison of times for the described method can be found in the papers [27,30].

3. Inverse Problem

In many engineering problems, in particular in various types of simulations and
mathematical modeling, there is a need to solve the inverse problem. In this case, the inverse
problem consists of selecting the appropriate model input parameters (1) and (2) to obtain
the desired data on the output. Values of the state function u at selected points (so-called
measurement points) of the domain are treated as input data for the inverse problem.
The task consists of selecting unknown parameters of the model in such a way that the u
function assumes the given values at the measurement points. Problems of this type are
badly conditioned, which may result in the instability of the solution or the ambiguity of
it [31,32]. Details of the solving algorithm are presented in the following sections.

3.1. Parameter Identification

In the model (1) and (2), the following data are assumed:

$ = 2100, c = 900, β = 0.6, ϕ(x, y) = u(x, y, 0) = 0, (23)
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f (x, y, t) =
3,000,000

1309

(
82,467(x− 2)2x2(y− 1)2y3 cos

(
t

100

)
−

1904 5
√

x
(
25x2 − 55x + 22

)
(y− 1)2y3 sin

( t
100
)

Γ
(

1
5

)
−

1904 5
√

2− x
(
25x2 − 45x + 12

)
(y− 1)2y3 sin

( t
100
)

Γ
(

1
5

)
−

220(x− 2)2x2(125y2 − 170y + 51
)
y7/5 sin

( t
100
)

Γ
( 2

5
)

−
44(x− 2)2x2(1− y)2/5(625y3 − 600y2 + 90y + 4

)
sin
( t

100
)

Γ
( 2

5
) )

,

(24)

where (x, y, t) ∈ [0, 2] × [0, 1] × [0, 200]. The inverse problem deals with finding the λ
and α parameters appropriately. The input data for the inverse problem are values of
the u function at selected points in the area. Additionally, in order to test the algorithm,
the following is assumed:

• Location of the measuring points (see Figure 2):

{K1(0.4, 0.8), K2(0.4, 0.5), K3(0.4, 0.2), K4(1.0, 0.5),

K5(1.6, 0.8), K6(1.6, 0.5), K7(1.6, 0.2)}.

• Two different grids (Mx ×My × N):

– 160× 160× 250 (∆x = 0.0125, ∆y = 0.00625, ∆t = 0.8),
– 100× 100× 200 (∆x = 0.02, ∆y = 0.01, ∆t = 1.0),

• Different levels of measurement data disturbances (errors with a normal distribution):
0%, 2%, 5%, 10%.

K1

K2

K3

K4

K5

K6

K7

Lx = 2.0

L
y
=
1
.0

Figure 2. Arrangements of measuring points.

To solve the problem, we create an objective function that compares the values of
the u function calculated for the determined values of the searched parameters λ, α (at
measurement points) with the measurement data. Therefore, we define the objective
function as follows:

J(λ, α) =
N1

∑
i,j

N2

∑
k

(
uk

i,j(λ, α)− m
u

k
i,j

)2
, (25)

where N1 and N2 are the number of measuring points and the number of measurements
in a given measuring point, respectively. In the considered example, N1 = 7, and N2
depends on the used mesh. By uk

i,j(λ, α), we denote the values of the u function obtained

in the algorithm for the fixed parameters λ, α, and by
m
u

k
i,j measurement data. Finding the

minimum of the objective function (25), we find the sought parameters.
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3.2. Function Minimization

In the case of the minimization objective function, we can use any heuristic algorithm
(e.g., swarming algorithms). In this paper, we decided to use two algorithms:

• Ant colony optimization algorithm (ACO).
• Hooke–Jeeves algorithm (HJ).

In this section, we describe both algorithms.

3.2.1. Ant Colony Optimization Algorithm

The presented ACO algorithm is a probabilistic one, so we obtain a different result
in each execution. Proper selection of algorithm parameters should make the obtained
results give convergent solutions. The algorithm is inspired by the behavior of an ant
swarm in nature. More about the ACO algorithm and its applications can be found in the
articles [33–35]. In order to describe the algorithm, we introduce the following notations:

J—objective function, n—domain size,

nT—number of threads, M = nT · p—number of ants in the population,

I—number of iterations, L—number of pheromone spots,

q, ξ—algorithm parameters selected empirically.

Algorithm 1 presents ACO algorithm step by step. Number of execution objective
function in case of ACO algorithm is equal to L + M · I.

