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Abstract: Coal burst prediction is an important research hotspot in coal mine production safety. This
paper presents FDNet, which is a knowledge and data fusion-driven deep neural network for coal
burst prediction. The main idea of FDNet is to extract explicit features based on the existing mine
seismic physical model and utilize deep learning to automatically extract the implicit features of mine
microseismic data. The key innovations of FDNet include an expert knowledge indicator selection
method based on a subset search strategy, a mine microseismic data extraction method based on a
deep convolutional neural network, and a feature deep fusion method of mine microseismic data
based on an attention mechanism. We conducted a set of engineering experiments in Gaojiapu Coal
Mine to evaluate the performance of FDNet. The results show that compared with the state-of-the-art
data-driven machines and knowledge-driven methods, the prediction accuracy of FDNet is improved
by 5% and 16%, respectively.

Keywords: coal burst; coal mine safety; fusion-driven; deep neural network

1. Introduction

Coal burst is a common geological disaster in coal mining. Most mining countries,
such as Canada, the United States, Germany, and Australia, have recorded coal bursts [1–3].
The cause of the disaster is that when the stress accumulation of the coal and rock mass
exceeds its strength limit, the elastic energy is released instantaneously, resulting in the
instantaneous destruction of the coal and rock mass [4–7]. Accompanied by a large amount
of coal and rock mass gushing out, coal bursts cause casualties and equipment damage in
coal mines [8]. From 2018 to 2021, coal mines in China suffered multiple coal burst accidents,
resulting in around 20 deaths. Therefore, coal burst monitoring and early warning is the
current research hotspot.

The prediction and early warning of coal bursts are essential to monitor some pre-
cursory signals of coal bursts during the construction stage utilizing the electromagnetic
radiation method, micro-gravity method, infrared thermal imaging method, and micro-
seismic monitoring; then, early warnings of the occurrence of coal bursts are possible.
Microseismic monitoring is one of the most widely used early warning methods [9–11].
Typically, several microseismic events precede the onset of coal bursts, and these events
record precursory information about coal fracture and stress transfer. Microseismic moni-
toring can determine the time, location, and intensity of these microseismic events in real
time, thereby predicting the occurrence of coal bursts [12,13].

The research work of coal burst prediction using microseismic data can be divided
into two categories: knowledge-driven and data-driven. The knowledge-driven coal burst
prediction method uses geophysics to establish a variety of indicators (using frequency,
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energy, b value, A(b) value, etc.) to build a coal burst prediction model [14–17]. However,
such methods cannot fully obtain the sequence information of mine microseismic data,
resulting in poor recognition accuracy. Drawing on the successful experience of earthquake
prediction [18–21], in recent years, there has been much research work on data-driven coal
burst prediction based on machine learning [22–24]. Among them, deep learning has a
good application prospect in coal burst prediction because it can automatically extract the
implicit features of massive mine microseismic data [25–27]. However, this kind of work
only starts from the perspective of statistical data, without integrating the existing expert
knowledge, and the recognition accuracy needs to be further improved. In addition, the
data-driven method also has problems such as poor interpretability.

To address the above issues, this paper proposes a novel knowledge and data fusion-
driven deep neural network for coal burst prediction, called FDNet. The main function of
FDNet is to use the microseismic data to predict whether a large-energy coal burst will occur
in the next 1–3 days. The main idea is to extract explicit features based on the existing mine
seismic physical model, use deep learning to automatically extract the implicit features
of mine microseismic data, and then build a coal burst prediction method based on the
fusion features.

Building the above model mainly faces the following key challenges: (1) how to select
specific expert knowledge indicators for different coal mines; (2) how to extract implicit
features from massive mine seismic data; (3) how to deeply integrate knowledge-driven
and data-driven extracted features. To address the first challenge, we design an expert
knowledge indicator selection method based on a subset search strategy to solve the multi-
indicator screening problem of mining microseismic data. To address the second challenge,
we establish a mine microseismic data extraction method based on a deep convolutional
neural network, realizing the implicit feature extraction of massive mine microseismic
data. To address the third challenge, we propose a feature deep fusion method of mine
microseismic data based on an attention mechanism, which realizes the feature fusion
based on knowledge-driven and data-driven.