3.2.2. Hooke–Jeeves Algorithm

The Hooke–Jeeves algorithm is a deterministic algorithm for searching for the mini-
mum of an objective function. It is based on two main operations:

• Exploratory move. It is used to test the behavior of the objective function in a small
selected area with the use of test steps along all directions of the orthogonal base.

• Pattern move. It consists of moving in a strictly determined manner to the next area
where the next trial step is considered, but only if at least one of the steps performed
was successful.

In this algorithm, we consider the following parameters:

[d1, d2, . . . , dn]—orthogonal basis of vectors in the considered space,

τ—steps length vector, ξ—accuracy of calculations (stop condition),

β ∈ [0, 1]—parameter narrowing the steps τ,

x0 = [x1, x2, . . . , xn]—starting point

Pseudocode for the Hooke–Jeeves method is presented in Algorithm 2. The only
drawback of the discussed method is the possibility of falling into the local minimum
with more complicated objective functions. More details about the algorithm itself and its
applications can be found in the papers [36,37].



Sensors 2022, 22, 3153 10 of 19

Algorithm 1 Ant Colony Optimization algorithm (ACO).
1:

Initialization part.

2: Random generation of L vectors from the domain of solving problem (the so-called
pheromone spots): xi = [xi

1, xi
2, . . . , xi

n] (i = 1, 2, . . . , L).
3: Calculating the value of the objective function for each of the pheromone spot (for each

solution vector).
4: Sorting the set of solutions in descending order by the quality of solutions (the lower

the value of the objective function, the better the solution). Each solution is assigned
an index.

5:

Iterative part.

6: for iteration = 1, 2, . . . , I do
7: Each pheromone spot (solution vector) is assigned a probability according to the

formula:
pl =

ωl
L
∑

l=1
ωl

l = 1, 2, . . . , L,

where ωl are weights related to the solution index l and expressed by the formula:

ωl =
1

qL
√

2π
· e
−(l−1)2

2q2 L2 .

8: for k = 1, 2, . . . , M do
9: Ant randomly chooses the l-th solution with a probability of pl .

10: Then ant transforms each of the coordinates (j = 1, 2, . . . , n) of the selected
solution using Gauss function:

g(x, µ, σ) =
1

σ
√

2π
· e
−(x−µ)2

2σ2 ,

where µ = sl
j, σ = ξ

L−1

L
∑

p=1
|sp

j − sl
j|.

11: end for
12: M new solutions are obtained. Divide set of new solutions into nT groups and

calculate value of objective function J for each solution in each group in separate thread.
13: From the two sets of solutions (new one and previous one) remove M worst solu-

tions and rest sort according to the quality (value of objective function).
14: end for

Algorithm 2 Hooke–Jeeves algorithm (pseudocode).

1: Search the space around the current point xk along directions from the orthogonal base
[d1, d2, . . . , dn] with step τi (i = 1, 2, . . . , n). This is an exploratory move.

2: If a better point is found, continue in that direction. This is a pattern move.
3: If no better point is found then narrow down the search space using the narrowing

parameter β.

4. Results—Numerical Examples

We consider the inverse problem described in the Section 3.1. In the models (1)
and (2), we set data described by the Equations (23) and (24). We used two different grids
160× 160× 250 and 100× 100× 200 and different levels of measurement data disturbances
(input data for the inverse problem): 0%, 2%, 5%, 10%. The unknown data in the model
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are λ and α—these data need to be identified using the presented algorithm. To examine
and test the algorithm, we know exact values of these parameters, which are λ = 240,
α = 0.8.

First, we present the results obtained using the ACO algorithm. We set the following
parameters of the ant algorithm:

λ ∈ [100, 500], α ∈ (0.01, 0.99),

L = 16, M = 32, I = 20, nT = 4.

Based on the L, M, I parameters, we can determine the number of calls to the objective
function, which in our example is M · I + L = 656. Obtained results are presented in Table 1.
The best results were obtained for exact input data and 100× 100× 200 mesh, the relative
errors of reconstruction parameters λ and α are 0.0283% and 0.584%, respectively, and for
the 160× 160× 250, mesh these errors are equal to 0.151% and 0.687%. In the case of the
input data with a pseudo-random error, the obtained results are also very good, and the
errors of reconstructed parameters do not exceed the input data disturbance errors. In par-
ticular, the errors of reconstruction of the λ coefficient are very small and do not exceed 1%
(except in the case of disturbing the input data with an error of 10% and the 100× 100× 200
grid). Relative errors of reconstructed α parameter have values greater than λ errors, most
likely due to the fact that the sought value is significantly lower than λ. Of course, along
with the increase in input data disturbances, the values of the minimized objective function
also increased. Except for in a few cases, the mesh density did not significantly affect
the results.

Table 1. Results of calculations in case of ACO algorithm. λ—reconstructed value of thermal
conductivity coefficient; α—reconstructed value of x-direction derivative order; δ—the relative error
of reconstruction; J—the value of objective function; σ—standard deviation of objective function.

Mesh Size Noise λ δλ[%] α δα[%] J σJ

100× 100× 200

0% 240.06 2.83× 10−2 0.8046 5.84× 10−1 2.24 8.72
2% 240.71 2.95× 10−1 0.7934 8.14× 10−1 725.13 5.23
5% 241.49 6.21× 10−1 0.7735 3.31 4994.21 14.72
10% 236.61 1.41 0.7798 2.52 19,424.61 6.44

160× 160× 250

0% 239.63 1.51× 10−1 0.8054 6.87× 10−1 1.72 19.17
2% 239.11 3.71× 10−1 0.8131 1.64 1020.84 11.39
5% 241.28 5.36× 10−1 0.7943 7.03× 10−1 5396.34 5.41
10% 241.76 7.34× 10−1 0.7761 2.98 23,675.2 2.66

Figure 3 shows how the value of the objective function changed depending on the
iteration number for four input data cases. The figures do not include the objective function
values for the initial iterations. This is due to the fact that these values were relatively high,
and inclusion in the figures would reduce their legibility. We can see that in the last few
iterations (2–5), the values of the objective function do not change anymore. The appropriate
selection of the L, M, I parameters for the ACO algorithm affects the computation time and
is not always a simple task. It depends on the complication of the objective function and
the number of sought parameters (size of the problem). In particular, a situation in which
the algorithm does not change the solution in the next dozen iterations should be avoided.
As we can observe in the presented example, the selection of ACO parameters, such as the
number of iterations, as well as the size of the population, seems appropriate.
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Figure 3. Values of objective function J in iterations of ACO algorithm for different levels of input
data noise: (a) 0%, (b) 2%, (c) 5%, (d) 10%.

For comparison, we now use the deterministic Hooke–Jeeves algorithm. The following
parameters are set in it:

orthogonal basis of vectors: {[1, 0], [0, 1]}

vector of steps: τ = [τλ, τα] = [4, 0.05]

narrowing parameter: β = 0.5, stop criterion: ξ = 0.0001.

It is a deterministic algorithm, and the resulting solution, as well as the number of
calls to the objective function, depend on the starting point and stop criterion ξ. In our
example, we consider four different starting points: (100, 0.2), (300, 0.1), (450, 0.5), (500, 0.9).
It turned out that regardless of the selected starting point, the same solution was always
obtained, but it should be noted that in the case that the value of any of the reconstructed
parameters exceeded the predetermined limits, then we execute the so-called penalty
function. It was significant in the case of the (100, 0.2) starting point, for which the algorithm
exceeded the limits and stopped at the local minimum; e.g., for the 160× 160× 250 grid
and 0% disturbances, we obtained the results λ ≈ 250, α ≈ 1.8, J ≈ 138. Similar results
were obtained for the remaining cases and the (100, 0.2) start. Table 2 shows the results
obtained using the Hooke–Jeeves algorithm. Comparing the results obtained from both
algorithms, we can see that in most cases the errors in reconstruction of the parameters are
smaller for the Hooke–Jeeves algorithm; e.g., for the 160× 160× 250 and 2% input data
disturbance errors, errors in sought parameters λ and α for the HJ algorithm were 0.0198%
and 0.231%, respectively, while for the ACO algorithm, these errors were 0.371% and 1.64%.
In addition, the value of the objective function for the HJ algorithm was smaller JHJ ≈ 1014,
JACO ≈ 1020. As mentioned earlier, the failure to apply the penalty function caused the HJ
algorithm for the (100, 0.2) starting point to return unsatisfactory results. This should be
noted when the objective function is complicated, for example, by increasing the number
of parameters to be found.
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Table 2. Results of calculations in case of Hooke–Jeeves algorithm: λ —reconstructed value of thermal
conductivity coefficient; α—reconstructed value of x-direction derivative order; δ—the relative error
of reconstruction; J—the value of objective function; fe—number of evaluation objective function;
SP—starting point.