The main contributions of this paper are summarized as follows.

• To the best of our knowledge, this is the first study of a knowledge and data fusion-
driven deep neural network for coal burst prediction. This network utilizes the fusion
features of expert knowledge and data-hidden information.

• We establish a novel mine microseismic data extraction method based on a deep
convolutional neural network and propose a novel feature deep fusion method of
mine microseismic data based on an attention mechanism.

• We have conducted a set of engineering experiments in Gaojiapu Coal Mine to evaluate
the performance of FDNet. The results show that compared with the state-of-the-art
data-driven and knowledge-driven methods, the prediction accuracy of FDNet is
improved by 5% and 16%, respectively.

2. Overview

As shown in Figure 1, the research in this paper mainly includes three parts: mine
microseismic data processing, feature extraction, and prediction module.

Mine microseismic data processing converts the raw data collected by microseismic
sensors into precursory pattern series data for model input. The original data saved by
the microseismic system include the time of the microseismic event, the energy of the
microseismic event, and the coordinates of the source of the microseismic event. Firstly,
the raw data are statistically analyzed, and the daily maximum energy value and mean
energy value are calculated to generate time series data with daily as the minimum unit.
We specify the precursory pattern sequence length to generate multiple precursory pattern
sequences and their labels.
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Figure 1. Knowledge and data fusion-driven deep neural network architecture.

Feature extraction includes knowledge-driven explicit feature extraction and data-
driven implicit feature extraction. Explicit features refer to the relevant indicators calculated
by expert knowledge, including the b value, a value, A(b) value, seismic absence, micro-
seismic activity scale4F, microseismic time information entropy, equivalent energy level
parameter EEM, and microseismic activity S value. Aiming at different coal mines, we
present a subset search method to select specific indicators to obtain the optimal display
characteristics. Implicit features refer to the hidden regularity information mined from
massive data using deep learning methods. In this paper, convolutional neural networks
are used to achieve implicit feature extraction.

Predictive models include feature fusion and classification networks. In the feature
fusion part, we propose a deep fusion method of explicit and implicit features based on
the attention mechanism. In the classification network part, we implement classification
through fully connected network fitting, thus constructing a prediction module of coal
burst large-energy events.
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3. Detailed Design
3.1. Data Processing

The original data of the database contain information such as microseismic time, mi-
croseismic energy, and source coordinates. As shown in Figure 2, the following processing
needs to be done on the raw data to be suitable for the training and prediction of the model.
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Figure 2. The workflow of data processing.
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First, we build a time series data set with fixed time window statistics. Assuming that
the data record calculated in the ith time window is mi, it can be expressed as:

mi = 〈id, emax, emean, f 〉 (1)

where id is the time window number, emax is the maximum energy in the time window,
emean is the mean energy in the time window, and f is the frequency of microseismic events
within the time window. Therefore, when the data are divided into n time windows,
traversing the time windows based on the above method, the time series data set can be
obtained as M = 〈m0, m1, m2, . . . , mn−1〉.

Then, a precursory pattern sequence is constructed based on the above processed time
series data. Assuming that the ith precursory pattern sequence is si, it can be expressed as:

si = 〈mi×j, mi×j+1, mi×j+2, . . . , mi×j+p−1〉 (2)

where p is the length of the precursory pattern sequence, and j is the sampling step size.
Therefore, under the premise of n time windows and n � p, the precursory pattern
sequence set can be generated based on the above method:

S = 〈s0, s1, s2, . . . , sD−1〉 (3)

where D represents the number of precursory pattern sequences in the precursory pattern
sequence sample in the case where the prediction time range is N hours.

For model training, it is necessary to establish the label set corresponding to the
precursory pattern sequence set, which can be expressed as:

T = 〈t0, t1, t2, . . . , tD−1〉 (4)

where ti is the label of the precursory pattern sequence si, and if a large-energy event is
about to occur, ti = 1; otherwise, ti = 0. Its calculation method is shown as follows:

f (x) =

{
0, ei < E

1, ei ≥ E
(5)

where ei is the maximum energy value of the precursory pattern sequence si in the next
N hours. E is the energy threshold for large-energy events, which is generally taken as
5× 104 J or 1× 105 J.

3.2. Feature Extraction
3.2.1. Knowledge-Driven Explicit Features

Explicit features are features extracted based on expert knowledge, including the
b value [28], a value [29], A(b) value [30], seismic absence [31], coal burst activity scale
4F [32], microseismic time information entropy [33], and equivalent energy level parameter
EEM [34]. Multiple mine-seismic indicators, such as the seismicity S value, are used as
explicit feature candidate sets. Considering the influence of factors such as different coal
mine geological structures, not all indicators are suitable for coal burst prediction. Therefore,
to solve the selection problem of microseismic indicators for different coal mines, this paper
designs a feedback selection method of microseismic indicators. The main idea of this
method is to dynamically add indicators, and then use the data of other mined-out working
faces in the mine to calculate the model accuracy after adding different indicators, and
judge whether the indicator set is optimal according to the accuracy. Specific steps are as
follows. Assume that the set of microseismic indicators is {a1, a2, . . . , am}; we treat each
metric as a subset of candidates and evaluate a subset of m candidate single indicators.
Assume that the optimal candidate set in the first round is {a2}; we take it as the first round
selection set. Next, adding an indicator to this selected set constitutes a candidate subset
consisting of two indicators. Suppose that {a2, a5} is optimal in the m− 1 candidate subsets,
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and use it as the second round selection set. Until r + 1 round, the optimal candidate subset
is inferior to the previous round; then, the rth round of indicators set is used as the final
feature selection result. In this research, the evaluation criterion for evaluating the pros and
cons of a feature subset is the average model accuracy of the feature subset on different
datasets and different sampling methods. Based on the above method, specific indicators
can be screened for different coal mines as display features. The feedback-type microseismic
indicator selection mechanism solves the problem of microseismic indicator selection and
improves the model prediction accuracy.

3.2.2. Data-Driven Implicit Features

As shown in Figure 3, in order to mine the hidden laws in the massive microseismic
data, we propose an implicit feature extraction method based on deep learning, which
uses the convolutional neural network in deep learning to achieve implicit feature extrac-
tion. A convolutional neural network is a neural network specially designed to process
data with a grid-like structure. Convolutional neural networks have the ability to learn
representations [35–38]. Its artificial neurons can respond to a part of the surrounding
units in the coverage area. They are composed of one or more convolutional layers, a
fully connected layer at the top, as well as association weights and pooling layers. This
structure enables convolutional neural networks to exploit the two-dimensional structure
of the input data. The convolution kernel parameter sharing in the hidden layer and the
sparsity of the connection between the layers enable the convolutional neural network to
achieve implicit feature extraction with a small amount of computation. Therefore, this
paper uses a deep convolutional neural network to extract implicit features in massive mine
seismic data. The convolutional neural network used is a 3-layer convolution, including
88 convolution kernels, and outputs a 1000-dimensional implicit feature vector that is the
implicit feature to be extracted in this paper.

Precursory Pattern Sequence 16 Channels

32 Channels 64 Channels

1000-dimensional

Implicit Features

Figure 3. Data-driven feature extraction network based on convolutional neural network.

3.3. Prediction Module

Based on the training data set, the prediction module generation establishes the
objective function, and uses the back-propagation algorithm to update the network weights
to minimize the loss of the objective function, thereby generating the prediction module.
The trained model can be used for large-energy event prediction, which can predict whether
a large-energy event will occur in the future. The prediction module mainly includes
two modules: feature fusion and classification network. Section 3.3.1 introduces feature
fusion, Section 3.3.2 introduces the classification network, and Section 3.3.3 introduces the
model training.