Mesh Size Noise SP λ δλ[%] α δα[%] J fe

10
0
×

10
0
×

20
0

0%

(100, 0.2)

240.15 6.57× 10−2 0.7993 8.33× 10−2 0.0182

272
(300, 0.1) 246
(450, 0.5) 240
(500, 0.9) 299

2%

(100, 0.2)

240.38 1.59× 10−1 0.7971 3.61× 10−1 724.57

254
(300, 0.1) 217
(450, 0.5) 235
(500, 0.9) 270

5%

(100, 0.2)

241.44 6.03× 10−1 0.7757 3.03 4993.85

230
(300, 0.1) 203
(450, 0.5) 257
(500, 0.9) 255

10%

(100, 0.2)

236.86 1.31 0.7781 2.73 19,424.36

217
(300, 0.1) 199
(450, 0.5) 239
(500, 0.9) 245

16
0
×

16
0
×

25
0

0%

(100, 0.2)

240.06 2.51× 10−2 0.7997 3.21× 10−2 0.0036

265
(300, 0.1) 225
(450, 0.5) 221
(500, 0.9) 292

2%

(100, 0.2)

239.95 1.98× 10−2 0.8018 2.31× 10−1 1014.21

257
(300, 0.1) 231
(450, 0.5) 233
(500, 0.9) 284

5%

(100, 0.2)

240.85 3.55× 10−1 0.7935 8.11× 10−1 5393.44

241
(300, 0.1) 213
(450, 0.5) 243
(500, 0.9) 266

10%

(100, 0.2)

241.44 6.02× 10−1 0.7817 2.28 23,673.38

255
(300, 0.1) 227
(450, 0.5) 273
(500, 0.9) 280

Now we present the error of reconstruction of the u state function in the grid points.
These results are summarized in Table 3. The mean errors of reconstruction of the u state
function are at a low level and do not exceed 0.5% in each of the analyzed cases. We can
also observe that the maximum errors in most cases are greater for the 100× 100× 200 grid;
in particular, it is visible for the input data noised by the 5% and 10% errors.

Figures 4 and 5 show error plots of reconstruction of the u state function at the measure-
ment points K1, K2, . . . , K7. The graphs of these errors for both the ACO and HJ algorithms
are quite similar. It can be noticed that for the measurement points K1, K2, K5, K6, greater
errors were obtained for the input data noised by the 5% error than for the input data
disturbed by the error of 10%. Levels of the u reconstruction errors for the input data
unaffected and affected by the 2% error (red and green colors) are on a much lower level
than for the other input data (blue and black colors).
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Table 3. Errors of reconstruction function u in grid points in case of reconstruction of two parameters
λ, α (∆avg—average absolute error; ∆max—maximal absolute error).

Algorithm Errors Mesh 100 × 100 × 200

0% 2% 5% 10%

ACO ∆avg[K] 3.04× 10−2 2.94× 10−2 1.37× 10−1 2.59× 10−1

∆max[K] 1.95× 10−1 2.68× 10−1 1.13 2.46

HJ ∆avg[K] 6.28× 10−3 1.36× 10−2 1.24× 10−1 2.59× 10−1

∆max[K] 1.11× 10−1 1.24× 10−1 1.04 2.42

mesh 160× 160× 250

0% 2% 5% 10%

ACO ∆avg[K] 2.77× 10−2 6.55× 10−2 4.65× 10−2 1.17× 10−1

∆max[K] 2.19× 10−1 5.27× 10−1 3.11× 10−1 9.96× 10−1

HJ ∆avg[K] 2.68× 10−3 1.08× 10−2 3.36× 10−2 8.84× 10−2

∆max[K] 4.72× 10−2 7.43× 10−2 2.53× 10−1 7.55× 10−1
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Figure 4. Errors of reconstruction of u state function in points K1, K2, K3, K4, K5, K6, K7 for
ACO algorithm.
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Figure 5. Errors of reconstruction of u state function in points K1, K2, K3, K4, K5, K6, K7 for
HJ algorithm.