3.3.1. Feature Fusion

In the prediction module, explicit features and implicit features need to be deeply
fused. The complexity and heterogeneity of explicit and implicit features make simple
weighted feature fusion methods unsuitable. Therefore, this paper uses the attention
mechanism method [39] to achieve feature fusion, which can realize the weighting of each
dimension within the explicit feature and the implicit feature.
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As shown in Figure 4, first, the explicit features Fe and implicit features Fi are merged
to obtain the initial feature vector Fs:

Fs = [Fe, Fi] (6)

where the dimensions of the explicit and implicit eigenvectors (Fe ∈ Rd1 Fi ∈ Rdi ) are d1
and d2, respectively. The dimension of the fusion feature vector Fs ∈ R(d1+d2) is d1 + d2. In
the attention mechanism [40,41], the weight vectors of explicit features and implicit features
are denoted as Ve ∈ Rd1 , Vi ∈ Rd2 . The calculation method is as follows:

Ve = H(Fs ·Me)

Vi = H(Fs ·Mi)
(7)

where Me ∈ R(d1+d2)×d2 and Mi ∈ R(d1+d2)×d2 are two learnable parameter matrices; H(x)
is the activation function 1

1+e−x . Each dimension of the weight vector Ve and Vi corresponds
to the weight of each feature dimension of Fe and Fi. Finally, the final fused feature vector
F f is calculated as:

F f = [Fe �Ve, Fi �Vi] (8)

where � denotes the Hadamard product. The fused features are used as input to the
subsequent classification network.
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Figure 4. The workflow of the feature fusion process.

3.3.2. Classification Network

The classification network in the prediction module consists of a fully connected
layer and an activation function. In deep learning, the fully connected layer acts as a
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classifier, which can map the learned distributed feature representation into the sample
label space [42,43]. The fully connected layer in this model is composed of 2000 neurons.
Then, the activation function is used for normalization to obtain the probability of whether
there is a large-energy event. If the probability of a large-energy event is greater than the
probability of no large-energy event, the output is 1; otherwise, the output is 0.

3.3.3. Model Training

Considering the low probability of large-energy events, the training data set samples
are unbalanced, where the data labeled as small-energy events are much more than those
with large-energy events. If the traditional deep learning model training method is used,
it will lead to the problem that the model is biased towards learning a class with more
samples during classification. To solve this problem, this paper draws on the idea of
“re-scaling”. During the training process, the model can dynamically adjust the weight of
each class in calculating the loss according to the distribution of batch samples and overall
samples. In network training, the weighted cross-entropy loss function is used to calculate
the loss value of the model, and by continuously updating the parameters in the neural
network model, the loss of the model on the training data set is minimized. In addition,
in the prediction task of coal burst, to reduce the false negative rate of events caused by
large energy, this paper adds various learning weights, Z0 and Z1, to the loss function.
By adjusting the learning weight of large-energy events, the model can be more biased
towards the prediction of large-energy samples, thereby reducing the false negative rate of
large-energy events. The weighted cross-entropy loss L in this paper can be expressed as:

L =
1
N

N

∑
i=1

Li

Li =
−z0 × w0 × yi0 × lnpio − z1 × w1 × yi1 × lnpio

w0 + w1

(9)

where Li represents the loss value of the ith precursory pattern sequence. N is the number
of precursory pattern sequences. z0 and z1 represent the learned weights for the two
classes, respectively. w0 and w1 represent the sample distribution weights of classes 0
and 1, respectively. If the label of the ith precursory mode sequence is a small-energy
event, then yi0 = 1, yi1 = 0; otherwise, yi0 = 0, yi1 = 1. pi0 is the predicted probability
that the observed sample i is class 0. pi1 is the predicted probability that the observed
sample i is class 1. The above method effectively improves the problem of unbalanced data
categories, effectively accelerates the model convergence speed, and improves the model
prediction accuracy.

4. Engineering Experiments

In order to verify the effectiveness of the fusion-driven model, a large number of
experiments are described in this section using the microseismic data of multiple working
faces of the Gaojiapu Coal Mine. First, the overall performance of the model and the
influence of different parameters were evaluated by using 13,058 seismic data from May
2019 to May 2020 on the 204 working face of Gaojiapu Coal Mine, and a comparative
experiment with the single-driven model was established. In addition, the prediction
module was trained using the seismic data of the 204 working face of Gaojiapu Coal Mine,
and then the model was used to predict large-energy events on the 301 working face, where
coal was being mined. The experimental results show that the prediction module proposed
in this paper is still effective in the cross-working face situation.