Sensitivity Analysis

A sensitivity analysis was also performed for both reproduced parameters [38]. Sensitiv-
ity coefficients are derived from the measured quantity according to the reproduced quantity:

Zα =
∂u(x, y, t)

∂α
, (26)

Zλ =
∂u(x, y, t)

∂λ
. (27)

In the calculations, both of the above derivatives are approximated by central difference quotients:

Zα ≈
uα+ε(x, y, t)− uα−ε(x, y, t)

2 ε
, (28)

Zλ ≈
uλ+ε(x, y, t)− uλ−ε(x, y, t)

2 ε
, (29)

where ε = 10−5 [39], and up(x, y, t) denotes the state function determined for a given value
of p.
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We considered a test case with α = 0.8 and λ = 240. Figure 6 shows the variability of
the sensitivity coefficients at measurement points over the entire analyzed period of time.
The obtained results were symmetrical with respect to the vertical axis of symmetry of the
area—the line x = 1. Therefore, the measurement coefficients in points K5, K6, and K7 are
equal to the coefficients in points K1, K2, and K3, respectively. The performed sensitivity
analysis showed that the positions selected for the measurement points are correct. They
ensure the appropriate sensitivity of the state function to changes in the values of the
restored parameters.

(a)

0 50 100 150 200

-40

-30

-20

-10

0

10

time [s]

s
e
n
s
it
iv
it
y
c
o
e
ff
ic
ie
n
t
Z

�

K1=K5

K2=K6

K3=K7

K4

(b)

0 50 100 150 200

-0.3

-0.2

-0.1

0.0

time [s]

s
e
n
s
it
iv
it
y
c
o
e
ff
ic
ie
n
t
Z

�

K1=K5

K2=K6

K3=K7

K4

Figure 6. Sensitivity coefficient in measurement points along the time domain: (a) Zα, (b) Zλ.

5. Conclusions

This paper presents algorithms for direct and inverse solutions for a model consist-
ing of a differential equation with a fractional derivative with respect to a space of the
Riemann–Liouville type. Equations of this type are used to describe the phenomena of
anomalous diffusion, e.g., anomalous heat transfer in porous media. The inverse problem
has been reduced to the search for the minimum of a properly created objective function.
Two algorithms were used to deal with this problem: ant colony optimization algorithm
and Hooke–Jeeves method. From the presented numerical example, we can draw the
following conclusions:

• The obtained results are satisfactory and errors of parameters reconstruction are mini-
mal.

• Both presented algorithms returned similar results, but in the case of the HJ algorithm,
it was necessary to use the penalty function for one of the starting points.

• The number of evaluation of the objective function was smaller for the HJ algorithm
(250–300) than for the ACO algorithm (656).

The used differential scheme is unconditionally stable and has the approximation
order equal to O((∆x)2 + (∆y)2 + (∆t)2) [26]. The convergence of the differential scheme
is fast; already for sparse meshes, the approximation errors for the solution of the direct
problem are small [27]. In addition, in the case of the inverse problem considered in this
paper, it is enough to use a relatively sparse mesh to very well reconstruct the searched
parameters. The presented method can be used as a tool for parameter training in artificial
neural networks.
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Nomenclature
The following abbreviations are used in this manuscript:

c specific heat
di i-th vector in orthogonal base in HJ method
f additional source term
f k
i,j value of function f in point (tk, xi, yj)

g auxiliary coefficient to determine ω

I number of iterations in ACO algorithm
J objective function
Ki i-th measurement point
L number of pheromone spots in ACO algorithm
Lx length in x-direction
Ly length in y-direction
Mx mesh size in x-direction
My mesh size in y-direction
n number of sought parameters in ACO algorithm
nT number of threads in ACO algorithm
N mesh size in time
rx

i,j, ry
i,j coefficients of matrices Rx, Ry

Rx, Ry auxiliary matrices to to describe the solution of a direct problem
t time
u state function (temperature)
uk

i,j value of state function in point (tk, xi, yj)

q parameter in ACO algorithm
x spatial variable
xi value of x variable for i∆x
x0 starting point in HJ method
y spatial variable
yj value of y variable for j∆y
T final moment of time
tk value of time for k∆t
Greek Symbols
α order of derivative in x-direction
β order of derivative in y-direction
Γ gamma function

δα
x , δ

α+1
x , δ

β
y , δ

β+1
y auxiliary operators to describe the solution of a direct problem

∆t time step
∆x step mesh in x-direction
∆y step mesh in y-direction
λ thermal conductivity
λi,j value of thermal conductivity in point (xi, yj)

ϕ temperature in t = 0
$ mass density
ξ stop criterion in HJ method
τ steps length vector in HJ method
ω weight in shifted Grünwald formula
Ω domain of differential equation
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