4.1. Evaluation Indicators

In this experiment, the confusion matrix is used to record the model prediction results.
If the actual situation is true and the prediction is true, it is recorded as TP (true positive).
If the actual situation is true and the prediction is false, it is recorded as FN (false negative).
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If the actual situation is false and the prediction is false, then we record TN (true negative).
If the actual situation is false and the prediction is true, it is recorded as FP (false positive).
In the calculation process of the confusion matrix, we first define the “true and false” in
the preceding paragraph. Among them, “true” can be expressed as the occurrence of a
large-energy event coal burst; “false” means that a large-energy event has not occurred.
Here, the confusion matrix of large-energy events is defined.

As shown in Table 1, in the model evaluation, this paper uses three evaluation in-
dicators: accuracy rate (ACC), true case rate (TPR), and false discovery rate (FDR). The
accuracy rate is the ratio of the number of events predicted accurately to the total number
of events, reflecting the overall performance of the model. The true case rate is the ratio
of the number of events that are predicted to be true and are actually true to the number
of events that are actually true. This experiment represents the proportion of precursory
pattern sequences predicted to be large-energy events in the samples of real large-energy
events. The false discovery rate is the ratio of the number of events predicted to be true
that are actually false to the total number of events predicted to be true, reflecting the false
positive rate of the model. The calculation formula of the above indicators is as follows:

ACC =
TP + TN

TP + FP + TN + FN

TPR =
TP

TP + FN

FDR =
FP

FP + TP

(10)

Table 1. Confusion matrix.

Actual

True False

Predicted True True–True (TP) True–False (FP)

False False–True (FN) False–False (TN)

4.2. Overall Performance

To evaluate the overall performance of the model, the design ideas of this experiment
are as follows: The initial model is trained using data from 1–100 days of working face 204,
and then predicts whether large-energy events (energy greater than 1× 105 J) will occur in
days 101 to 103. The simulation time goes by 1 day, and the model is updated. We retrain
the model with data from days 1–101 and predict whether a large-energy event will occur in
days 102–104. The simulation time goes by for another day, and the model is updated again.
We retrain the model with 1–102 days of data. Then, we predict whether a large-energy
event will occur in days 103 to 105, and so on. Then, a total of 250 simulation predictions
were tested. The prediction results are shown in Figure 5; dark green indicates that the
model predicts correctly, and light green indicates that the model predicts incorrectly. We
can find that as the training data set continues to increase, the prediction accuracy of the
model becomes higher and higher. Table 2 shows the overall performance of the model.
The accuracy rate reached 76.68%. The true case rate was 73.13%, and the false positive rate
was only 19.01%. In conclusion, the fusion prediction module has good performance.

Table 2. Overall performance test results.

Evaluation Metrics Result

ACC 0.7668
TPR 0.7313
FDR 0.1901



Sensors 2022, 22, 3088 10 of 17

Correct Wrong

D
ay

 N
 o

f u
sin

g
 th

e m
o
d
el

1–25

26–50

51–75

76–100

101–125

126–150

151–175

176–200

201–225

226–250

Figure 5. Overall performance.

4.3. Influence of Different Parameters

This subsection tests the effect of different parameters, including prediction time,
sequence length, large-energy event threshold, data sampling time window size, and
balance factor, on model performance. The training set and test set are divided using the
leave-out method commonly used in machine learning, where the ratio of the training set
and test set is 7:3.

4.3.1. Influence of Prediction Time

To evaluate the performance of the model under different prediction time scenarios, the
experiments are designed as follows. The sampling time window I = 12 h, the precursory
pattern sequence length p = 28, and the loss function balance factor z0 = 0.8, z1 = 1.5.
When the above parameters remain unchanged, we set the prediction time N = 24 h,
N = 48 h, N = 72 h, respectively. Two large-energy thresholds are set at each prediction
time, E = 5× 104 J and E = 1× 105 J, and we then run the model test. Table 3 shows
the experimental results for different prediction times. The results show that this model
can effectively predict whether large-energy events will occur in the next 1–3 days. In the
case of two large-energy thresholds of E = 5× 104 J and E = 1× 105 J, optimal model
performance for N = 72 h, and its TPR can reach 81.15%.

Table 3. Influence of prediction time.

Prediction Duration N(h) Large Energy Threshold (J) ACC TPR FDR

24
5 × 104 0.6993 0.8601 0.3492

1 × 105 0.7386 0.6932 0.2375

48
5 × 104 0.7358 0.813 0.2958

1 × 105 0.7519 0.7481 0.2462

72
5 × 104 0.7459 0.8115 0.2826

1 × 105 0.7658 0.8101 0.2558

4.3.2. Influence of Sequence Length

In order to evaluate the effect of different precursory pattern sequence lengths on
model performance, this experiment uses different sequence lengths for model testing. The
experimental setup is as follows: sample time window I = 12 h, prediction time N = 12 h,
and loss function balance factor z0 = 0.8, z1 = 1.5. Under the condition that the above
parameters remain unchanged, we set the precursory pattern sequence length p as 6, 10,
14, 28, 42, 56. We set two large-energy thresholds at each sequence length, E = 5× 104
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J and E = 1× 105 J, and then run the model test. The model test results are shown in
Figure 6. Experiments show that when a large-energy threshold E = 5× 104 J, a shorter
precursory pattern sequence is beneficial to improve the ACC and TPR of the model. The
case of p = 6 achieved the highest ACC, reaching 81.77%; its TPR reached 88.54%, and
the FDR was only 22.02%. When the large-energy threshold E = 1× 105 J, the case of
p = 28 achieved the highest ACC, reaching 78.16%, and FDR reached 23.35%. To sum up,
under the conditions of two large-energy thresholds of E = 5× 104 J and E = 1× 105 J, the
optimal sequence lengths p are 6 and 28, respectively.

4.3.3. Influence of Time Window Size

In order to verify the influence of different time window sizes on model performance,
this experiment uses different time window sizes for model training. The experimental
setup is as follows: precursory pattern sequence length p = 28, prediction time N = 72 h,
and loss function balance factor z0 = 0.8, z1 = 1.5. Under the condition that the above
parameters remain unchanged, we set the time window as 4 h, 6 h, 8 h, 12 h, 24 h, 36 h,
respectively. Two large-energy thresholds are set under each time window, respectively,
E = 5× 104 J and E = 1× 105 J, and we then run the model test. The model test results are
shown in Figure 7. The results show that the highest accuracy rate of 77.96% is obtained
when the large-energy threshold is E = 5× 104 J, and its time window size I = 8 h. The
TPR reached 83.55%. When the maximum energy threshold is E = 1× 105 J, the highest
accuracy rate is 79.81%; when the time window is I = 4 h, the TPR reaches 81.89%, and the
FDR is only 21.38%. In summary, under the conditions of two large-energy thresholds of
E = 5× 104 J and E = 1× 105 J, the optimal time windows are 8 h and 4 h, respectively.

4.3.4. Influence of Balance Factor

In order to verify the influence of the loss function balance factor on the perfor-
mance of the model, this experiment selects multiple groups of loss function balance
factors to train the model. The experimental setup is as follows: time window size
I = 12 h, precursory pattern sequence length p = 28, prediction time N = 72 h. With
the above parameters unchanged, we set the balance factor z0 = 0.8 and z1 = 1.5
as (0.8, 1.0), (0.8, 1.2), (0.8, 1.4), (0.8, 1.5), (1.0, 1.0), (1.0, 1.2), (1.0, 1.4), (1.0, 1.5), separately.
Two large-energy thresholds are set under each group of balance factors, which are
E = 5× 104 J and E = 1× 105 J, and we then perform model testing. The model test
results are shown in Figure 8. Experiments show that when the large-energy threshold is
E = 5× 104 J and the balance factor is (1.0, 1.2), the highest accuracy rate is 77.46%, and
its TPR is 77.05%. When the balance factor is (0.8, 1.4), the highest TPR is 81.15%, and
its accuracy is 75.41%, which is only 1.64% lower than 77.05%. When the large-energy
threshold E = 1× 105 J, the model accuracy rates are all between 75% and 79%, and the
highest TPR of 81.01% is obtained when the balance factor is (1.0, 1.4). To sum up, under
the conditions of two large-energy thresholds of E = 5× 104 J and E = 1× 105 J, the
optimal selections of the balance factor are (0.8, 1.4) and (1.0, 1.4), respectively.
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Figure 6. Test results of different sequence lengths including (a) ACC, (b) TPR, (c) FDR.
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Figure 7. Test results of different time window sizes including (a) ACC, (b) TPR, (c) FDR.
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Figure 8. Test results of different balance factors.

4.4. Cross-Working Face Performance Test

To evaluate the performance of the prediction model across working faces, this ex-
periment uses data from the Gaojiapu 204 working face to train the model, and then uses
the model to test it on the 301 working face that is being mined. The experimental setup
is as follows: time window size I = 12 h, precursory pattern sequence length p = 28,
prediction time N = 72 h, balance factor (1.0, 1.4). With the above parameters unchanged,
E = 5× 104 J and E = 1× 105 J are used as the large-energy thresholds, respectively. The
experimental results are shown in Table 4. Experiments show that the accuracy of the
model is still above 75% in the case of cross-working face prediction. It can be seen that
different working faces in the same mining area have similar characteristics. The prediction
model of this paper still has relatively good performance in the case of a cross-working face.

Table 4. Cross- working face performance test results.

Large Energy Thresholds (J) ACC TPR FDR

5 × 104 0.7664 0.75 0.2245

1 × 105 0.7521 0.6581 0.1895
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4.5. Comparison with the Single-Driven Model

In order to verify the effectiveness of the fusion-driven prediction module proposed in
this paper, the data of the 204 working face were selected for model training. The experimen-
tal parameters are set as follows: time window size I = 12 h, precursory pattern sequence
length p = 28, prediction time N = 72 h, balance factor (1.0, 1.4). Under the conditions
of large-energy thresholds E = 5× 104 J and E = 1× 105 J, respectively, we trained three
models of “data-driven + knowledge-driven”, “data-driven”, and “knowledge-driven”.
As shown in Table 5, experiments show that the fusion-driven model has an accuracy rate
of over 75% and a TPR of over 81% under two large-energy thresholds. The accuracy
of the “knowledge-driven” models is between 60% and 65%. Although the accuracy of
the “data-driven” model has also reached more than 70%, its TPR is approximately 7%
lower than that of the “fusion-driven” model. Therefore, the “fusion-driven” model is
significantly better than the “knowledge-driven” model, and the prediction effect of large-
energy events is improved relative to the “data-driven” model. It can be seen that the
“fusion-driven” model has a significant improvement in the prediction accuracy compared
with the single-driven model.

Table 5. Test results of single-driven model and fusion-driven model.

Model Fusion-Driven Data-Driven Knowledge-Driven

Large-energy threshold (J) 5 × 104 1 × 105 5 × 104 1 × 105 5 × 104 1 × 105

ACC 0.7500 0.7563 0.7400 0.7532 0.6475 0.6234
TPR 0.8279 0.8101 0.7623 0.7405 0.6721 0.7722
FDR 0.2837 0.2686 0.256 0.2403 0.3594 0.4049

5. Conclusions

This paper presents FDNet, which is a knowledge- and data fusion-driven deep neural
network for coal burst prediction. First, we design an expert knowledge indicator selection
method based on a subset search strategy to solve the multi-indicator screening problem of
mining microseismic data. Then, we establish a mine microseismic data extraction method
based on a deep convolutional neural network, realizing the implicit feature extraction
of massive mine microseismic data. Finally, we propose a feature deep fusion method of
mine microseismic data based on an attention mechanism, which realizes the feature fusion
based on knowledge-driven and data-driven aspects. In addition, we have conducted a set
of engineering experiments to evaluate the performance of FDNet. We have evaluated the
impact of different factors and compared the model with the state-of-the-art method. The
results show that FDNet has good prediction accuracy and robustness. However, FDNet is
not applicable to all coal mines, so we will conduct research on the model’s generalization
ability in future work.
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